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Abstract: In this paper, we apply information theory measures and Markov processes in order to
analyse the inequality in the distribution of the financial risk in a pool of countries. The considered
financial variables are sovereign credit ratings and interest rates of sovereign government bonds of
European countries. This paper extends the methodology proposed in our previous work, by allowing
the possibility to consider a continuous time process for the credit rating evolution so that complete
observations of rating histories and credit spreads can be considered in the analysis. Obtained results
suggest that the continuous time model fits real data better than the discrete one and confirm the
existence of a different risk perception among the three main rating agencies: Fitch, Moody’s and
Standard & Poor’s. The application of the model has been performed by a software we developed,
the full code is available on-line allowing the replication of all results.
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1. Introduction

Literature on risk management has become more and more focused on sovereign securities.
The events of default of some countries and the economic and financial crisis registered during
the last decades has increased the need to investigate causes and consequences of such events
(see e.g., Knieling and Othengrafen (2015)). In particular, the Eurozone has been investigated from
several points of view. The problem of income inequality has been faced by D’Amico et al. (2012),
whereas the systemic risk has been analysed through a network approach by Westphal (2015).
The financial implications of any possible changes in the European structure has been investigated by
Escalera and Tarrant (2014) and D’Amico et al. (2018).

The present work aims at gaining insights on the behaviour of the financial risk inequality
among European countries over the next future. Precisely, we want to extend our previous
work (D’Amico et al. (2018) to a continuous-time setting with the intention of achieving more
precise previsions. We refer to financial risk inequality as a measure that summarizes the degree
of disorder or concentration of the financial risk within a given group of countries. In particular,
we rely on a stochastic measure of inequality proposed by D’Amico et al. (2014) that generalizes
the static measure of inequality proposed by Theil (Theil 1967), whose properties make this index
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a good measure to understand the distribution of the financial risk dynamically. The properties of
the Thiel index can be found in Cowell (2011). In this work the author compares several entropy
indices to understand if these measures can be use as a measure of inequality. Whereas applications
and comparison of inequality measures can be found, among others, in Ausloos and Cerqueti (2016)
and Cerqueti and Ausloos (2015).

The financial risk is represented by the value of the credit spread of long-term government bonds.
The main determinant of the credit spread evolution is the credit rating, the latter summarizes the
creditworthiness of a given country. The assumption about the relationship between ratings and credit
spread has been investigated in the financial literature mainly concerning corporate bonds (see e.g.,
Huan and Huan (2012) and D’Amico et al. (2011)).

In this paper, the rating dynamics underlying the spread evolution are modelled according to a
continuous time homogeneous Markov chain, a kind of multistate model (see e.g., Albarran et al. (2005)),
widely used in credit risk modelling and in financial modelling (see e.g., Trueck and Rachev (2009),
Nguyen (2018)). The Markov property applied to rating dynamics has been criticized by, among
others, Carty and Fons (1994) and D’Amico et al. (2005). The homogeneity property has been
relaxed by including switching models linked with business cycles (see e.g., Bangia et al. (2002) and
more recently Gavalas and Syriopoulos (2014)). Recently, general models of rating dynamics mainly
based on semi-Markov processes have been proposed. These models are applied to several issues,
see for example McClean (1980), Papadopoulou and Vassiliou (1999) and D’Amico et al. (2017).
Unfortunately, sovereign credit rating data are not sufficient for the implementation of semi-Markov
models. Therefore, we rely on a continuous time Markov chain framework, which is a simpler model
that allow us to reach our objectives. The advantages of the continuous time framework are well
known and documented in literature, see e.g., Christensen et al. (2004). First of all, the main advantage
refers to the ability of capturing all transitions. As demonstrated in Lando and Skødeberg (2002),
the continuous observation of the rating migrations allows to estimate probabilities of rare events. As a
consequence, also the probability of deteriorating up to the state of Default is non-negative even for
the highest rating classes. Moreover, the continuous-time approach enables to analyse non-Markovian
effect such as rating drift and changes caused by business cycles and it fits better with models that
estimate yield curves (see for example Jarrow et al. (1997)).

Obtained results highlight differences between rating agencies while considering the financial risk,
causing divergences on the continuous-time dynamic entropy measure in terms of its value and its
shape. Furthermore, by applying this model, we obtain results that are closer to the real entropy than
those resulting from the discrete time calculus. Another result of our work is the provision about the
shock that could be caused by the exit of United kingdom from the EU: confirming results obtained in
the discrete time model advanced by D’Amico et al. (2018), the forecasted inequality for all agencies
are similar suggesting that the Brexit would not alter significantly the European financial structure in
terms of risk distribution.

The paper is organised as follow: Section 2 shows the data sets; Section 3 explains the methodology
applied to the real data along with its implementation, while the results are shown in Section 4, followed
by some conclusions and future developments.

2. Data

The financial risk is expressed by the value of the credit spread paid by each country. This results
from the difference between the long-term interest-rates and the minimum value among all countries
as observed at the same time t. Hence, it can be interpreted as the premium for the risk paid by country
a corresponding to the amount of the “spread” compared to the ideal situation where the country pays
the minimum value (“risk-less”). The choice of this kind of indicator is justified by the fact that we are
interested to the difference between countries and not to the precise amount of debt paid. Moreover,
we used the minimum value rather than the interest rate of German sovereign bonds because other
EU countries experienced lower interest rates than those paid by Germany (for example Luxembourg,
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Sweden and, for very short period Czech Republic, United Kingdom and Netherlands). To compute
the credit spreads, the harmonised long-term interest rates of government bonds have been collected
from the Statistical data Warehouse of the European Central Bank (ECB) website on a daily scale.
In particular, they consist of interest rates on sovereign debt securities with maturity of 10 years.
The horizon time ranges from 1/1/1998 to 31/5/2017 for the countries which found the European
Union (EU). While for the rest of the dataset it depends on the entry date of the countries in EU, i.e.,
1/5/2004 for Latvia, Lithuania, Malta, Poland, Czech Republic, Slovakia, Slovenia, Hungary, 1/1/2007
for Bulgaria and Romania and 1/7/2013 for Croatia

Figure 1 shows the evolution of the total cost of sovereign debt paid by the member states in the
left panel and the minimum value useful to assess the credit spreads in the right panel. The credit
spread paid by all countries was moderately low until the entry of 9 new member states in 1/5/2004,
while the entry of the others countries in 1/1/2007 and in 1/7/2013 did not cause crucial variations.
At the beginning of the 2012 the value of the total credit spread had a peak of about 10.000 basis
points (bp) and this growth was driven by the rise of the securities yield of Greece (2.924 bp), Ireland
(1.245 bp) and Portugal (1.385 bp). On the contrary, the benchmark went down over time, except for a
minor increase around the period of the financial crisis, reaching negative values in the 2016 related to
German government bonds.
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Figure 1. Total interest rate paid by all countries./Minimum value of interest rates.

One of the main determinants of the credit spread is the credit rating. Thus, we downloaded the
sovereign rating transition histories, on a daily scale, from the Tradingeconomics web-site for the
three agencies. Rating ranks are continuously observed for all agencies so that the exact dates of rating
transitions are registered. We built three datasets starting from 1/1/1998 to 31/5/2017, depending on
the data availability for each agency. The resulting datasets consist of 184.340 observations for Moody’s,
179.686 observations for Fitch and 175.916 for S&P1. All data are grouped in 8 rating class such that:
AAA (Aaa) = 1; AA (Aa) = 2; A = 3; BBB (Baa) = 4; BB (Ba) = 5; B = 6; CCC-CC-C (Caa-Ca-C) = 7;
SD/RD = 8 for S&P / Fitch (Moody’s). For the sake of clarity we will denote the rating notations as
k = 1, . . . , 8. Conventionally, credit ratings from k = 1 to k = 4 are defined investment grade rating
classes, while credit ratings from state k = 5 to state k = 8 are defined speculative grade rating classes.

1 The countries composing the datasets are 26 and not all the 28 Members of European Union, due to lack of data in the case
of Cyprus and Estonia.
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The former are assigned to obligors with relatively low to moderate risk of default. Speculative grade
rating categories denote an higher risk of default until the occurrence of the event of default or selected
default. From the datasets we observed that most of the sample countries had an investment grade
rating class. In fact, the percentage of speculative categories is low and it increases after the 2008
(around the financial crisis), reaching the maximum in the period surrounding the Greek crisis (2012)
with only the 19% of the sample experiencing this ranking. This was caused by the fact that after
the 2008, European countries experienced a lot of downgrades (i.e., transition to a lower credit rating
class). Almost the 80% of the transitions observed between 2008–2015 are to a lower credit rating,
for all three agencies.

3. Methodology

3.1. The Model for Rating Migrations

Consider the pool of N = 26 countries of the European Union. Let denote by xc
v(t) the variable

rating which is assigned by the rating Agency v with v ∈ [Moody′s, Fitch, S&P] to country c at time t.
The rating assignment process depends on macro and microeconomic conditions and differs among
rating agencies. This is the reason we assume that the sequences xc

v(t) = {xc
v(t)} are realizations

of stochastic process Xc
v(t) = {Xc

v(t), t ∈ R+}, c ∈ {1, . . . , 26}. We assume that the processes
Xc

v(t) are independently and identically distributed according to a continuous time homogeneous
Markov process taking values in the finite state space E = {1, 2, . . . , K}, representing the rating class.
This assumption allows to build a flexible and simple model to be estimated and applied for real
purpose, given the sparsity of data of the sample. We will denote as X(t) the stochastic process
resulting from the common distribution of all countries, leaving aside the notation of rating agencies.
The transition matrix of the continuous Markov process is denoted as P(t) = {pij(t)}i,j∈E whose
elements represent the probability of moving to state j starting from state i in a given time interval
[0, t], i.e.,

pij(t) = P(X(t) = j|X(0) = i). (1)

Transition probabilities are computed according to:

P(t) = etA := ∑
i≥0

Aiti

i!
, (2)

where A = {aij}i,j∈E, is the infinitesimal generator matrix, whose elements represent the intensities of
transition from state i to state j over a given period. It is defined as the derivative at 0 of the matrix
function t→ P(t). In compact notation it is given by:

A = lim
h→0

P(h)− P(0)
h

, (3)

and it satisfies the following properties:

• aij ≥ 0, if i 6= j,
• aii = −ai = − ∑

j∈E,i 6=j
aij.

3.2. Dynamic Measurement of the Inequality

The measure of the inequality of the financial risk distribution has been based on the Theil index
(see Theil (1967), which is computed as follows. Let denote by rc(t) the credit spread paid by country
c at time t:

rc(t) = yc(t)− min
i=1,...,N

{yi(t)}, (4)
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with yc(t) representing the interest rate paid by the same country c. Let sc(t) be the share of credit
spread among N countries attributed to country c at time t. It is given by:

sc(t) =
rc(t)

∑N
i=1 ri(t)

. (5)

For all t ≥ 0, the vector st = {s1(t), . . . , sN(t)} forms a probability distribution. The Theil index is
given by:

T(st) = log(N)− S(st) =
N

∑
i=1

si(t) · log
(

Nsi(t)
)

, (6)

where S(st) is the Shannon entropy (for further informations, see Shannon (1948)). To forecast the
future inequality a dynamic measure is required. The measure of entropy indeed depends on credit
spreads which, in turn, are influenced by rating dynamics. These last follow a stochastic process and,
as a consequence, the measure of entropy becomes a stochastic process too. We will call this index as
Dynamic entropy. In particular, we refer to the Population Dynamic Theil’s Entropy, i.e., DT(n(t); K),
proposed by D’Amico et al. (2014). In this work, the authors derived a formula to assess the dynamic
entropy by decomposing it into inter group entropy and intra-group entropy. Thus, the countries
are allocated in K groups, i.e., the rating classes {C1, . . . , CK}, whose evolution is described by a
multivariate stochastic process n(t) = {nc1(t), nc2(t), . . . , ncK (t)}. The probability distribution is then
built on the shares of credit spread paid by the rating classes s (n(t)) = {sc1(n(t)), . . . , scK (n(t)), where

sci

(
n(t)

)
=

rci · nci (t)

∑K
j=1 rcj · ncj(t)

, (7)

where rci is the mean credit spread paid by class Ci, estimated on historical data. It should be noted
that rci is supposed to be constant over time and for each rating class. So that the dynamic entropy
depends on n(t), which is given by:

DT (n(t); K) =
K

∑
i=1

sci

(
n(t)

)
· TE (rci ; nci (t))

+
K

∑
i=1

sci

(
n(t)

)
· log Ksci

(
n(t)

)
+

K

∑
i=1

sci

(
n(t)

)
· log

N
K · nci (t)

.

(8)

In the rest of the paper we will denote DT (n(t); K) by DT(t).
The first addendum represents the intra-group entropy. It is given by the product of the entropy

assessed within each rating class, i.e., TE (rci ; nci (t)), and the share of rating class Ci. The entropy
measure within a given rating class can be estimated according to Equation (6). However, in our
application, it is equal to zero. As we suppose rci to be constant over time and for all countries within
the same rating class, the resulting distribution is a uniform one. The two other addenda steam
from the decomposition of the inter-group entropy. The second one describes, in fact, the inequality
evolution among the K rating classes. The last addendum summarizes the divergence of the actual
distribution about the uniform distribution of countries equally rated. For further information about
the interpretation of this index see D’Amico et al. (2018).

The dynamic index will be close to zero if all countries pay almost the same value of credit
spreads. On the contrary, DT(t) will reach the highest value if one country pays the total spread.
Thus, an increasing value of this index denotes growing risk in EU due to a concentration of the
financial risk on a few countries, or in the worst case, on only one country. The process DT(t) is
better summarized by its first and second order moments. However, the computation of them would
require the set of all possible population configurations which stem from 26 countries and 7 or 8 rating
classes. Hence, the number of required configurations would become (N+K−1

K−1 ) = (33
7 ) = 4272.048
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(906.192 with 7 rating classes). The Monte Carlo simulation represents a valuable tool to get around
the computational problem given by the huge amount of combinations to be calculated.

3.3. Monte Carlo Simulation to Forecast the Financial Inequality

We aim at computing the expectation E[DT(t)] and the standard deviation σDT(t) of the dynamic
entropy by means of Monte Carlo simulations. Precisely, we simulate N trajectories for a number R of
experiments. In particular, for each experiment, we generate future rating dynamics and, assigning
the mean value of the credit spread distributions, we assess the future inequality evolution, as in
Equation (8). The rating dynamics are generated according to a continuous time Markov chain
{X(t)}t≥0 with the generator A = {aij}, and the initial distribution µ up to time t > 0. Thus, we have
to construct the sequence:

T0 = 0, X0, T1 − T0, X1, . . . , Tn+1 − Tn, Xn+1,

where X0 is drawn according to µ, Xn denotes the rating class occupied at the n-th transition and
Tn − Tn−1 represents the time length between the n− 1-th and n-th transition. As usual, the simulation
of a trajectory of a continuous time Markov chain is done according to the following formulas:{

P(Xn+1 = j|X0, . . . , Xn = i, T0, . . . , Tn) = P(Xn+1 = j|Xn = i, Tn) =
aij
ai

,

P(Tn+1 − Tn ≤ x|X0, . . . , Xn = i, T0, . . . , Tn) = P(Tn+1 − Tn ≤ x|Xn = i, Tn) = 1− e−aix.
(9)

They denote the fact that, using current rating class (say i ∈ E), firstly we simulate next rating
using the probability distribution ( ai.

ai
) and then we simulate the sojourn time in rating i according to an

exponential distribution of parameter ai. In particular, if
{

Tn
}

is the increasing sequence of transition
times of the process X(t), then, by Xn = X(Tn), we denote the embedded Markov chain. It results that

Q(i, j) = P(Xn+1 = j|Xn = i) =

{ aij
ai

i 6= j,

0 i = j.
(10)

represents the probability of transition from state i to state j disregarding the sojourn time length,
which follows an exponential distribution with parameters ai.

Furthermore, we simulate the evolution of the credit spread by assigning the mean value of its
distribution to the corresponding rating class. The dynamic index is then computed as showed in
Equation (8). Finally, the first and the second order moments result from the average value and the
standard deviation of DT(t) over all Monte Carlo iterations.

The whole methodology described in the present work has been implemented using the Python
programming language (Dubois et al. (1996)) in order to obtain all results reported in the next
Section. The main Python packages we used are NumPy (Oliphant (2006)), SciPy (Jones et al. (2001)),
Matplotlib (Hunter (2007)) and PyQt4 (Summerfield (2007)). The whole code can be easily
downloaded by the following GitHub repositories: https://github.com/lstorchi/markovctheil/
tree/continuous. The main computational kernel can be found in the mainmkvcmp.py source code file,
when one can found the main_mkc_comp_cont function. Furthermore, there are two utilities one can
use to reproduce the full set of results reported in the present paper: the markovc.py CLI code, and a
minimal GUI implemented using PyQt that is the named markovc_qt.py.

https://github.com/lstorchi/markovctheil/tree/continuous
https://github.com/lstorchi/markovctheil/tree/continuous
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3.4. Estimation of the Infinitesimal Generator A

The generator matrix useful to simulate future rating dynamics is estimated, as suggested
in Sadek and Limnios (2005), by means of its maximum likelihood estimator (MLE), i.e., Â =(

aij(T, N)
)

i,j∈E. Denoting by N the number of considered countries and by T the observation period:

âij(T, N) =


nij(T,N)

vi(T,N)
i 6= j, vi(T, K) 6= 0,

−∑l∈E {i} nij(T,N)

vi(T,N)
i = j, vi(T, N) 6= 0,

0 vi(T, N) = 0.

(11)

where nij(T, N) is the number of total transitions from i to j observed for all countries over the time
interval [0, T] and vi(T, N) is the total time spent in rating class i by all countries.

4. Results and Discussion

The methodology presented above has been applied for the three rating agencies, investigating
both the current scenario, i.e., with all countries and the scenario including Brexit. We start by
discussing the current scenario. In particular, we report the generator matrices for all agencies to
highlight any differences, and the rate of occurrence of failures to understand if the system has
degraded. Finally, the results of the expected value of the financial inequality is showed and discussed.
For sake of synthesis we will report only the results about the expected inequality in the Brexit scenario.

4.1. Generator Matrix

Tables 1–3 show the generator matrix for Moody’s, Fitch and S&P agencies, respectively. The first
matrix has 7 rows and columns because Moody’s consider 7 rating classes. For Fitch and S&P the
rating classes are 8 as both agencies rated Greece with Selected Default (SD) in 2012.

Table 1. Generator matrix—Moody’s.

k 1 2 3 4 5 6 7

1 −0.000077 0.000077 0 0 0 0 0
2 0.000175 −0.000349 0.000140 0.000035 0 0 0
3 0 0.000026 −0.000246 0.000197 0.000025 0 0
4 0 0 0.000289 −0.000482 0.000193 0 0
5 0 0 0 0.000549 −0.000706 0.000157 0
6 0 0 0 0 0.000502 −0.000754 0.000251
7 0 0 0 0 0 0 0

Table 2. Generator matrix—Fitch.

k 1 2 3 4 5 6 7 8

1 −0.000100 0.000100 0 0 0 0 0 0
2 0.000163 −0.000326 0.000163 0 0 0 0 0
3 0 0.000029 −0.000317 0.000288 0 0 0 0
4 0 0 0.000293 −0.000506 0.000213 0 0 0
5 0 0 0 0.000679 −0.000848 0.000170 0 0
6 0 0 0 0 0.000571 −0,001428 0.000857 0
7 0 0 0 0 0 0.000715 −0.001431 0.000715
8 0 0 0 0 0 0.25 0 −0.25

The generator matrices highlight the fact that rating agencies have different rating assignment
process. As a matter of fact the generator estimated using Moody’s data differs from the others for
several reasons. Firstly, it has an absorbing state (k = 7), secondly, some of the transition intensities
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of 2 notches are positive i.e., a2,4 = 0.000035 and a3,5 = 0.000025 and the intensities of transition
are smaller than those estimated for the other agencies. This finding supports the existent literature
(see, among others Hill et al. (2010)): Moody’s use to maintain its rating assignments as steady as
possible. This fact could cause sometimes the need to adjust the assignment of 2 notches, as shown
above. However, also for Fitch and S&P we observe an upgrade of two notches from k = 8 to k = 6.
If for Fitch k = 6 is the only state after experiencing the default, for S&P the way to leave the state of
default are k = 6, 7 (as highlighted in the generator matrices).

Despite the differences on rating assignment process among the agencies, the evolution of the
transition probability are almost similar except for the probability to migrate to the worst rating class
(i.e., k = 7 for Moody’s and k = 8 for Fitch and S&P). For instance, according to Figure 2, while p2,1(t)
and p3,5(t) are very similar for all rating agencies, the transition probabilities to the last rating class are
dissimilar. The reason is the presence of the absorbing state k = 7 in the case of Moody’s. Thus, to better
compare the three agencies, we consider the Default as absorbing. Therefore, looking at the second
and third rows of Figure 2, the evolution of p6,8(t) and p7,8(t) of Fitch and S&P are close to p6,7(t) of
Moody’s.
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Figure 2. Transition probabilities compared for all agencies over observed time.
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Table 3. Generator matrix—Standard & Poor’s.

k 1 2 3 4 5 6 7 8

1 −0.000127 0.000127 0 0 0 0 0 0
2 0.000181 −0.000332 0.000151 0 0 0 0 0
3 0 0.000056 −0.000363 0.000307 0 0 0 0
4 0 0 0.000291 −0.000494 0.000203 0 0 0
5 0 0 0 0.000482 −0.000562 0.00008 0 0
6 0 0 0 0 0.000498 −0.000996 0.000498 0
7 0 0 0 0 0 0.001319 −0.003958 0.002639
8 0 0 0 0 0 0.012821 0.012821 −0.025641

4.2. Rate of Occurence of Failures

The rate of occurrence of failures (Rocof), see Shi (1985), is an important indicator which derives
from the reliability theory. It is the derivative of the expectation of the number of failures which
have occurred by time t within a given system. Thus, it can be interpreted as an indicator of the
deterioration of a given system. The term failure, in our application, refers to the entrance of sovereign
securities to specific rating categories called failure states denoted as F, starting from the ratings classes
belonging to the working states = W. In particular, we compute the conditional ROCOF, as proposed
in D’Amico (2015) and applied to credit ratings. We need the conditional Rocof because of the
absorbing state. Thus, to compare the rating agencies, we make the rating class Default as absorbing
for Fitch and S&P and then we compute the conditional probability given no default (no rating class C
for Moody’s) as follows:

D pi,j(t) = P
(
X(t) = j|X(t) 6= D, X(0) = i

)
=

(
etA)

ij

∑k 6=D
(
etA
)

ik
. (12)

Then, the conditional Rocof Droi is calculated according to:

Droi(t) = ∑
w∈W, f∈F

D pi,w(t)aw f (13)

where pi,w(t) is the probability of transition from any states i to a working state over the time interval
(0, t). While aw f is the entry of the generator matrix, denoting the intensity of moving from a working
state to a failure state. The Droi(t) is computed fo the three agencies in two different cases:

• W =
{

1, 2, 3
}

and F =
{

4, 5, 6, 7
}

fo Fitch and S&P and F =
{

4, 5, 6
}

for Moody’s;
• W = {1, 2, 3, 4, 5, 6} and F = {7} for Fitch and S&P and F = {6} for Moody’s.

Figure 3 shows the evolution of ROCOF over time (horizontal axis of each sub-figure) in both
cases. Generally, Rocof values are lower in the case of Moody’s agency (values of the order of 10−4)
than the other agencies (whose maximum values are close to 1.5× 10−3).

The results with W = {1, 2, 3} are shown in the first column. Dro1(t) is increasing over time
whereas Dro2(t) and Dro3(t) are, instead, decreasing. On the right panel of the Figure, the Rocof
estimated in the second case illustrates that better higher quality rating classes have lower chance of
entrance in F; however, this likelihood goes up over time. On the contrary, the Rocof for the B-rating
categories (i.e., 4, 5, 6) start with the highest values but, by the time, it falls down. The general shape of
the Rocof in the second row of Figure 3 is financially sound. Indeed, for high rating classes, in a given
short time, the probability of entering into the failure states is low and it is growing over time as the
system tends to deteriorate. On the other hand, low credit ranks exhibit the opposite trend: in a short
time horizon there is an a high probability to enter into failure states, implying low chance of entering
into failure in the long run.
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Figure 3. Rate of Occurence of Failures for all Agencies.

4.3. Financial Inequality

The expected value and the standard deviation of DT(t) are computed by means of Monte Carlo
simulation with 100.000 runs and given horizon time of three years (from June 2017 to May 2020).
As explained before, the simulation requires, first of all , the generation of a continuous time Markov
chain (Equation (9)). Figure 4 shows the result of a simulation of rating migration using the estimated
S&P generator.

According to this Figure, there are some rating migrations: for example the second country is
upgraded. Actually, the rating evolution is simulated for each run, resulting in an array with dimension
[26× 1096× 100, 000]. To assess the financial inequality, we need the variable related to the financial
risk. It is expressed by the mean of the credit spread distribution estimated for all rating categories
and all rating agencies, whose values are reported in Table 4.

Table 4. Average value of the credit spread distribution (bp).

k 1 2 3 4 5 6 7 8

Fitch 45.54786 78.8434 153.43818 302.54016 473.84689 849.83396 1213.51824 1724

S&P 46.87476 70.30082 156.38185 287.64527 447.97677 776.60522 1568.09828 1789.15385

Moody’s 45.8828 76.94788 176.13164 300.55271 419.04269 1108.0814 1081.01712 -
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Even if the agencies share almost the same view about rating assignment, they have different
perception of risk when expressed in terms of credit spreads. In fact, some of the credit ranks (6, 7 and,
to a less extent, 3, 4) have different values.

1
25

2

3

5/202020

4X
(t

) 5

6/201915

Countries

Simulation of the Rating evolution up to May 2020

time

6

10

7

6/2018

8

5

Figure 4. Simulation of the rating evolution with S&P data.

The evolution of the credit spreads influences, along with the rating dynamics, the evolution of
the dynamic entropy. Thus, the differences described above could cause divergences on the forecasted
financial inequality as shown on the left panel of Figure 5.

June-2017 June-2018 June-2019 May-2020
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0.1

DT(t)

S&P
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Mood's

Figure 5. Expected value and standard deviation of the dynamic Theil entropy.

The value of Theil entropy estimated on the observed data at t = 31/05/2017 is 0.50031. The value
has been reached after a general decrease. This suggests a convergence towards greater equidistribution
of the risk over time2. The evolution of the forecasted inequality resulting from the three agencies is
different in terms of its shape but also of its values. For instance, E[DT(t)]Moody′s is increasing over
time with values spreading between 0.59281 and 0.64308 at the end of the horizon time. E[DT(t)]Fitch,
on the contrary, would decrease starting from the highest value (0.64713) up to 0.60414 which is close
to the inequality predicted with S&P data in May 2020. Finally, S&P is particular because the dynamic
entropy starts with 0.58748, it increases with a peak of 0.6028 and then it falls up to value close to
0.59506, suggesting that for this agency the financial risk would be more equidistributed than Fitch

2 The historical entropy is assessed according to Equation (6). For further details on the measure and on its evolution during
the analysed period see D’Amico et al. (2018).
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and Moody’s. There would be dissimilarities also among the share of basis points paid by each rating
class i.e., sci

(
n(t)

)
: rating class CCC’s share in Fitch would decrease by 50%,in S&P it would increase

ranging between 0 and 0.04% and for Moody’s it would remain almost stable. On the other hand,
s6
(
n(t)

)
would grow both for Fitch and for Moody’s, while for S&P it would go down. Finally rating

class 4 would have the highest percentage of credit spread for all agencies (>30%), this could suggest
that countries close to the speculative grade rating classes (i.e from BB to D) would pay higher costs
of debt.

The right panel of the Figure 5 shows the standard deviation of the forecasted inequality. It rises
for all rating agencies over time. However, S&P shows the highest values, which, at the end, converges
with those predicted by Moody’s. On the other hand, Fitch would have the lowest values.

4.4. Simulation in the Case of Brexit

The whole methodology has been replicated for the Brexit scenario. To build this scenario we
follow the hypothesis of independence, previously stated, between sovereign credit ratings and, as a
consequence, between credit spreads. This is why we have just removed the historical data of United
Kingdom (UK) from the datasets, without changing the other countries.

As this country experienced only one transition from rating k = 1 to k = 2 , the generator matrices
are similar with aBrexit

1,2 < a1,2; aBrexit
2,1 > a2,1 and aBrexit

2,3 > a2,3. Furthermore, the credit spread
distribution does not change dramatically. In fact, the average value of rating classes 1 and 2 reduces by,
respectively, 6% and 2%.

This is the reason, as shown in Figure 6, the results about the financial inequality are close to the
previous ones.

June-2017 June-2018 June-2019 May-2020
0.58

0.59

0.6

0.61

0.62
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0.65
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June-2017 June-2018 June-2019 May-2020
0

0.02

0.04

0.06

0.08

0.1

0.12
DT(t)

Fitch

S&P

Moody's

Figure 6. Expected value and standard deviation of DT(t) in Brexit scenario.

Looking at the left panel, the evolution of the expected value of the dynamic entropy exhibits
the same trend as the current scenario: E[DT(t)]Fitch would decrease, ranging between 0.64567 to
0.603641 at the end of the horizon time. The evolution of the inequality forecasted using Moody’s
data starts with value close to that of S&P (0.59034 and 0.58740, respectively), but the first one would
rise up to 0.63967 while the second one would reach 0.594711 after having a peak of 0.601. Also the
standard deviation is almost similar as can be seen on the right panel of the Figure 6. It is increasing
for all agencies and the values are close to those of the actual scenario, spreading between: 0.003142 to
0.065296 for Fitch; 0.004465 to 0.099404 for Moody’s and 0.004673 to 0.100193 for S&P.

4.5. Discrete vs. Continuous

The advantages of the continuous time framework are well known and documented. First of all,
the main advantage refers to the ability of capturing all transitions. As a matter of fact, the continuous
observation of the rating migrations (i.e., in a daily scale) allows to estimate probabilities of rare events
that we would never have observed in the discrete-time framework. Furthermore, by using daily data,
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the generator matrix estimated for Fitch matrices has dimension (8× 8) while, using the discrete-time
model the transition probability matrix have dimension (7× 7). This happens because we observe the
transition to and from the default state (RD), occurred only for four days in a month. Moreover from
the S&P dataset we register two transitions to and from default state (k = 8).

A further advantage, which directly derives from the first one, is the estimation of the transition
probability from high rating classes to the speculative grade rating classes and, more importantly,
to default states. For example, as shown in Figure 7, the transition probability from state AA to default
state is non-zero even if it is very small.

1000 2000 3000 4000 5000 6000
0

1

2

3

4

5

6

7

8
10

-5 p
AA,D

(t)

S&P

Fitch

Figure 7. p2,8 for Fitch, Standard and Poor’s.

Finally, another advantage in our application, is the estimation of the first and the second order
moments of the Dynamic Entropy.

Figure 8 shows the inequality estimated in this work compared with the inequality we assessed
in D’Amico et al. (2018) using the discrete-time framework. The values resulting from the continuous
time model are discretized to allow the comparison. It can be seen that the expected inequality as
forecasted in the discrete-time framework is always higher than that calculated using the methodology
presented here, and more importantly, the latter is closer to the observed entropy (0.50031 on the
31/05/2017) than the discrete-time one. Also the standard deviation is higher in the discrete time case
except for Moody’s, where in May 2019 σDT(t) estimated in the continuous framework would match
and then overcome σDT(t) assessed by means of the discrete time framework. These results suggest
that the continuous time framework is more precise than the discrete-time both in the case of the data
processing and for the forecasted part. Thus, it fits better with our purposes.
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Figure 8. E[DT(t)] and σDT(t) compared for discrete and continuous time framework.

5. Conclusions

A continuous time Markov process has been proposed to model rating dynamics underlying the
credit spread evolution, in order to estimate the future inequality. The use of the continuous time
framework allows the forecast to be more precise by including transition probabilities that otherwise
would have been neglected in the discrete-time case. For instance both the expected value and the
standard deviation would have been smaller. In particular, as the maximum value of the inequality is
log(N), our results show that the future inequality would be relatively small. This suggest that there
would be a weak inequality. However the forecasts made for the three agencies suggest a different
evolution of inequality, confirming what we have found in our previous work. This behaviour could be
explained by the different perception of risk founded in the credit spread distribution. Thus, it would
be interesting to investigate the reasons of this difference, including others variables. Further variables
could be also used to find a source of dependence among countries.
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