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Abstract: Operational risk management remains a major concern for financial institutions. Indeed,
institutions are bound to manage their own funds to hedge this risk. In this paper, we propose an
approach to allocate one’s own funds based on a combination of historical data and expert opinion
using the loss distribution approach (LDA) and Bayesian logic. The results show that internal models
are of great importance in the process of allocating one’s own funds, and the use of the Delphi method
for modelling expert opinion is very useful in ensuring the reliability of estimates.
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1. Introduction

Since the 1990s, the Basel Committee and researchers have tried to define an incontestable
framework for modelling and managing operational risk. However, the efforts made have shown that
theoretical and practical mastery of this risk is far from being achieved.

Operational risk management practice is based on an approach composed of four steps:
Identification, assessment of impact, classification of risks, and implementation of action plans.
Indeed, the risk management process must be able to ensure perfect knowledge and control of
operational risk at the level of the various activities exercised.

With regard to the minimum capital requirement, the legislator under the Basel II offered banks
several approaches and methods for calculating operational risk depending on the degree of control and
the availability of the information required for internal modelling. As a result, the regulator proposes,
on the one hand, simple, unified, and standardized approaches whose characteristics are provided
by him and, on the other hand, complicated and sophisticated approaches whose characteristics are
determined by banks.

In terms of quantification, the committee presented some methods that could be used in the
Advanced Measurement Approach (AMA) in a document published in 2001 entitled the “Working
Paper on the Regulatory Treatment of Operational Risk”.

The AMA approach is an approach that allows banks to use internal models for risk measurement.
Indeed, three approaches have been proposed: The Scorecard approach, the IMA (internal measurement
approach), and the LDA approach (loss distribution approach).

The use of the LDA approach for the calculation of capital requirements has become very complex
given the multitude of theories and models used, such as the probabilistic approach, the Bayesian
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approach, the Markov chain Monte Carlo approach, and the use of copulas to model the correlation.
This situation has generated a significant model risk because it has become impossible to compare and
benchmark between banks and assess the evolution of the risk profile.

Following the financial crisis, the minimum capital requirements for operational risk were
reviewed by the Basel Committee (BCBS). Indeed, the publication in December 2017 of the document
entitled “Basel III: Finalizing post-crisis reforms” divulged the orientation of banking regulation after
2022, which consists of replacing existing operational risk measurement approaches with a single
approach known as the “Standardized Measurement Approach” (SMA) which will enter into effect in
January 2022.

The Basel committee justified the decision to abandon internal models for the calculation of capital
requirements based on the complexity of the models used and proposed a simple standardized approach.

Until the Basel III reform enters into effect, banks will continue to use their own models for
calculating minimum capital requirements. Indeed, banks opt for two types of modelling approaches:
the Top-Down approach or the Bottom-Up approach.

The Top-Down approach quantifies operational risk without attempting to identify events or
causes of losses. Operational losses, under this approach, are measured based on overall historical
data while The Bottom-Up approach quantifies operational risk based on knowledge of events by
identifying internal events and relates generating factors in detail at the level of each task and entity.
The information collected is included in the overall calculation of the capital charge.

Despite the Basel Committee’s decision to abandon the AMA approach, the use of internal
models is essential for operational risk management, notably for the risk appetite process and capital
allocation process.

In this study, we show the interest of internal models in the allocation of equity capital based on
the LDA approach and propose a practical approach based on the Delphi method to adjust historical
data by expert opinions, using Bayesian logic to determine the risk measure to be used in the capital
allocation and applying the proposed approach for the allocation of capital for the retail banking
business line of a Moroccan banks.

Therefore, in this article, the second section will be reserved for the literature review, the third
part for the methodology, and the fourth part for the empirical study.

2. Literature Review

The modelling and management of operational risk remains a major concern for financial
institutions, particularly in the absence of a total consensus on the approach to be followed between
BCBS and the academicians and professionals in the domain. Indeed, research has focused on the
approaches to be used for loss modelling, severity modelling, frequency modelling, correlation between
losses, correlation between losses and total income, capital allocation, etc.

The approaches quantifying operational risk are multiple in the most well-known:

(1) The IMA approach based on a proportionality assumption between the expected loss and
unexpected loss, presented by Akkizidis and Bouchereau (2005) and Cruz et al. (2015);

(2) The scorecard approach based on calculating a score for the risks measured by an entity and
acting on its changing values, presented by Niven (2006), Akkizidis and Bouchereau (2005), Figini
and Giudici (2013), and Facchinetti et al. (2019);

(3) The LDA approach based on the distribution of frequency and the severity of losses.

The latter approach consists of three forms. The first is the classic LDA approach, which consists
of determining the distributions that fits with the loss data and their parameters. In this case, the
parameters are estimated by the moment method or by the maximum likelihood. This technique
has been studied by a large number of researchers, such as Frachot et al. (2001, 2003); King (2001),
Cruz (2002), Alexander (2003), Chernobai et al. (2005), Bee (2006), and Shevchenko (2010); the second
is the LDA Bayesian approach with conjugated distributions, which considers that the parameters



Int. J. Financial Stud. 2020, 8, 9 3 of 25

of frequency and severity distributions are random variables distributed according to a priori laws.
This approach has been the subject of various studies, such as Giudici and Bilotta (2004), Shevchenko
(2011), Dalla Valle (2009), Figini et al. (2014), and Benbachir and Habachi (2018). The last method is the
LDA approach by markov chain monte carlo (MCMC), which uses non-informative laws and Markov
chain properties. This method has been studied by Peters and Sisson (2006), Dalla Valle and Giudici
(2008), and Shevchenko and Temnov (2009).

The dependence between the operational losses using mathematical copulas has been studied by
various researchers, such as Cope and Antonini (2008), Brechmann et al. (2013), Groenewald (2014),
and Abdymomunov and Ergen (2017). The opinions are divergent on this point because some consider
it to be weak or inconclusive (Cope and Antonini 2008; Groenewald 2014).

The Basel III reform abandoned the “AMA” approach, for a new standard approach (SMA).
The latter has been the subject of several critical studies that have shown the importance of the
associated model risk, including the study by Mignola et al. (2016), Peters et al. (2016), and
McConnell (2017). As a result, some researchers have proposed other types of models based on
historical losses (Cohen 2016, 2018).

Capital allocation is an important area in risk management. Indeed, various studies have
addressed this subject in different categories of risks including studies by Denault (2001), Tasche (2007),
Dhaene et al. (2012), and Boonen (2019). In terms of operational risk, this issue is treated by
Urbina and Montserrat (2014).

3. Methodology

3.1. The Risk Appetite Process

Risk appetite is defined as the maximum loss that the bank supports in order to achieve its
profitability objectives. Indeed, the Board of Directors must define the risks that shareholders accept in
order to achieve the objectives defined for the Senior Management.

Risk appetite must be defined by the Senior Management at the level of each business line and
activity, by defining risk tolerance at the intermediate level and risk limits at the operational level.

Risk appetite is directly related to the current risk profile and its evolution in correlation with
the evolution of the bank’s activity. As a result, the bank must determine its risk profile at the date of
preparing its risk appetite policy and must estimate the evolution of its profile in accordance with the
progress of its development and expansion plan.

The risk profile is determined internally by the bank and may differ from its regulatory profile, as
determined by the regulatory capital. Indeed, the actual profile is determined by the bank’s economic
capital, while the regulatory profile is defined by the minimum capital requirement according to the
standard approach of Basel III.

For the deployment of a risk appetite framework, Shang and Chen (2012) identified seven steps:

(1) A Bottom-up analysis of the company’s current risk profile;
(2) Interviews with the board of directors regarding the level of risk tolerance;
(3) Alignment of risk appetite with the company’s goal and strategy;
(4) Formalization of the risk appetite statement with approval from the board of directors;
(5) Establishment of risk policies, risk limits, and risk-monitoring processes consistent with

risk appetite;
(6) Design and implementation of a risk-mitigation plan consistent with risk appetite;
(7) Communication with local senior management for their buy in.

Indeed, this approach should be able to define three components:

(1) The risk profile;
(2) The risk tolerance process;
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(3) The process for defining operational risk limits.

3.2. The Process of Capital Allocation

Capital allocation is the process that defines the capital allocated by the bank to a given entity
to achieve the intended profitability objective. Indeed, the capital Ki allocated to unit (i) is defined
according to the risk incurred by the said unit.

The definition of a risk measure ρ is an essential component in the capital allocation process.
Indeed, for operational risk, two measures can be used: Value at risk (VaR), which is a non-coherent
risk measure, and the Expected Shortfall, which is a coherent risk measure. The expected Shortfall (ES)
is defined by

ESα =
1
α

∫ α

0
F−1(p)dp,

where F is the cumulative distribution function of operational losses.
Let Xi, i = 1, . . . , n be the random variables representing the individual losses of n business units

and Ki, i = 1, . . . , n be the allocation of capital for each probable individual loss (i). The total operational
loss (P) and total risk capital (K) are expressed as{

P =
∑n

i=1 Xi,
K =

∑n
i=1 Ki,

For the allocation of risk capital for operational risk, several methods can be used, such as
the proportionality allocation method (Hamlen et al. 1977), the beta method (Panjer 2002), the
incremental method (Jorion 2001), the cost gap method (Driessen and Tijs 1985), the Shapley method
(Shapley 1953), and Euler allocation (Aumann and Shapley 1974).

In operational risk, Urbina and Montserrat (2014) used the proportionality allocation method
using the VaR for capital allocation in the case of fraud.

In our study, we will use the same method for the allocation of capital at the retail banking
business line level, using a Bayesian risk measure to integrate expert estimates.

This method is based on an assumption of proportionality between allocated and
unallocated capital:

K j =
K∑n

i=1 ρ(Xi)
ρ
(
X j

)
, (1)

where ρ
(
X j

)
= F−1

Xi
(α) = VaRα(Xi) or ρ

(
X j

)
= ESα(Xi) =

1
α

∫ α
0 F−1

Xi
(p)dp.

The capital allocated by this principle neglects the dependence of the losses of the different business
lines and risk categories. The Haircut allocation method considers that the correlation between risk
categories and business lines is weak or insignificant. Indeed, the studies of Cope and Antonini (2008)
and Groenewald (2014), cited above, encourage the use of this method.

Under the second pillar, the allocation of capital and the implementation of the risk appetite
process strengthen the use of internal models despite the suppression of their use for the calculation of
the minimum capital requirement under the first pillar. Indeed, the piloting of the activity by the risk
requires an individual monitoring of the risk by business line in order to guarantee adequacy between
the risk incurred and the capital allocated. Consequently, the bank must develop its own models
for estimating the economic capital needed to develop its business independently of the regulatory
constraint of measuring the solvency ratio based on the standard approach of Basel III.
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3.3. The Risk Mapping and Capital Requirements

3.3.1. The Risk Mapping

Operational risk mapping is a balance sheet of the probable risks incurred by a bank at a given
date. This type of mapping represents all operational risk situations broken down by business line and
risk category. An operational risk situation is composed of three elements:

(1) The generating factor of the risk (hazard), which constitutes the factors that favor the occurrence
of the risk incident for inexperienced personnel and the malfunction of the control device;

(2) The operational risk event (incident), which constitutes the single incident whose occurrence can
generates losses for the bank as internal fraud and external fraud;

(3) The impact (loss), which it constitutes the amount of financial damage resulting from an event.

To normalize the identification of an operational risk situation, the BCBS (2006) defines the generic
mapping of operational risks within credit institutions, comprising eight business lines and seven
categories of operational risks.

3.3.2. The Operational Risk Categories

The operational risk categories (RTc, 1 ≤ c ≤ 7) are RT1 _execution, delivery, and process
management, RT2_business disruption, and system failures, RT3_damage to physical assets, RT4_clients,
products, and business practices, RT5_employment practices, and workplace safety, RT6_external
fraud, RT7_internal fraud.

3.3.3. The Business Lines

The business lines (BLi, 1 ≤ i ≤ 8) are BL1_Corporate finance, BL2-Trading, and sales, BL3_Retail
banking, BL4_Commercial banking, BL5_Payment, and settlement, BL6_Agency services, BL7_Asset
management, BL8_Retail Brokerage.

3.3.4. Capital Requirements

The quantification of operational risk remains a major problem for the Basel Committee. Indeed,
several approaches have been adopted in the Basel II framework, including the AMA approach based
on internal models, which is considered the most important.

The use of internal models has been strongly criticized by the Basel Committee. Indeed, a new
orientation of the Basel Committee has been born; this orientation considers abandoning all Basel II
approaches and adopting a new standard approach, SMA, which will replace all previous approaches.

The standard approach “SMA” defined by (BCBS 2016, 2017) is based on the Business indicator
(BI) defined as follows:

BI = ILDC + SC + FC, (2)

The components ILDC, SC and FC are calculated by the following formulas:

ILDC = Min


1

3

3∑
i=1

|PIi −CIi|

; 2, 25%×

1
3

3∑
i=1

APIi


+ 1

3

3∑
i=1

Di, (3)

SC = Max


1

3

3∑
i=1

ACEi

;

1
3

3∑
i=1

APEi


+ Max


1

3

3∑
i=1

PHCi

;

1
3

3∑
i=1

CHCi


, (4)

FC =
1
3

3∑
i=1

|PLTi|+
1
3

3∑
i=1

|PLBi|, (5)
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where1:

- PIi and CIi are, respectively, the Interest Income and the Interest Expense for the year (i);APIi is
the Interest Earning Assets for the year (i);Di is the Dividend Income for the year (i);

- ACEi and APEi are the other operating income and the other operating expense for the year (i);
- PHCi and CHCi are, respectively, the Fee Income Fee Expenses for the year (i);
- PLTi is the Net P&L Trading Book for the year (i);
- PLBi is the Net P&L Banking Book for year (i).

3.4. The LDA Approach and the VaR of Operational Risk

3.4.1. The Loss Distribution Approach LDA

The LDA approach uses the distributions of the frequency and severity of operational losses to
determine operational the losses over a time horizon T.

The Classical LDA Model

i. Mathematical formulation of the model

In the LDA approach, the operational loss in horizon T is considered as a random variable P,
defined as follows:

PN =
N∑

i=1

Xi (6)

where:

- Xi is the random variable that represents the individual impact of operational risk incidents;
- N is the random variable that represents the number of occurrences on a horizon T.

The random variables Xi are independent and identically distributed. The random variable N is
independent of variables Xi.

The mathematical expectation and variance of the compound random variable P are defined
as follows:

E(P) = E(X) × E(N) = λ E(X), (7)

VAR (P) = E(N) × var(X) + var(N) × E(X)2. (8)

ii. Presentation of the classical LDA approach.

The classical LDA approach considers that severity and frequency can be modelled by the usual
theoretical laws whose parameters are estimated from these data.

For modelling the individual severity of losses Xi, several distributions can be used to represent
the severity random variable X as the LogNormal distribution, the Beta distribution, the Weibull
distribution, or other distributions, which are detailed in Chernobai et al. (2007). In our study, we will
limit ourselves to the LogNormal distribution (µ, σ).

E(X) = eµ+
σ2
2 , (9)

Var(X) =
(
σ2
− 1

)
e2µ+σ2

. (10)

1 The rubrics for calculating the BI are detailed in the Appendix A: the definition of the components of the BI of the Basel
III reform.
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With regard to the modelling of the loss frequency N, we use the Poisson distribution P(λ) or the
Negative Binomial distribution BN(a, b).

The Pure Bayesian LDA Approach

In the pure Bayesian LDA approach, the parameters of the distribution of the frequency N and the
individual loss Xi are considered as random variables with a probability density function.

The pure Bayesian approach considers the parameters (µ, σ) and λ of the density functions of Xi
and N as the random variables whose the densities are, respectively, πµ, πσ, and πλ.

i. Description of the pure Bayesian LDA approach.

Let Y = (Y1, . . .Ym) be a vector of random variables independent and identically distributed
(i.i.d). Let (y1, . . . ym) be a realization of vector Y, and let θ =

(
θ1,θ2, . . . ,θp

)
be a vector of the random

variables of the parameters of the density of vector Y.
The density function f (Y,θ) of vector (Y,θ) =

(
Y1, . . .Ym,θ1,θ2, . . . ,θp

)
is defined by:

f (Y,θ) = f (Y/θ)π(θ) = π(θ/Y) f (Y), (11)

where

• π(θ) is the probability density of the parameter θ called the “prior density function”;
• π(θ/Y) is the conditional probability density function of the parameter θ knowing Y, which is

called “posterior density”;
• f (Y,θ) is a probability density function of the couple (Y,θ);
• f (Y/θ) is the conditional density function of Y knowing θ; this is the likelihood function

f (Y/θ) =
∏m

i=1 fi(Yi/θ) with fi(Yi/θ) as the conditional probability density function of Yi;
• f (Y) is the marginal density of Y that can be written as

∫
f (Y/θ)π(θ)dθ.

Hence
π(θ/Y) ∝ f (Y/θ)π(θ), (12)

where f (Y) is a normalization constant, and the posterior distribution π(θ/Y) can be viewed as a
combination of a priori knowledge π(θ) with a likelihood function f (Y/θ) for the observed data.
Since f (Y) is a normalization constant, the posterior distribution is often written with the form (13),
where the symbol ∝ signified “is proportional”, with a constant of proportionality independent of the
parameter θ.

ii. The Bayesian Estimator θ̂Bay The parameter (θ) can be univariate or multivariate. The estimate of
the Bayesian posterior mean θ̂Bay of θ is defined as follows:

iii. If parameter (θ) is univariate, the estimate of the Bayesian posterior mean of θ, denoted as θ̂Bay,
is a conditional expectation of θ knowing Y, defined by

θ̂Bay = E(θ/Y) =
∫
θ×π(θ/Y)dθ =

∫
θ× f (Y/θ)π(θ)dθ

f (Y)
. (13)

iv. In a multidimensional context, where θ =
(
θ1,θ2, . . . ,θp

)
, the estimate of the Bayesian posterior

mean of θ, denoted as θ̂Bay, is a conditional expectation of vector θ knowing Y, defined by

θ̂Bay = E(θ/Y) =
(
E(θ1/Y), E(θ2/Y), . . . , E

(
θp/Y

))
=

(∫
θ1 ×π(θ1/X)dθ1,

∫
θ2 ×π(θ2/X)dθ2, . . . .,

∫
θp ×π

(
θp/X

)
dθp

)
.

(14)

a. Calculation of the estimate of the Bayesian posterior mean
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To determine the estimate of the Bayesian posterior mean defined by Formulas (13) and (14), we
must determine the prior and posterior laws of the random variable θ. We will limit our study to a
Lognormal distribution for loss severity XiLN(µ, σ) , 1 ≤ i ≤ m and to the Poisson distribution for the
frequency of the losses NP(λ) . The parameters µ, σ, and λ are considered random variables.

Therefore, we must determine the following estimate of the Bayesian posterior mean:

θ̂Bay = (µ̂, σ̂) = E(µ, σ/X1, . . .Xn) , (15)

θ̂Bay = λ̂ = E(λ/N). (16)

b. Determination of the prior law of the parameters

The Bayesian approach depends on the accuracy of the information provided by experts on the
parameters of the prior law. Below, we present the approach adopted:

– The prior law of the parameter λ with NP(λ)

In our study, we consider that the prior law is a gamma distribution Γ with parameters (a, b) to be
determined by the experts. The choice of the prior distribution of the parameter λ depends on the
description of the characteristics of the random variable given by the experts. In our study, we consider
that the prior law is a Gamma distribution (Γ) of parameter (a, b).

– The prior law of µ and σ with XiLN(µ, σ)

In this paper we limit ourselves to a case where µ is a gaussian random variable µN(µ0, σ0) ,
and σ is a known constant. However, Shevchenko (2011), represented σ2 by the inverse Chi-square
distribution (Inv.Chi.Sq) of parameters (α, β).

c. Determination of the posterior law of the parameters λ and µ

The posterior distribution is determined from the likelihood function and the prior distribution
by the Formula (12). Thereby, we will calculate the posterior law of frequency and severity:

– The posterior law of parameter λ with NP(λ)

Let N = (N1, . . .Nl) be a vector of random variables of the frequency. Let (n1, . . . nl) be a realization
of vector N. We suppose that N jP(λ) , and we consider that λΓ(a, b) .

The posterior law conjugated in the prior law λ is defined by

π(λ/N) ∝ f (N/λ)π(λ) ∝ f (N/λ)

(
λ
b

)a−1

Γ(a) × b
× e−

λ
b ,

and we have

f (N/λ) =
l∏

j=1

f j
(
N j/λ

)
=

l∏
j=1

λn j

n j!
e−λ.

Thus,

π(λ/N) ∝
∏l

j=1
λ

nj

n j ! e
−λ
×
( λb )

a−1

Γ(a)×b × e−
λ
b ∝

( λb )
a−1

Γ(a)×b × e−
λ
b ×

∏l
j=1 e−λ λ

nj

n j !

∝
( λb )

a−1

Γ(a)×b e−
λ
b
∏l

j=1

(
e−λ λ

nj

n j !

)
∝

( λb )
a−1

Γ(a)×b
∏l

j=1
λ

nj

n j ! ×

(
e−l×λe−

λ
b

)
∝

( λb )
a−1

Γ(a)×b
∏l

j=1
λ

nj

n j ! ×

(
e−l×λe−

λ
b

)
∝

( λb )
a−1

Γ(a)×b
∏l

j=1
λ

nj

n j ! × e−λ(
1
b +l)

∝ λa−1λ
∑l

j=1 n j
× e−λ(

1
b +l)
∝ λ

(a+
∑l

j=1 n j)−1
× e−λ(

1+b×l
b ),
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We pose al = a +
∑l

j=1 n j and bl =
b

1+b×l . Thus,

π(λ/N) ∝ λal−1e
−
λ
bl . (17)

From Formula (17), we deduce that the posterior law is a gamma law Γ(al, bl).

– The posterior law of the parameter µN(µ0, σ0) with σ as a constant

Let x1, . . . , xm be the realizations of random variables X1, . . . , Xm representing the collected losses.
We suppose here for the Bayesian modelling of the severity that µN(µ0, σ0) and σ a constant, which we
estimate from the sample by the maximum likelihood method. We pose Zi = ln(Xi). Thus, ZiN(µ, σ) .
We then consider the random vector Z = (Z1, . . . , Zm).The prior distribution of µ is given by

π(µ) =
1

σ0
√

2π
e
−

(µ−µ0)
2

2σ0
2 ,

and the conditional distribution of a random vector Z is given by

f (Z/µ, σ) =
m∏

i=1

1

σ
√

2π
e−

(Zi−µ)
2

2σ2 .

Hence, the posterior law of µ:

π(µ/Z) ∝ f (Z/µ)π(µ),

π(µ/Z = (z1, . . . , zm)) ∝
m∏

i=1

1

σ
√

2π
e−

(zi−µ)
2

2σ2 ×
1

σ0
√

2π
e
−

(µ−µ0)
2

2σ0
2 ,

π(µ/Z = (z1, . . . , zm)) ∝ e
−

(µ−µ0m)2

2σ0m2 . (18)

where  µ0m =
µ0+m×ε×Z

1+m×ε

σ2
0m =

σ2
0

1+m×ε

and

 Z = 1
m

∑m
I=1 zi

ε =
σ2

0
σ2

Formula (18) shows that the posterior law of µ is a gaussian lawN(µ0m, σ0m).

d. Calculation of the Bayesian estimator µ̂Bay and λ̂Bay

The Bayesian estimator λ̂Bay of parameter λ is given by

λ̂Bay = E(λ/N).

Result (17) shows that the posterior law of λ is a Γ(al, bl) distribution with (al, bl) =(
a +

∑l
j=1 n j, b

1+b×l

)
. Consequently, the estimator λ̂Bay is the mathematical expectation of the posterior

law of λ:
λ̂Bay = al × bl =

(
a +

∑l
j=1 n j

)
×

b
1+b×l

=

a×b+b×l×


∑l

j=1 nj
l


1+b×l =

λ0+b×l×


∑l

j=1 nj
l


1+b×l =

λ0+b×l×(N)
1+b×l

λ̂Bay = ε0 × λ0 + (1− ε0) ×N = ε0 × λ0 + (1− ε0) × λobserved, (19)

where ε0 = 1
1+b×l ,λobserved = N =

∑l
j=1 n j

l and λ0 = E(λ). Parameter λ0 is estimated by the experts.
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The Bayesian estimator µ̂Bay of parameter µ is given by

µ̂Bay = E(µ/(σ; X1, . . . , Xm)) = E(µ/(σ; x1, . . . , xm)),

where σ is a constant, and x1, . . . , xm are realizations of the random variables X1, . . . , Xm.
Result (18) shows that the posterior law of µ is a gaussian distributionN(µ0m, σ0m). Consequently,

the estimator µ̂Bay is the mathematical expectation of the posterior law of µ. Thus,

µ̂Bay = µ0m =
µ0 + m× ε×Z

1 + m× ε
,

which can be written as

µ̂Bay = ε2 × µ0 + (1− ε2) ×Z = ε2 × µ0 + (1− ε2) × µobserved, (20)

where

ε2 =
1

1 + m× ε
; ε =

σ2
0

σ2 ; Z =
1
m

m∑
I=1

zi = µobserved; zi = ln(xi); µ0 = E(µ),

where the parameter µ0 is estimated by the experts.
Consequently, the parameters of the LogNormal law used in the simulation are µ̂Bay and σ.

3.4.2. Value at Risk of Operational Risk

Value at Risk (VaR) is a measure adopted by the Basel Committee on Banking Supervision under
Basel II to measure credit risk, market risk, and operational risk in the framework of advanced
approaches based on internal models. Indeed, the committee requires that the internal model be very
robust and meet very high requirements by fixing the threshold for the VaR of operational risk at 99.9%.

In terms of operational risk, the VaR model is the main component for the calculation of capital
requirements by the LDA approach, which is based on the determination of the distribution of aggregate
operational losses, and determination of the 99.9% percentile of this distribution.

The determination of VaR is dependent on the determination of the aggregate operational loss
distribution because it can be calculated analytically, determined by numerical algorithms or calculated
by Monte Carlo simulation.

Presentation of Value at Risk (VaR)

Let Xt, t = 1, . . . , n, be, a series of stationary data for the cumulative distribution function F.
The value at risk (VaR) for a given probability α is defined mathematically by

VaRα = in f
{
u/F(u) ≥ α

}
,

Definition of the Capital at Operational Risk

We consider the aggregated loss PN =
∑N

i=1 Xi in a given horizon T. We fix the level of confidence
1− α = 99.9%.

The requirement of capital to cover the operational risk is measured by the Value at Risk (VaR).
The VaR is the quantile of order 1− α of the aggregated loss PN defined by

FPN (VaR) = F∑N
i=1 Xi

(VaR) = P(PN ≤ VaR) = 1− α, (21)

where FPN is the cumulative distribution function of PN. The VaR is given by

VaR = F−1
PN

(1− α), (22)
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The simulation of the VaR is presented in Appendix A.

3.5. Bayesian Modelling of the Expert Opinion

3.5.1. Collecting and Modelling the Expert Opinion

Organization of the Process for Collecting the Expert Opinion

Obtaining an expert opinion can be defined as the process of collecting information and data or
answering questions about problems to be solved. In this study, we must define the parameters of the
frequency and severity of operational risk events. Therefore, the approach adopted must ensure a high
level of accuracy and reliability of the expert opinion in order to reduce the impact of this data on the
bank’s risk profile.

The modelling of expert opinions has been the subject of various studies that have used various
techniques for collecting expert opinions, such as the Delphi technique defined by Helmer (1968) and
the practical guides proposed by Ayyub (2001).

In our study, we use the Delphi technique after adapting it to the specificities of collecting
information from experts in the field of operational risk.

Presentation of the Delphi Method

The Delphi method includes eight steps according to Ayyub (2001), which are defined as follows:

(1) Selection of issues or questions and development of questionnaires;
(2) Selection of experts who are most knowledgeable about issues or questions of concern;
(3) Issue familiarization of experts by providing sufficient details on the issues via questionnaires;
(4) Elicitation of experts about the pertinent issues. The experts might not know who the other

respondents are;
(5) Aggregation and presentation of the results in the form of median values and using an inter-quartile

range (i.e., 25% and 75% values);
(6) Review of results and revision of the initial answers by experts. This iterative re-examination of

issues sometimes increases the accuracy of results. Respondents who provide answers outside
the inter-quartile range need to provide written justifications or arguments during the second
cycle of completing the questionnaires;

(7) Revision of results and re-review for another cycle. The process should be repeated until a
complete consensus is achieved. Typically, the Delphi method requires two to four cycles
or iterations;

(8) A summary of the results is prepared with an argument summary for out of inter-quartile
range values.

3.5.2. Summary Presentation of the Process for Collecting Expert Opinions

The approach for collecting expert opinion is based on that defined by Ayyub (2001) with
readjustments to better adapt the process to the area of operational risk:

(1) Definition of the information requested;
(2) Definition of interveners in the data collecting process;
(3) Identification of problems, information sources and insufficiencies;
(4) Analysis and collecting of pertinent information;
(5) Choice of interveners in the data collecting process;
(6) Knowledge of the operation’s objectives by the experts and a formation of those objectives.
(7) Soliciting and collecting opinions;
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(8) Simulation, revision of assumptions, and estimates. If the expert provides his consent, we pass to
the next step; otherwise, we repeat steps 6, 7, and 8;

(9) Aggregation of estimates and overall validation;
(10) Preparation of reporting and determination of results.

Definition of the Information Requested

The collecting of information from experts has two objectives:

(1) The first consists in modelling the law a priori of the frequency and the severity of data by risk
category. Indeed, the expert must provide the forms of the priori laws of frequency and severity
and an estimation of their parameters (λe,µe, σe);

(2) The second objective is the estimation of the expert weighting with the control functions (internal
audit and permanent control).

i. Modelling the a priori law.

In this case, the expert must provide:

(1) The estimation of parameter µe of the lognormal law LN(µ, σ), which models the severity Xi by
risk category by knowing that σ is a constant and µ ∼ N(µe, σ0);

(2) The estimation of parameter λe of the Poisson’s law P(λ), which models the frequency N by risk
category over a horizon (T) knowing that λ ∼gamma (a0, b0).

ii. Weighting of the expert opinion.

The objective of weighting the expert opinion is to determine the parameters of the a posteriori
law. Indeed, for frequency, this weighting permits one to determine the parameter λ̂Bay of Poisson’s
law relating to the frequency of losses by risk category RTc. For severity, this weighting allows one to
determine parameter µ̂Bay of the LogNormal law relating to the severity of losses by risk category.

Definition of Interveners in the Data Collecting Process

The evaluation of the parameters of a priori law involves all operational entities concerned, as
well as the risk management function:

i. The Risk managers.

The risk managers have the status of evaluators because they must conduct the evaluation process
with the various experts.

ii. Person in charge of incident reporting (risk correspondents) and their managers.

This is an essential population with great added value, given their experience in collecting
incidents and their contributions to correcting collection biases.

iii. Experts from the operating entities and the business lines.

The operational losses are dependent on the business line and the activity exercised. Indeed, the
severity and frequency generally reflect the risk profile of each activity and business line because they
depend on the size of the transactions concluded by the business line (or activity exercised) and on
their frequencies.

Consequently, the use of experienced and well-qualified experts is the first step in the evaluation
process, which will be followed by a phase of estimation and an aggregation of the data collected,
which takes into account the specificities of the activity targeted by the evaluation.

iv. Internal auditors and permanent controllers.
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The internal audit and permanent control functions have the right to supervise all activities and
executions on a permanent or periodic basis, as well as audit and control missions for the various
business lines and operational entities. Their verification approaches are based on a risk identification
approach using risk mapping and the database of events collected. Therefore, recourse to the service
of this category for the weighting of experts’ opinions is necessary.

Identification of Problems, Information Sources, and Insufficiencies

The main reason for using expert opinion modelling is to reduce the uncertainty due to the change
in the bank’s risk profile caused by changes at the organization level and in the process of control and
risk management, given that the distributions of observed historical losses in frequency and severity
follow Poisson’s law and the LogNormal law, respectively. Indeed, uncertainty is linked to a change
in the parameters of the two laws because the use of historical data alone can bias the estimation of
risk capital.

Consequently, the expert opinion makes it possible to define the a priori law on the one hand
and to weight the experts’ estimate on the other hand. To do this, we will estimate, with the business
experts, the average loss defined by Formula (4), which will allow us to determine the parameters λe

and µe, respectively.

Analysis and Collecting of Pertinent Information

In order to carry out the evaluation mission and ensure the acceptable reliability of the expert
opinion, we have collected a series of relevant information, such as

(1) The evolution of the bank’s size in terms of net banking income, the number of transactions, the
number of incidents, the size of the banking network, and the number of customer claims.

(2) The organizational and business changes, such as the introduction of new products, the
industrialization of sales, control and treatment processes, external audits, control activities, and
outsourcing of activities.

(3) The major losses suffered and the action plans implemented, as well as their impact on the control
and risk management device.

(4) The formation programmers of operational risk and their frequency.

Choice of Interveners in the Data Collecting Process

i. Choice of expert from the operating entities and choice of person in charge of incident reporting.

In our study, we weighted the expert opinion at 25%. However, the approach used is valid for any
desired weighting.

Therefore, we have carried out an estimation with experts who can be weighted at 25%. To choose
them, we drew a list of experts from the operating entities and the person in charge of incident reporting
at the level of each business line and, we scaled the estimate that each person in charge of incident
reporting and each expert can provide with a scoring system that we constructed. Then, we selected
only those whose estimates can be weighted at 25%.

The determination of the score is made with the hierarchical managers and validated with internal
audit and permanent control functions on the basis of the following elements:

(1) Relevant expertise, academic and professional formation as well as professional experience;
(2) The number of risk incidents declared and treated;
(3) Knowledge and mastery of the control device;
(4) The level of formation and, the knowledge of operational risk;
(5) The level of knowledge of descriptive and inferential statistics;
(6) Excellent communication abilities, flexibility, impartiality, and a capacity to generalize and simplify.
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The score must give a value that corresponds to a grid of 10%, 25%, 40%, 50% and 75%.
Each criterion must have a qualification between low, medium, and high. To calculate the score, a
rating was assigned to each qualification. The ratings assigned are presented in Table 1 as follows:

Table 1. Rating of the criteria for the scoring experts.

Qualification Low Medium High

Rating 1 2 3

The expert score function that we retained for our study is equal to the sum of the ratings assigned
to all criteria, and the weighting is defined according to the score obtained. Expert weighting according
to the score function is presented in Table 2 as follows:

Table 2. Expert weighting according to the score function.

Score (6 to 7) (8 to 9) (10 to 11) (12 to 14) (15 to 18)

Weighting 10% 25% 40% 50% 75%

ii. Choice of evaluators for internal audit and permanent control.

To choose the evaluators for permanent control and internal audit, we based our choice on the
following elements:

(1) Relevant expertise, academic and professional formation, as well as professional experience;
(2) The number of control and audit missions conducted annually;
(3) The level of formation and knowledge of operational risk;
(4) The level of knowledge of descriptive and inferential statistics;
(5) Excellent communication abilities, flexibility, impartiality, and a capacity to generalize and simplify.

The designation of evaluators is made by consensus with the audit function and the permanent
control function.

iii. Knowledge of the operation’s objectives by the experts and the formation of those objectives.

After we selected the experts and evaluators, we organized an introductory session on the
evaluation mission by presenting the main lines of the mission, the objectives, the speakers, and the
realization planning. Then, the following elements were sent to the participants before launching the
evaluation meetings and workshops:

(1) The description of the operation’s objectives;
(2) The list of experts from the operating entities and person in charge of incident reporting, as well

as hierarchical managers and the evaluators for internal audit and permanent control;
(3) A summary description of the risks, tools, and operating system, as well as the organization

and controls;
(4) Basic terminology, definitions that should include probability density, arithmetic and weighted

mean, standard deviation, mode, median, etc.;
(5) A detailed description of the process by which meetings and workshops to collect expert opinions

are conducted and the average duration of their conduct;
(6) Methods for aggregating expert opinions.

iv. Simulation, revision of assumptions, and estimates.

To have the expert’s consent to the estimates obtained, we proceeded as follows:
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(1) The expert estimates the average loss per risk category that will be used to determine the

parameters of the frequency law P
(
λ̂expert

)
and severity law LN

(
µ̂expert, σ̂expert

)
knowing that σ̂expert

is equal to σ, as determined by the likelihood. These parameters will be used to simulate, via
Monte Carlo, three samples of the realizations concerning, respectively, the individual loss Xi, the
frequency N, and the annual loss P

(∑n
i=1 Xi

)
Then, we analyze the characteristics of these samples

with the expert, particularly the average, median, maximum, minimum, and maximum values,
etc.;

(2) If the expert accepts the simulations and their characteristics, the estimation of the parameters
λ̂expert, µ̂expert, and σ̂expert will be validated;

(3) If the expert rejects the simulations, we will eliminate the outliers rejected by the expert and
revise the expert’s initial estimates and proposed simulations in an iterative manner until the
expert’s consent is obtained.

v. Aggregation of estimates and validation.

In our study, the expert’s estimate concerns the parameters λ̂expert, µ̂expert and σ̂expert. Therefore,
we need to aggregate historical and expert estimates to determine the Bayesian estimator.

3.5.3. Determination of the Bayesian Estimator

In the theoretical study, we showed that the Bayesian Estimators of the parameters of the severity
and the frequency distributions of losses are defined as follows:

(1) For frequency, Formula (19) defines the Bayesian estimator of λ by

λ̂Bay = ε1 × λexpert + (1− ε1) × λobserve.

(2) For severity, Formula (20) defines the Bayesian estimator of µ by

µ̂Bay = ε2 × µexpert + (1− ε2) × µobserve.

In our study, weights ε2 and ε2 are fixed at 25%, which corresponds to the scores of the
selected experts.

4. Results

4.1. Data Description

In this study, we used a database of loss incidents concerning the retail banking business line of a
Moroccan banking institution. The database was constituted from the losses registered by the bank
since the 1990s, as well as the reports and missions of the audit.

The database is composed of 3581 individual losses, i.e., 2069 distinct amounts. The descriptive
statistics, of losses is summarized in Table 3 as follows.

Table 3. Descriptive statistics of Mean of individual losses Xi (in amounts).

Mean of Individual Losses Xi Standard Deviation Skewness Kurtosis

468,730 8,719,755.32 36.28 1430.99

The distribution of the database by risk category RTc shows that the losses of the category
RT3 represent 45%, followed by those of RT6, which represent 19%. In the third position is RT1,
which represents 12%, followed by RT7 with 10%; the other categories represent 15%. The statistical
characteristics of the individual losses Xi by risk category are summarized in Table 4 as follows.
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Table 4. Statistical characteristics of individual losses Xi by risk category (in amounts).

RTc

Distribution of
Individual Losses Xi
in Number (in MAD)

Mean of Individual
Losses Xi

Distribution of
Individual Losses Xi

by Amount
Standard Deviation Skewness Kurtosis

RT1 12% 781,175.04 16.8% 9,355,985.39 15.33 234.22
RT2 9% 13,213.10 0.3% 63,647.81 7.123 52.090
RT3 45% 34,573.71 0.7% 363,852.27 20.47 457.38
RT4 4% 183,689.13 3.9% 781,324.16 5.81 32.690
RT5 2% 199,146.42 4.3% 84,075.40 1.853 4.475
RT6 19% 190,746.84 4.1% 1,379,733.78 10.248 113.639
RT7 10% 3,249,849.84 69.9% 25,490,889.73 13.408 184.914

To determine the frequency of losses, we will segment the database according to a semi-annual
horizon. The choice of horizon is based on the data available for modelling, which must be greater
than 30 observations.

The statistical characteristics of the frequency by risk category are presented in Table 5 as follows.

Table 5. Statistical characteristic of frequency by risk category.

RTc Mean Standard Deviation

RT1 10.57 11
RT2 11.87 14.54
RT3 52.96 54.92
RT4 3.17 2.71
RT5 2.92 3.15
RT6 38.72 52.82
RT7 7.12 10.08

4.2. The LDA Approach

4.2.1. Statistical Estimation of Parameters

The estimation of the parameters of the laws of severity and frequency based on the observed
data by risk category is presented as follows.

The Parameters of the Severity

The adjustment test of the data with the lognormal law LN(µh, σh) is based on the
Kolmogorov-Smirnov test. As a result, the estimation of the parameters and the results of the
adjustment tests by risk category are presented in Table 6 as follows.

Table 6. Estimation and adjustment test of the LN(µh, σh) by risk category.

RTc
LN(µh,σh) Kolmogorov-Smirnov Test

µh σh p-Value

RT1 10.60 1.67 0.084
RT2 7.51 1.58 0.258
RT3 8.59 1.49 0.419
RT4 9.84 2.09 0.831
RT5 12.14 0.35 0.649
RT6 8.08 2.49 <0.0001
RT7 11.52 2.49 0.723

The Kolmogorov-Smirnov fit test shows that data from all categories adjust with the lognormal
law except the category RT6.
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The Parameters of the Frequency

The test for adjusting the frequency data with the Poisson law and the negative binomial law
is based on the chi-square test. As a result, the estimation of the parameters and the results of the
adjustment tests by risk category are presented in Table 7 as follows.

Table 7. Estimation and adjustment test of the P(λh) and BN(ah, bh) by risk category.

RTc
Poisson P(λh) p-Value Chi-Square Test Negative-Binomial BN(ah,bh) p-Value Chi-Square Test

λh ah bh

RT1 10.57 <0.0001 0.83 12.87 0.01
RT2 11.87 <0.0001 0.74 16.12 0.040
RT3 52.96 <0.0001 0.87 60.84 0.385
RT4 3.17 <0.0001 2.93 1.08 0.017
RT5 2.92 <0.0001 2.38 1.23 0.030
RT6 38.72 <0.0001 0.42 92.66 0.054
RT7 7.12 <0.0001 1.25 5.68 <0.0001

The fit test shows that, for a 5% threshold, the data do not adjust with Poisson’s law and
Negative-Binomial law, except for the category RT7, which adjusts with the Negative-Binomial law
while for a 1% threshold. All categories do not adjust with Poisson’s law but instead adjust with the
Negative-Binomial law, except the category RT7 which, does not adjust with the Negative-Binomial law.

4.2.2. Experts’ Estimates

The mean annual loss is determined by the risk category through maintaining the same allocation
structure for the mean annual losses. The calculation of the mean loss for the business line is defined
as a percentage of the activity level of the business line (Na). Indeed, the level of activity is deducted
from the activity indicator presented above. In our research, the activity level Na is defined as follows:

Na = Min


1

3

3∑
i=1

|PIi −CIi|

 ; 2.25%×

1
3

3∑
i=1

APIi


+ Max


1

3

3∑
i=1

PHCi

;

1
3

3∑
i=1

CHCi


.

For the bank studied, the semi-annual level of activity of the Retail Banking line is equal to
4.5 million MAD.

The experts’ estimates of the mean loss for the business line are set at 1.5%, i.e., a mean loss of
67.5 million MAD, allocated by risk category in Table 8 as follows.

Table 8. Expert estimate of mean losses (PM) by risk category RTC in 1000s of MAD.

RTc
Mean Annual Empirical
Losses (PM) by Category

Mean Losses Structure
by Category

Expert Estimate of Mean
Losses (PM) by Category

RT1 18,966 31.6% 21,313
RT2 314 0.5% 352
RT3 2349 3.9% 2640
RT4 2266 3.8% 2546
RT5 1704 2.8% 1915
RT6 4706 7.8% 5289
RT7 29,762 49.5% 33,445

The estimation by the experts is made in two steps. We will first estimate the mean semi-annual
frequency (λe) and then estimate the parameter µe of LN(µe , σh) from the Formula (9) using the mean
loss per risk category RTc.
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Expert Estimation λe of Parameter λ

The experts’ estimate of parameter λe is based on the approach defined above. Indeed, the expert
gives the first estimate based on historical data. This estimate is used to simulate the realization of
Poisson’s law according to the algorithm presented in Appendix A. Then, the values judged to be
outliers by the expert are deleted. We determine the new mean of the simulated sample after deleting
the values judged to be outliers, which will be confirmed by the expert. This simulation is repeated
until the expert’s validation of the mean frequency by risk category is obtained.

The results of this approach are presented in Table 9 as follows.

Table 9. The experts’ estimate of parameter λe risk category.

RTc λe

RT1 11.5
RT2 14.3
RT3 54.6
RT4 4.07
RT5 3.40
RT6 5.8
RT7 3.5

Estimation of the Parameter µe

The expert estimates of parameter µe from the estimation of the mean loss and the mean frequency
is made by the following formulas determined from Formulas (7) and (9): PM = λeE(X),

µe = ln(E(X)) −
σh

2

2 ,

As a result, the estimate of parameter µe by risk category is presented in Table 10 as follows.

Table 10. The expert estimate of the parameter µe by risk category.

RTc PM λe µe

RT1 21,313 11.5 6.13
RT2 352 14.3 1.95
RT3 2640 54.6 2.77
RT4 2546 4.07 4.25
RT5 1915 3.40 6.27
RT6 5289 5.8 3.72
RT7 33,445 3.5 6.06

4.2.3. The Bayesian Estimators of Parameters

The Bayesian estimators of frequency and severity are determined by the following relationships:{
λ̂Bay = ε1 × λe + (1− ε1) × λh
µ̂Bay = ε2 × µe + (1− ε2) × µh

with ε1 = ε2 = 25%

As a result, the Bayesian estimators of severity and frequency by risk category, knowing that
variance is a constant determined by likelihood, are presented in Table 11 as follows.
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Table 11. The Bayesian estimators of parameters by risk category.

RTc
P(λ) LN(µ,σ)

λ̂Bay µ̂Bay σh

RT1 10.80 9.48 1.67
RT2 12.48 6.12 1.58
RT3 53.37 7.14 1.49
RT4 3.40 8.44 2.09
RT5 3.04 10.67 0.35
RT6 30.49 6.99 2.49
RT7 6.22 10.16 2.49

4.2.4. Determination of the VaR by Risk Category

The determination of the VaR is made according to the approach presented above. Indeed, the
breakdown of VaR based on historical LDA and the Bayesian LDA by risk category is presented in
Table 12 as follows.

Table 12. The VaR under Historical and Bayesian LDA by risk category (in 1000 s of MAD).

RTc VaRC,h (λh,µh, σh) VaRC,bay
(
λ̂Bay, µ̂Bay, σh

)
RT1 45,526 14,449
RT2 1560 367
RT3 6926 1767
RT4 45,526 11,764
RT5 4026 955
RT6 164,222 45554
RT7 1,641,160 384680

The use of expert opinion has permitted us to minimize VaR by risk category. Indeed, the experts
readjusted the parameters of the distribution of severity and frequency for all categories, in order to
take into account organizational changes and the strengthening of the control device.

4.3. Capital Allocation

The capital is allocated in accordance with Formula (1). Indeed, each category benefiting from
a percentage of the capital allocated to the retail banking business line is equivalent to the ratio of
its VaRC and the sum of the VaRs of all categories (

∑7
c=1 VaRC). The capital share of each class is

presented in Table 13 as follows.

Table 13. Capital allocation through historical and Bayesian approaches.

RTc

Percentage of Capital
Allocated under the
Classical LDA (%)

Percentage of Capital
Allocated under the
Bayesian LDA (%)

Deviation (%)

RT1 2.38 3.14 31.93%
RT2 0.08 0.08 0.00%
RT3 0.36 0.38 5.56%
RT4 2.38 2.56 7.56%
RT5 0.21 0.21 0.00%
RT6 8.60 9.91 15.23%
RT7 85.97 83.71 −2.63%

The allocation of capital in retail banking shows that the integration of expert opinion appreciates
certain types of risk, in particular categories RT1 and RT6.

Indeed, the experts consider that the losses recorded do not represent the bank’s actual exposure
to these two risks because:



Int. J. Financial Stud. 2020, 8, 9 20 of 25

1. For RT1, the database only includes proven losses, while risk events are generally adjusted
without an accounting impact. However, they can have consequences if the losses recorded are
not recovered;

2. For RT6, the experts believe that fraud attempts to target large amounts of money, especially
those that have not been successful. However, if they are successful, the impact will be great.

On the other hand, our approach is sensitive to several factors:

1. The bank studied is a medium-sized bank whose main activity is the granting of bank loans.
Therefore, the use of simple and easy to implement approaches is its principal concern. However,
other allocation approaches can be used to refine the allocation process;

2. The approach we propose is based on the average loss per risk category, which favors the category
RT7. However, the collection approach used by the bank may bias the results because the bank
accounts for the losses per fraud file even if a fraud is composed of different amounts distributed
over several years;

3. We have defined a list of criteria to score the experts and define their weighting, which makes the
process very sensitive to the choice of scoring tool.

5. Discussion and Conclusions

Internal models permit us to determine the economic capital independent of the regulatory capital
and the impact of the occurrence of risk events at the level of the different entities and at the aggregate
level under the Bottom-Up approach or the Top-Down approach.

For the risk identification process, banks are free to use their own models to achieve the objective
of risk supervision in accordance with the second pillar relating to prudential risk management.
This situation encourages the use of internal models that can be based on historical data, expert opinion,
or a combination of historical data and expert opinions.

The use of expert opinion is essential in risk management given the recurrent changes in
organization, business size, and control device. Indeed, expert opinions permit one to readjust estimates
and assumptions based on historical data by considering the changes that have been operated.

The reliability of models incorporating expert opinions depends on the approach used to collect
the requested information. Indeed, it is necessary to adopt rigorous procedures and approaches at the
theoretical and practical levels in order to avoid the risk of a model.

In this context, we have presented in this paper a process for collecting information from experts
specific to operational risk, based on the Delphi method, which we believe will give the relevant results
for risk measurement if correctly administered.

For the prospects of internal models for quantifying operational risk, banks must separate
regulatory capital requirements from internal requirements for managing the return/risk trade-off.
Indeed, they must develop internal risk measures allowing them to manage their activities through
risks and allocate the necessary equity capital for their business plans.
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Appendix A Simulation of Aggregate Operational Losses

To simulate the losses, we use the appropriate estimator. For the classical LDA approach, we
use the maximum likelihood estimator (λ̂, α̂i, β̂i) of (λ,α, β), respectively, the parameters of P(λ) and
LN(α, β). For the Bayesian approach, we use the Bayesian estimators

(
λ̂Bay, µ̂Bayσ̂Bay

)
.
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Appendix A.1 Presentation of the Simulation by the Inverse Cumulative Distribution Function

The Monte Carlo Method consists of simulating an important sample of realizations p j of size
J = 100, 000 in the following manner:

For 1 ≤ j ≤ J:

(1) Simulate a realization n j of frequency N from the chosen law of frequency (P(λ) or BN(a, b));
(2) Simulate n j realizations xi, 1 ≤ i ≤ n j, of severity X, from the chosen law of severity

(LN(α, β) or Wei(α, β));
(3) Calculate p j =

∑n j

i=1 xi, which will constitute a realization of the loss PN =
∑N

i=1 Xi.

Before presenting the simulation by the Monte Carlo method, we first cite the theorem of the
inverse cumulative function that allows the simulation of continuous random variables.

Theorem A1. Suppose U is uniform random variable on the interval [0, 1], and F is a cumulative distribution
function that is continuous and strictly increasing. Let Y be the random variable defined from the inverse
cumulative distribution function F−1 by Y = F−1(U). Then, the cumulative distribution function of Y is F.

Consequently, to simulate the realization yi of the random variable Y which has F as a cumulative
distribution function, it suffices to:

• Simulate a realization ui of the Uniform distribution U[0, 1];
• Calculate the inverse cumulative distribution function yi = F−1(ui). Then, yi is considered to be a

realization of Y.

Appendix A.1.1 Simulation of the Realizations n j for 1 ≤ j ≤ 100, 000

To simulate the realizations of frequency N, we use Poisson’s distribution P(λ) or the gamma
distribution Γ(a, b).

(1) Simulation Poisson’s distribution.

Propriety: Let (Vi)i≥1 be a sequence of exponential random variables of parameter λ. Then, the
random variable is defined by

M =

 Sup
{

k ∈ N∗/
k∑

i=1
Vi ≤ 1

}
, V1 ≤ 1

0 , V1 > 1

is a random Poisson variable of parameter λ.
To simulate the realizations of Poisson’s law of parameter λ, we use the following algorithm.

Step 1: Simulation of n1

To simulate the realization n1 of the frequency, we proceed as follows.

1. We simulate a realization v1 of the law Exp(λ) by the inverse cumulative distribution function.
For that, we must

• Simulate a realization u1 of the Uniform law U[0, 1];
• Define the cumulative distribution function of the exponential law Exp(λ) by F−1(u) =

−
ln(1−u)

λ . We then deduct v1 = F−1(u1) = −
ln(1−u1)

λ

2. If v1 > 1 then n1 = 0.

If not, we simulate a second realization v2 of the exponential law Exp(λ) according to procedure
1. If v1 + v2 > 1, then n1 = 1 is a realization of the Poisson of parameter λ; otherwise, we simulate
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k realizations vi, 1 ≤ i ≤ k until
∑k

i=1 vi ≤ 1 and
∑k+1

i=1 Vi > 1. The value k that verifies the last two
inequalities is the realization n1 = k of the frequency.

Step j: A simulation of nj, 2 ≤ j ≤ 100, 000

We repeat step (1.) 100,000 times and we thereby obtain 100,000 realizations of n j.

(2) Simulation of the laws LN(α,β).

To simulate the laws LN(α, β), we use the inverse cumulative distribution function method,
as follows:

1. Simulate a realization ui of the Uniform law U[0, 1];
2. Calculate xi = F−1

(α,β)
(ui), where F(α,β) is a cumulative distribution function of the law LN(α, β).

As F−1
(α,β)

(ui) has no analytical expression, we numerically simulate xi.

Appendix A.1.2 Determination of Operating Losses

For each n j realization of the law of frequency, we have to simulate n j realizations of the law of
severity. The simulated loss p j is the sum of the simulated realizations:

p j =

n j∑
i=1

xi,

Appendix A.2 Calculation of the Capital at Operational Risk (VaR)

The capital at operational risk is calculated by the determination of the percentile 99.9% of the
empirical distribution of the losses p j =

∑n j

i=1 xi, for 1 ≤ j ≤ 100, 000, as simulated by Monte Carlo.
Let FP be the empirical cumulative distribution function of loss P determined from the simulated

realizations p j. The function FP is given by

FP(y) =
numbre o f p j ≤ y

number o f p j
, (A1)

The value at risk VaR is expressed by the following formula:

VaR = In f
{
y/FP(y) ≥ 99, 9%

}
= In f

{
y/

number o f p j ≤ y
number o f p j

≥ 99, 9%
}

,

In this paper, frequency is modelled for a horizon of one year T = 12 month or by dividing the
year T into k sub-horizons Tk =

T
k for a k integer 2 ≤ k ≤ 12.

Appendix A.2.1 The Annual VaR with Segmentation of the Database by Risk Category

The operational loss Pc of risk category RTc is a random variable defined by Pc =
∑Nc

i=1 Xci, where:

X Nc: The random variable that represents the frequency of losses of the risk category RTc;
X Xci: The random variable, for 1 ≤ i ≤ Nc, that represents the severity of the losses of the risk

category RTc.

Let n jc, 1 ≤ j ≤ 100, 000 be, the annual frequency of the losses collected for the risk category
RTc, and let xci be the simulated realizations of the losses of the risk category RTc. The realizations
p jc =

∑n jc

i=1 xci, 1 ≤ j ≤ 100, 000 are able to calculate the capital at risk VaRc for each risk category RTc.
The annual VaR is the sum of the VaRc because it supports that the risk categories are independent.
The modelling of the frequency of the loss is made for a horizon of one year T = 12 months or by
dividing the year T into k sub-horizons Tk =

T
k for a k integer 2 ≤ k ≤ 12.
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Appendix A.2.2 The Modelling of the Loss Frequency for the Annual Horizon

The horizon chosen is year T = 12 months and the level of confidence is 1− α = 99.9%.
Let FPc be the empirical cumulative distribution function of the losses for the risk category RTc.

The capital of operational risk for the category risk RTc is

VaRc = In f
{
y/FPc(y) ≥ 99.9%

}
(A2)

The capital at risk on the annual horizon is the sum of the VaRc:

VaR =
7∑

c=1

VaRc (A3)

Appendix A.2.3 The Modelling of the Loss Frequency for the Sub-Horizon Tk =
T
k , 2 ≤ k ≤ 12

Let FPTc be the empirical cumulative distribution function of the operational risk of a given risk
category RTc for the horizon T = 1 year, determined from the simulated realizations p jc, with n jc as
a realization of the frequency of losses on horizon T. The cumulative distribution function FPTc is
simulated k times on the horizon T. Let FPTci be the ith simulation and VaRci be the ith capital at
operational risk determined from the ith simulation of the losses. The capital at risk on the annual
horizon is the sum of the VaRci, 1 ≤ i ≤ k:

VaRc =
k∑

i=1

VaRci. (A4)

The capital at risk on the annual horizon is the sum of the VaRc:

VaR =
7∑

c=1

k∑
i=1

VaRci. (A5)
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