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Abstract: In this paper, a dynamic mixture copula model is used to estimate the marginal expected
shortfall in the South African insurance sector. We also employ the generalized autoregressive score
model (GAS) to capture the dynamic asymmetric dependence between the insurers’ returns and
the stock market returns. Furthermore, the paper implements a ranking framework that expresses
to what extent individual insurers are systemically important in the South African economy. We
use the daily stock return of five South African insurers listed on the Johannesburg Stock Exchange
from November 2007 to June 2020. We find that Sanlam and Discovery contribute the most to
systemic risk, and Santam turns out to be the least systemically risky insurance company in the South
African insurance sector. Our findings defy common belief whereby only banks are systemically risky
financial institutions in South Africa and should undergo stricter regulatory measures. However,
our results indicate that stricter regulations such as higher capital and loss absorbency requirements
should be required for systemically risky insurers in South Africa.

Keywords: dynamic mixture copula; marginal expected shortfall; systemic risk; insurance sector

1. Introduction

The insurance sector (life and non-life) plays a significant role in the economy and is
viewed as crucial in the financial system. The European Central Bank (ECB 2013) states
that insurance companies are essential for the stability of the financial system due to their
investment ability, their growing links to banks, and their ability to safeguard the financial
stability of households and firms by insuring their risks. In line with ECB, the National
Treasury of South Africa (2011) argues that the insurance sector is a pillar of the South
African financial system by being the guardian of the stability of the whole system. In
addition, according to the Insurance Institute of South Africa (IISA 2016), the insurance
sector (short-term and long-term insurance) accounted for 23% of total financial assets in
South Africa in 2016 and contributed to R 18 billion to the country’s revenue based in 2015,
implying that the insurance sector is a driver of the South African economy. Thus, a failure
of one or more insurers could disrupt the insurance sector and lead to systemic risk.

Nevertheless, the International Monetary Fund (IMF 2009) has defined systemic risk
as “the risk of extensive disturbance to the delivery of financial services caused by an
impairment of all or parts of the financial system, which can bring about severe adverse
effects on the economy”.

The 2007–2009 Global Financial Crisis (GFC) is a typical example of systemic risk. The
crisis began in the United States (U.S.) real estate sector and spread to the financial system
with a negative impact on economic activities across the world.

The GFC has revealed that the insurance sector was partly responsible for the crisis
with American International Group (AIG) becoming the first example of an insurer in
the U.S. that received federal assistance to prevent bankruptcy due to it being considered
systemically risky. Thus, concerns have been raised about whether the insurance sector is a
significant contributor to systemic risk. The answer to this question is capital for regulators,
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policymakers, investors, and academics. Hence, many studies have focused on the extent
to which the insurance sector contributes to systemic risk.

For example, Grace (2011) uses granger-causality to assess the systemic risk of 12
major insurance companies in the U.S. from 2000 to 2010. The main results indicate that
the insurance sector does not contribute to systemic risk because the period between its
assets and liabilities is closely equaled.

Drakos and Kouretas (2015) apply the conditional value at risk (CoVaR), and the
marginal conditional value at risk (∆CoVaR) to measure systemic risk in the banking sector,
insurance sector, and other financial services sectors for the U.S., and the United Kingdom
(UK) between 2000 and 2012. They find that the banking sector contributes relatively more
to systemic risk than the insurance sector or the other financial services in the U.S. and UK.
Furthermore, based on the ∆CoVaR measures, Drakos and Kouretas (2015) argue that there
is a significant increase in the contribution to systemic risk for all sectors in both countries
since 2008.

Acharya and Richardson (2014) use the Credit Default Swaps Marginal Expected Short-
fall (CDS-MES) as a measure of systemic risk to provide a ranking for 20 insurance companies
in the U.S. with respect to their contribution to systemic risk. Their results reveal that
Genworth Financial Inc., AMBAC Financial Group Inc., MBIA Inc., and AIG are the most sys-
temically risky insurers, respectively, during the sample period, while AETNA Inc., CIGNA
Corp, and Marsh & McLennan Cos. Inc. are the least systemically risky insurance companies,
with CDS MESs being negative. The authors further contend that the insurance sector may
cause systemic risk as the sector is moving away from its traditional activities by offering
financial products with non-diversifiable risk which is more prone to run.

Dungey et al. (2014) assess systemic risk through the interconnectedness of the bank-
ing sector, insurance sector, and real economy firms in the U.S. by applying eigenvector
centrality measures. The results show that while the banks are the most consistently sys-
temically risky financial institutions in the economy, insurers are becoming an identifiable
group exhibiting substantial systemic risk via interconnectedness with the financial sector
and the real economy.

Bernal et al. (2014) employ ∆CoVaR and the Kolmogorov-Smirnov test to provide a
ranking of commercial banks, insurance companies, and other financial services for their
contribution to systemic risk in the Eurozone and the U.S. during the period of the 2007–
2009 financial crisis and the European sovereign debt crisis. They find that in the Eurozone,
the other financial services sector contributes relatively the most to systemic risk at times
of distress affecting this sector. In turn, the banking sector appears to contribute more to
systemic risk than the insurance sector. By contrast, the insurance sector is the systemically
riskiest financial sector in the U.S. for the same period, while the banking sector contributes
the least to systemic risk. In addition, Bernal et al. (2014) argue that beyond this ranking,
the three financial sectors of interest are found to contribute significantly to systemic risk,
both in the Eurozone and in the U.S.

Weiß and Muhlnickel (2014) examine systemic risk for 89 U.S. insurers during the
period of the 2007–2009 financial crisis using ∆CoVaR, MES, and SRISK as systemic risk
measures. Their findings reveal that size is the main driver of insurers’ exposure and contri-
bution to systemic risk in the U.S., and the exposure to systemic risk additionally depends
on non-traditional and non-insurance activities such as CDS writing. Similarly, Berdin and
Sottocornola (2015) apply the linear Granger causality test, ∆CoVaR, and MES to assess sys-
temic risk in the banking sector, insurance sector, and non-financial sectors in Europe. Their
results show that the insurance sector shows a persistent systemic relevance over time and
plays a subordinate role in causing systemic risk compared to the banking sector. Moreover,
their findings indicate that insurance companies that engage more in non-traditional and
non-insurance activities tend to pose more systemic risk and size is also a significant driver of
systemic risk in the banking sector and the insurance sector in Europe.

Furthermore, Bierth et al. (2015) employ ∆CoVaR, MES, and SRISK as measures of
systemic risk to study the exposure and contribution of 253 life and non-life insurers across
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the world to systemic risk between 2000 and 2012. They find that the interconnectedness of
large insurers with the insurance sector to be a significant driver of the insurers’ exposure
to systemic risk. In addition, Bierth et al. (2015) argue that the contribution of insurers to
systemic risk appears to be principally driven by the insurers’ leverage.

Kaserer and Klein (2019) utilize CDS-implied systemic risk measure to investigate how
insurance companies contribute to systemic risk in the global financial system represented
by 201 major banks and insurers from 2004 to 2014. They find that the insurance sector
contributes relatively little to the aggregate systemic risk. However, at the institution level,
several multi-line and life insurers appear to be as systemically risky as the riskiest banks.
They conclude that some insurers are systemically important and indicate that insurers’
level of systemic risk varies by line of business.

More details on the review of literature in the insurance sector can be found in (Eling
and Pankoke 2016).

Our study contributes to the increasing literature analyzing systemic risk in the
insurance sector. Despite many methodologies used to identify and evaluate systemic
risk in the insurance sector, no studies have investigated the dynamic and asymmetric
dependence between insurance companies and the market.

Cerrato et al. (2015) argue that the dynamic and asymmetric dependence between
financial institutions is one of the primary factors causing systemic risk. They describe
dynamic and asymmetric dependence as a situation whereby financial institutions present
greater correlation during market declines than market expansions. Thus, modeling the
dynamic and asymmetric dependence could help to identify potential systemic risk.

Moreover, the majority of studies analyzing systemic risk in the insurance sector have
been done on developed countries. However, research on measuring systemic risk in the
insurance sector is still scarce in emerging economies such as South Africa.

Therefore, it is essential to investigate the asymmetric dependence between insur-
ers and the market and how their correlation evolves over time. Thus, this study is of
paramount importance for South African regulators and risk managers to understand the
dynamic and asymmetric dependence in the insurance sector and appropriately manage
systemic risk in the South African insurance sector. For this reason, our study analyzes the
dynamic and asymmetric dependence between the market and five insurance companies
in South Africa by employing copula models.

By definition, a copula model enables us to assess the dependence structure between
random variables, and it provides more information on the dependence structure of the
variables than linear correlation.

The main objective of this study is to implement a ranking that expresses to what
extent individual insurers are systemically important in South Africa. In other words,
which one of the insurers would pose a systemic threat to the stability of the financial
system in South Africa?

To achieve our objective, we use a Dynamic Mixture Copula model to estimate the
Marginal Expected Shortfall (DMC-MES), a model proposed by Eckernkemper (2018).
Our choice for the dynamic mixture copula is that it is flexible as it can capture dynamic,
symmetric, and asymmetric dependence altogether in one framework. More specifically,
we opt for two dynamic mixture copula models, a combination of Rotated Clayton and
Clayton (RC&C) and a combination of Rotated Gumbel and Gumbel (RG&G). The Clayton
and Rotated Gumbel copulas allow for lower tail dependence, whereas the Gumbel and
Rotated Clayton allow for upper tail dependence. In addition, we use the Generalized Au-
toregressive Score (GAS) developed by Creal et al. (2013) to model the dynamic parameters
of our dynamic mixture copula models.

We also apply the time-varying symmetrized Joe-Clayton copula to measure the
dynamic and asymmetric dependence as this copula model presents similar attributes
like the RC&C and RG&G. We then compare the different copula models based on the
Log-Likelihood estimates.
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Finally, we analyze systemic risk using five insurers listed on the Johannesburg
Stock Exchange, Discovery Limited, Liberty Holdings Limited, Momentum Metropolitan
Holdings, Sanlam Limited, and Santam Limited. We cover the period from November
2007 to June 2020. We use the DMC-MES to analyze the systemic risk contribution of the
five insurers. Our results show that Sanlam is the biggest contributor to systemic risk,
followed by Discovery. However, the results indicate that Santam is the least systemically
risky insurer in our analysis. Our findings show that insurers’ contribution to systemic risk
might be related to the size of the insurers, as Sanlam and Discovery are among the largest
insurers in South Africa. Therefore, insurers could present different threats to the insurance
sector and the economy at large. Hence, stricter regulatory measures such as higher capital
and loss absorbency requirements are required for systemically risky insurers to ensure
financial stability in the South African economy.

The remainder of the paper is structured as follows: Section 2 describes the methodol-
ogy while Sections 2 and 4 present the results and the conclusion, respectively.

2. Methodology

The first part of this section explains the Marginal Expected Shortfall (MES) used
to measure systemic risk and how it is derived. The second part briefly discusses the
copula models used in this study. Finally, we provide the steps involved in estimating the
DMC-MES proposed by Eckernkemper (2018).

2.1. Marginal Expected Shortfall (MES)

The Marginal Expected Shortfall (MES) measures an institution’s expected return
when the return of the market is below or equal to a certain level over a given horizon.

Expected Shortfall (ES)

Let us consider the bivariate time series process {ri,t, rm,t} T
t=1 where rm,t represents

the market’s return of the entire market m at time t and ri,t denotes an institution i return,
also at time t.

The return of the market rm,t is expressed as follows,

rm,t =
N

∑
i=1

wi,tri,t

where wi,t represents the weight of institution i.
The expected shortfall (ES) of the market is then described as ESm,t = Et−1(rm,t|rm,t ≤ ct)

with threshold ct being the value at risk (VaR) of the market return and in our analysis, we
chose ct to be equal to 0.05. Plugging rm,t = ∑N

i=1 wi,tri,t into ESm,t yields

ESm,t = Et−1

(
∑N

i=1 wi,tri,t

∣∣∣rm,t ≤ ct

)
= ∑N

i=1 wi,tEt−1(ri,t|rm,t ≤ ct) (1)

The MES for an institution i at time t is obtained by partially differentiating Equation (1)
with respect to wi,t,

MESi,t =
∂ESm,t

∂wi,t
= Et−1(ri,t|rm,t ≤ ct) (2)

From Equation (2), the MES, besides measuring the expected return of institution
i conditional to the market’s return being below or equal to a certain level ct, provides
information on an institution’s systemic risk contribution and its significance for the market
under consideration (Eckernkemper 2018).

2.2. Dynamic Mixture Copula-Marginal Expected Shortfall (DMC-MES)

This section aims to describe the DMC-MES model. We firstly provide an overview of
a copula model. Secondly, we show a step-by-step analysis of how to derive the DMC-MES
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model. Finally, we present the estimation technique of the DMC-MES model and briefly
discuss the Symmetrized Joe-Clayton Copula.

2.2.1. Copula

A copula model is used to describe the dependence between random variables. Hence,
it couples the marginal distribution together to form a joint distribution. Let us consider two
random variables (εi,t, εm,t) which are respectively the institution and market innovation.
These two variables are assumed to be separately independent and identically distributed
(iid) and Ht represents the joint distribution of the two random variables (εi,t, εm,t). The
marginal distributions are denoted by Gi and Gm. Sklar’s theorem (Sklar 1959) states that
any joint distribution can be written in terms of univariate marginal distribution, Gi and
Gm, linked via a copula function Ct, that is

p(εi,t ≤ εi, εm,t ≤ εm) = Ht(εi, εm) = Ct

Gi(εi)︸ ︷︷ ︸
=vi

, Gm(εm)︸ ︷︷ ︸
=vm

; θt

 (3)

Equation (3) can be solved for

Ct(vi, vm; θt) = Ht

(
G−1

i (vi), G−1
m (vm)

)
(4)

where vi, vm ∈ [0, 1], εi, εm ∈ R, θt is the dynamic copula parameter and Gm
−1 and G−1

i are
the respective quantile functions. However, Eckernkemper (2018) argues that Equation (4)
can be improved by using a mixture copula as a mixture copula can bring together different
dependence features inducing higher flexibility of the model. Thus, a mixture of N copula
functions is defined as

Ct(vi, vm; θt) = ∑N
n=1 wnCn,t(vi, vm; θn,t) (5)

with
∑N

n=1 wn = 1

where Cn,t represents the nth copula, wn ∈ [0, 1] is the weight and θn,t denotes the dynamic
parameter. Therefore, under the above framework, one can select different copula families
with different properties as the combination of their individual properties within the copula
function Ct is feasible.

Lastly, we can obtain a conditional expectation based on Equation (4) as a function of
the copula Ct,

Et−1(εi,t|εm,t ≤ κ) =
1
α

1∫
0

G−1
i (vi).

∂Ct(vi, α; θt)

∂vi
dvi (6)

We can also obtain a conditional expectation for the mixture copula as specified by
Equation (5) as

Et−1(εi,t|εm,t ≤ κ) = ∑N
n=1 wn

1
α

1∫
0

G−1
i (vi).

∂Cn,t(vi, α; θn,t)

∂vi
dvi (7)

where α = Gm(κ). The foundation of the DMC-MES is embodied in the conditional
expectation given by Equation (7).

2.2.2. Construction of the DMC-MES

We model the conditional marginal distributions of an institution i and market return
processes as

rm,t = σm,tεm,t and ri,t = σi,tεi,t (8)
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where σm,t and σi,t represent the volatility of the market and an institution i, respectively.
In this analysis, we show that the conditional standard deviations follow a univariate
GJR-GARCH model developed by Glosten et al. (1993).

Below are the general assumptions we made for this study:

1. εm,t and εi,t are each independent and identically distributed (i.i.d) with unspecified,
static distribution Gm and Gi

2. E(εm,t) = E(εi,t) = 0, Var(εm,t) = Var(εi,t) = 1 and

3. p(εi,t ≤ εi, εm,t ≤ εm) = Ct

Gi(εi)︸ ︷︷ ︸
vi

, Gm(εm)︸ ︷︷ ︸
vm

, θt

 with dynamic copula parameter θt.

By substituting rm,t = σm,tεm,t and ri,t = σi,tεi,t in Equation (2) gives

MESi,t = σi,tEt−1(εi,t|εm,t ≤ κ) (9)

with κ = ct
σm,t

.
Applying Equation (6), we get the MES in Equation (9) as

DC−MESi,t =
σi,t

α

1∫
0

G−1
i (vi).

∂Ct(vi, α; θt)

∂vi
dvi (10)

where G−1
i is the quantile function, Ct represents the copula of the market and institution

innovation and θt is the dynamic copula parameter. Note that the DC-MES stands for
dynamic copula to estimate the marginal expected shortfall. It is the basis of the dynamic
mixture copula.

Similarly, we obtain a mixture of two dynamic copulas with static weights by using
Equation (7) for N = 2. The MES in Equation (9) is given as

DMC−MESi,t = w̃
σi,t

α

1∫
0

G−1
i (vi).

∂C1,t(vi, α; θ1,t)

∂vi
dvi + (1− w̃)

σi,t

α

1∫
0

G−1
i (vi).

∂C2,t(vi, α; θ2,t)

∂vi
dvi (11)

where the copula weight is denoted by w̃.

2.3. Estimation Technique of the DMC-MES

In this section, we discuss the estimation technique of the DMC-MES as shown in
Eckernkemper (2018).

Step 1

To allow for the model to capture conditional heteroscedasticity and autocorrelation
of each series, we begin by running a group of GARCH models as candidates. We found
that the return of the market and insurers follow independent AR(1)-GJR-GARCH(1,1)
specifications. The particularity of this model is that it accounts for leverage effect, that
is, bad news about an insurer increases its future volatility more than good news. Let
rt = (rm,t, ri,t)

′ denote the model for the market and insurer return.

rt = ut + σt � εt (12)

ut = (um,t, ui,t)
′, σt = (σm,t, σi,t)

′, εt = (εm,t, εi,t)
′ (13)

εm,t ∼ iid Gm(εm), εi,t ∼ iid Gi(εi), (14)

where � represents the Hadamard product and the jth elements of ut and σt are given by

uj,t = αj,0 + β j,0rj,t−1 (15)

σ2
j,t = ωj +

(
αj,1 + γIj,t−1

)
ε2

j,t−1 + β j,1σ2
j,t−1 (16)
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where It−1 =

{
0, if rt−1 ≥ µ
1, if rt−1 < µ

.

Step 2

The Generalized Autoregressive Score (GAS) model is used to model the dynamic
copula parameters θ1,t and θ2,t. The main advantage of the GAS model is that it allows the
use of the score function as the driver of time-variation in the parameters of a wide class of
nonlinear models. The specification of the model is as follows:

The joint cdf for εm,t and εi,t is specified as

Ht(εm, εi) = w̃ ∗ C1,t(vm, vi; θ1,t(ψ1,t)) + (1− w̃) ∗ C2,t(vm, vi; θ2,t(ψ2,t)) (17)

ψt+1 = ω + Ast + Bψt, ψt = (ψ1,t, ψ2,t)
′, (18)

st = St.∇t (19)

∇t =
∂ log ct(vi,t, vm,t; θt(ψt), w|Ft−1)

∂ψt
(20)

log ct(vi,t, vm,t; θt(ψt), w|Ft−1) = log[w̃c1,t(vi,t, vm,t; θt(ψ1,t)) + (1− w̃)c2,t(vi,t, vm,t; θ2,t(ψ2,t))] (21)

where Ft−1 =
{

vt−1
m , vt−1

i , Θt−1
}

represents the set of information at period t− 1.
We specified our GAS (1,1) as in Creal et al. (2013) with st the score function, St a

scaling matrix, ∇t the gradient, ω a vector of constants and A, B represent two matrices of
parameters, which are supposed to be diagonal. For more details on the GAS model, one
can read Blasques et al. (2014a, 2014b).

Step 3

To combine the parameters of the copula to the GAS model, we apply the changes
θ1,t = 1 + exp(ψ1,t) and θ2,t = 1 + exp(ψ2,t) to limit the range of the Gumbel and rotated
Gumbel parameters θ1,t, θ2,t ∈ [1, ∞) and the changes θ1,t = exp(ψ1,t) and θ2,t = exp(ψ2,t)
are also applied to limit the range of the Clayton and rotated Clayton parameters θ1,t, θ2,t ∈
(0, ∞) as in Eckernkemper (2018). Lastly, we employ the maximum likelihood to evaluate
the parameters in ω, A, B and w̃. The maximization problem is as follows:

(
ω̂, Â, B̂, ˆ̃w

)
= arg max︸︷︷︸

ω,A,B,w̃

T

∑
t=1

log ct(vi,t, vm,t; θt(ψt), w̃| ft−1) (22)

2.4. The Symmetrized Joe-Clayton (SJC) Copula

The Symmetrized Joe-Clayton is an Archimedean copula, which is an adaptation of
the Joe-Clayton Copula. It can measure both the upper and lower tail dependence. The
expression of (SJC) copula is given by:

CSJC

(
u1, u2

∣∣∣TU , TL
)
= 0.5×

(
CJC

(
u1, u2

∣∣∣TU , TL
)
+ CJC

(
1− u1, 1− u2

∣∣∣TU , TL
)
+ u1 + u2 − 1

)
(23)

where and TU and TL denote the upper and lower tail dependence coefficients, respectively,
and CJC is the Joe-Clayton copula. CJC is expressed as follows:

CJC

(
u1, u2 |T U , TL

)
=

(
1−

([
1− (1− u1)

κ]−γ
+
[
1− (1− u2)

κ]−1/γ−
)−1/γ

)1/κ

(24)

2.5. Robustness Test

We use the bivariate Clayton and Gumbel copula to double-check the dependence
between the systemically riskiest insurer, Sanlam, and the market and the rest of the
insurers. Finally, to explain the relationship among the insurers, we use the Vector Autore-
gressive (VAR) model through the impulse response function and give an overview of the
relationship of the South African insurance sector.



Int. J. Financial Stud. 2021, 9, 29 8 of 17

2.5.1. Clayton Copula

The Clayton copula is mostly used to model asymmetric dependence and correlated
risks because of their ability to capture lower tail dependence. The closed-form of the
bivariate Clayton copula is given by:

C(u1, u2, θ) =
(

u−θ
1 + u−θ

2 − 1
)−1

θ (25)

where θ ≥ 0.

2.5.2. Gumbel Copula

As the Clayton copula, the Gumbel copula is used to model asymmetric dependence.
However, it is famous for its ability to capture strong upper tail dependence. If outcomes
are expected to be strongly correlated at high values but less correlated at low values, then
the Gumbel copula is an appropriate choice. The bivariate Gumbel copula is given by:

C(u1, u2, θ) = exp
(
−
[
(− log u1)

θ + (− log u2)
θ
] 1

θ

)
(26)

where θ ≥ 1.

2.5.3. Vector Autoregressive Model and Impulse Responses

Vector Autoregression (VAR) is an econometric model which represents the correla-
tions among a set of variables, it is often used to analyze certain aspects of the relationships
between the variables of interest. It is a multi-equation system where all the variables are
treated as endogenous (dependent). The VAR (p) model is given by:

Yt = a + A1Yt−2 + A2Yt−2 + . . . + ApYt−p + εt (27)

where:

• Yt = (y1t, y2t, . . . , ynt)′: an (n× 1) vector of time series variables;
• a : an (n× 1) vector of intercepts;
• Ai(i = 1, 2, . . . , p) : an (n× n) coefficient matrices;
• εt : an (n× 1) vector of unobservable i.i.d zero mean error term.

The Impulse Response Function enables us to know the response of one variable to an
impulse in another variable in a system that involves several variables as well.

3. Empirical Analysis
3.1. Data

Due to data availability, our analysis is on five insurance companies listed on the
Johannesburg stock exchange that have data covering our entire sample period. For this
study, we use daily stock price data from 13 November 2007 to 15 June 2020, and it is
easily accessible from I-net BFA Database. The stock prices are converted to log returns
multiplied by 100. We also estimate the marginal distributions Gm and Gi using the kernel
estimator to transform the standardized innovations (residuals) to the copula scale. All our
estimations are done with Matlab software.

Table 1 provides the list of the insurers that constitutes the South African insurance
companies in our analysis.
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Table 1. List of the Five South African Insurance Companies.

Company Symbol Sector

Discovery Limited DSY Life Insurance
Liberty Holdings Limited LBH Life Insurance

Momentum Metropolitan Holdings MTM Life Insurance
Sanlam Limited SLM Life Insurance
Santam Limited SNT Nonlife Insurance

Table 2 below presents the results of the descriptive statistics. We can see from the
table that the skewness of the insurers’ returns is nonzero while the kurtosis of the insurers’
returns are all above 3, implying that the empirical distributions of the returns exhibit
fat tail distribution with means around zero. Hence, our series presents the properties of
financial time series.

Table 2. Descriptive Statistics.

Discovery Liberty Momentum Sanlam Santam

Mean 0.041 −0.005 0.005 0.03 0.026
Std.Dev. 1.957 1.892 1.868 1.959 1.712

Skewness −0.527 0.129 −0132 −0.429 −0.474
Kurtosis 12.695 17.853 7.183 7.703 14.13

JB test p-value 0.001 0.001 0.001 0.001 0.001
Note: Table 2 reports descriptive statistics of the five insurers’ stock returns. JB test p-value is the probability
that the returns are normally distributed, according to Jarque–Bera normality test. The sample period is from 13
November 2007 to 15 June 2020.

In addition, when performing the Jarque–Bera test for normality at 5% confidence
level, the results show that the null hypothesis of the normality test is rejected for all series,
at 5% confidence level indicating that the series is not normally distributed.

3.2. Marginal Distributions

We considered a group of GARCH models as candidates and find that the AR(1)-
GJRGARCH(1,1) model developed by Glosten et al. (1993) is a suitable model for the
marginal returns distributions based on the diagnostic tests for model adequacy (ARCH
LM test and Ljung–Box test). Moreover, given the presence of large kurtosis in tails, we
model the shock dynamics in both tails of each conditional distribution with a skewed
student’s t distribution introduced by Hansen (1994). Thus, our choice is justified as the
skewed Student’s t distribution can capture skewness and high kurtosis of series.

Table 3 below exhibits the results for the diagnostic tests for model adequacy.

Table 3. Diagnostic Tests for Model Adequacy.

Model Ljung–Box Test Arch LM Test

Discovery AR(1)-GJRGARCH(1,1) Standardized residuals
Standardized squared residuals

0.4106
0.06036 0.3931

Liberty AR(1)-GJRGARCH(1,1) Standardized residuals
Standardized squared residuals

0.4117
0.2674 0.8041

Momentum AR(1)-GJRGARCH(1,1) Standardized residuals
Standardized squared residuals

0.1185
0.0823 0.6793

Sanlam AR(1)-GJRGARCH(1,1) Standardized residuals
Standardized squared residuals

0.6952
0.7390 0.5538

Santam AR(1)-GJRGARCH(1,1) Standardized residuals
Standardized squared residuals

0.9213
0.7559 0.5491

Market AR(1)-GJRGARCH(1,1) Standardized residuals
Standardized squared residuals

0.31172
0.4614 0.4527

Note: Table 3 reports insignificant Ljung—Box diagnostic test at 5% statistical significance level.

Table 3 shows that the null hypothesis of no autocorrelation for the Ljung–Box test up
to lag 30 is not rejected at 5% statistical level of significance because the p-values are greater
than 0.05. As for the ARCH LM test up to lag 10, the null hypothesis of no heteroscedasticity
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is not rejected at 5% statistical level of significance because the p-values are greater than
0.05. Thus, the AR(1) GJR-GARCH (1,1) is a suitable model for our data.

Table 4 reports the parameters estimates from the AR(1) GJR-GARCH (1,1) model.
We find that the sum of the GJR-GARCH parameters α1 and β1 is close to unity for all
insurers indicating highly persistent volatilities. Moreover, we can see from the table
that the leverage effect parameter γ is significant and positive at 5% confidence level for
Discovery, Liberty, Sanlam, and Santam, except for Momentum, where it is negative and
significant at 10%. A positive leverage effect implies that a negative return on the series
increases volatility more than a positive return with the same magnitude.

Overall, the diagnostic test confirms that the marginal distribution used for this study
is well-specified. Therefore, we can use the AR(1) GJR-GARCH (1,1) and the skewed t
distribution alongside copulas to model the dependence structure.

Table 4. Estimates of AR(1) GJR-GARCH (1,1) for Each Series.

AR (1) GJR-GARCH (1,1) Kurtosis Skewness

α0 β0 ω α1 β1 γ

Discovery 0.0476
(0.0252)

−0.0058
(0.0183)

0.0385 ***
(0.0115)

0.0517 ***
(0.0126)

0.9058 ***
(0.0133)

0.0669 ***
(0.0182)

4.9419 ***
(1.571)

−0.2145 ***
(0.0259)

Liberty 0.0159
(0.0251)

−0.0664 ***
(0.0165)

0.0366 ***
(0.0054)

0.0001
(0.0036)

0.9573 ***
(0.0024)

0.0603 ***
(0.0024)

12.32 ***
(0.330)

−0.0801 ***
(0.0246)

Momentum 0.0321
(0.0263)

−0.0683 ***
(0.0181)

0.0567 ***
(0.0214)

0.0564 ***
(0.0173)

0.9138 ***
(0.0191)

−0.0318 *
(0.0171)

8.3628 ***
(0.9165)

0.0101 ***
(0.0027)

Sanlam 0.0221
(0.0259)

−0.0690 ***
(0.0180)

0.0526 ***
(0.0154)

0.0353 ***
(0.0123)

0.9098 ***
(0.0138)

0.0849 ***
(0.0182)

4.7317 ***
(1.3719)

−0.1677 ***
(0.0153)

Santam 0.0299
(0.0242)

−0.1172 ***
(0.0182)

0.4707 ***
(0.1510)

0.2065 ***
(0.0048)

0.6849 ***
(0.0737)

0.0292***
(0.0046)

16.038 ***
(2.195)

−0.6265 **
(0.249)

Note: Table 4 reports the estimated coefficients of the univariate AR (1) and GJR-GARCH (1,1) model. *, **, and *** represents statistical
significance at 10%, 5%, and 1% respectively. standard errors are reported in ().

3.3. Estimation of the Copula Models

This section focuses on the dependence between the market and the insurers. We first
plot the scatter plots of the marginals between the market and each of the insurers. Figure 1
displays the joint behavior of extreme values between the marginals.
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Figure 1. Scatter plots of the marginals. Note that the horizontal axis represents the marginal of the
insurers, while the vertical axis represents the marginal of the market.
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From the figure, there seems to be lower and upper tail dependence between the
marginals. Hence, copula models that can account for both upper and lower tail depen-
dence may be appropriate for the data.

In what follows, we estimate the dynamic mixture copula, namely the Rotated Clayton
and Clayton (RC&C) and the Rotated Gumbel and Gumbel (RG&G), for each series, and
the results of the estimations are reported in Tables 5 and 6.

Table 5. Estimation Results of the Dynamic Mixture Copula of the Rotated Clayton and Clayton (RC&C): Between Market
and Insurers.

Weight GAS (1,1)
~
w w1 w2 A11 A22 B11 B22

Discovery 0.392 ***
(0.031)

0.109 ***
(0.078)

0.002 ***
(0.0001)

0.233 **
(0.118)

0.012 ***
(0.004)

0.849 ***
(0.107)

0.998 ***
(0.002)

Liberty 0.485 ***
(0.039)

0.0005 ***
(0.00001)

0.0206
(0.021)

0.036 ***
(0.009)

0.136
(0.097)

0.998 ***
(0.004)

0.959 ***
(0.045)

Momentum 0.463 ***
(0.065)

−0.003 ***
(0.0001)

0.007 ***
(0.0001)

0.067
(0.104)

0.023 ***
(0.0012)

1.003 ***
(0.0001)

0.989 ***
(0.0004)

Sanlam 0.347 ***
(0.029)

−0.002 ***
(0.0001)

−0.001 ***
(0.0005)

0.011
(0.012)

0.044 ***
(0.008)

1.0014 ***
(0.0001)

1.0013 ***
(0.0003)

Santam 0.423 ***
(0.057)

−0.002(
0.004)

0.0001
(0.0004)

0.094
(0.09)

0.034
(0.041)

0.995 ***
(0.011)

0.998 ***
(0.003)

Note: Table 5 reports the estimated dynamic mixture copula weights for the rotated Clayton and Clayton copula models (RC&C). **, and ***
represents statistical significance at 5%, and 1% significance level respectively. Standard errors are reported in ().

We can observe from Tables 5 and 6 that the copula weights are between 0.392 and
0.485 for the RC&C (see Table 5) and between 0.555 and 0.696 for the RG&G (see Table 6).
This provides strong evidence for an asymmetric dependence structure between insurers
and the market.

Table 6. Estimation Results of Dynamic Mixture Copula of the Rotated Gumbel and Gumbel (RG&G): Between Markets
and Insurers.

Weight GAS (1,1)
~
w w1 w2 A11 A22 B11 B22

Discovery 0.639 ***
(0.044)

−0.006
(0.026)

0.082
(0.113)

0.144 ***
(0.093)

0.175
(0.235)

0.659 ***
(0.221)

0.539
(0.606)

Liberty 0.555 ***
(0.049)

−0.132
(0.105)

−0.327
(0.241)

0.229
(0.159)

−0.175
(0.227)

0.497
(0.329)

0.394
(0.641)

Momentum 0.567 ***
(0.0009)

−0.0006 ***
(0.00001)

−0.002 **
(0.0001)

−0.017 ***
(0.0001)

0.048 **
(0.003)

1.0004 ***
(0.0001)

0.991 ***
(0.0004)

Sanlam 0.696 ***
(0.045)

0.019 ***
(0.009)

0.039
(0.029)

0.032 **
(0.012)

−0.154
(0.114)

0.982 ***
(0.009)

0.961 ***
(0.029)

Santam 0.643 ***
(0.086)

−0.003
(0.006)

−1.212 **
(0.524)

0.042
(0.047)

2.159
(1.528)

0.996 ***
(0.007)

0.948 ***
(0.316)

Note: Table 6 reports the estimated dynamic mixture copula weights for the rotated Gumbel and Gumbel copula models (RG&G). **, and
*** represents statistical significance level at 5%, and 1% respectively. Standard errors are reported in ().

Furthermore, we consider the symmetrized Joe-Clayton copula, which is a modifica-
tion of the Joe-Clayton copula. Our interest in the symmetrized Joe-Clayton copula is its
ability to measures the dependence in both the lower and upper tail. Hence, it possesses
similar characteristics as the RC&C and RG&G copula models. Table 7 presents the esti-
mation outputs of the bivariate time-varying Joe-Clayton copula between the market and
each of the insurers.
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Table 7. Estimation Output of the Time-Varying SJC copula.

Time-Varying SJC Copula

Discovery Liberty Momentum Sanlam Santam

ωU 1.958
(1.58)

2.032 **
(0.96)

0.094 *
(0.05)

8.707
(23.14)

−0.040
(0.37)

αU −9.999
(8.21)

−9.969 **
(4.99)

−0.493 *
(0.28)

9.761 ***
(1.24)

−0.733
(0.84)

βU 0.431
(0.62)

−0.424
(0.64)

0.976 ***
(0.02)

4.477
(39.03)

0.832 ***
(0.25)

ωL 2.849 **
(1.41)

0.111 ***
(0.03)

2.944 ***
(0.48)

9.984 ***
(0.99)

−0.094
(0.39)

αL −9.999
(9.79)

−0.526 ***
(0.17)

−9.997 ***
(2.45)

9.889
(92.22)

−1.546
(1.95)

βL −0.040
(0.33)

0.974 ***
(0.01)

−0.647 ***
(0.13)

−9.796 ***
(2.15)

0.143
(0.34)

Note: Table 7 reports the estimated coefficients of the time-varying SJC copula model. *, **, and *** represents
statistical significance at 10%, 5%, and 1% respectively. Standard errors are reported in ().

Table 7 shows that the coefficient of the lower tail dependence ωL is significantly higher
than the one of upper tail dependence ωU for three insurers except for Liberty and Santam.
This behavior may suggest a lower tail dependence between Discovery, Momentum,
Sanlam, and the market and an upper tail dependence between Liberty, Santam, and
the market. Overall, the results display a dynamic and asymmetric dependence between
the market and insurers.

Table 8 below shows the results of the log-likelihood function to select the best cop-
ula model.

Table 8. Log-Likelihood Estimates.

Copulas tvSJC RC&C RG&G

Copula Likelihood LL LL LL
Discovery −1115.9 −1093.4 −1117.8

Liberty −768.0 −762.9 −778.4
Momentum −910.7 −903.3 −925.6

Sanlam −2344.0 −2693.7 −2774.4
Santam −304.1 −305.9 −307.5

Table 8 reports the estimated likelihood values for the tvSJC copula, the RC&C, and
the RG&G. We can see that the mixture of the RG&G model has the lowest log-likelihood
estimates for all insurers. Hence, it is a suitable copula model for the series than the
other two copula models. Therefore, we use the RG&G to estimate the marginal expected
shortfall of the five insurers.

3.4. Estimation of the DMC-MES

In this section, we use the estimates of the DMC-MES to establish a ranking for the
contribution to systemic risk of the five insurers.

Table 9 provides the ranking of the five insurers based on the average DMC-MES.
At the top of the list is Sanlam, the biggest insurer in South Africa, whose systemic risk
measure is as high as 1.942, making Sanlam the systemically riskiest insurer in the South
African insurance sector. Discovery which is among the biggest insurers in South Africa
is the second-largest contributor to systemic risk with an average DMC-MES of 0.983.
According to the literature, this might imply that Sanlam and Discovery are engaged
in non-traditional business activities such as the issuance of Credit Default Swaps and
securities lending, etc. In addition, our results indicate that financial institutions tend to be
as systemically important as they are large.
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Momentum Metropolitan and Liberty are next in the ranking, with an average DMC-
MES of 0.805 and 0.583, respectively. On the other hand, Santam is the least systemically
risky insurer in South Africa, with an average DMC-MES being negative −0.007. This im-
plies that Santam is relatively resilient when the insurance market is in distress. This might
indicate that Santam is still probably involved in traditional insurance business activities.

Table 9. Summary Statistics for DMC-MES for All Insurers Based on RG&G.

Mean Std.Dev Min Max Ranking

Discovery 0.983 7.709 0.0551 334.3986 2
Liberty 0.583 5.748 0.0375 216.4342 4

Momentum 0.805 5.580 0.0618 223.8966 3
Sanlam 1.942 18.132 0.1128 894.1638 1
Santam −0.007 0.100 −2.3490 4.3039 5

3.5. Robustness Test
3.5.1. Bivariate Copula

After filtering the data using AR(1)-GJRGARCH(1,1) models, the obtained pair of
innovations (standardized residuals) was transformed to uniforms using the estimated
skew Student-t distributions. The uniform series will be used as input for the bivariate
Clayton and Gumbel copula to get an insight into the dependence structure between the
largest contributor to systemic risk, Sanlam, and the market, and the other insurers.

The estimated parameters corresponding to each copula, the confidence interval (CI),
the Akaike Information Criteria (AIC), and the Bayesian Information Criteria (BIC) values
are reported in Table 10.

Table 10. Parameters for the Copulas and Their 95% Confidence Intervals between Sanlam and the
Market, and Sanlam and the Other Insurers.

Copula Parameters 95% CI AIC BIC

Gumbel(MKT) 3.431 [3.343, 3.519] 5160.0 5170.0
Clayton(MKT) 3.568 [3.462, 3.673] 4510.0 4520.0
Gumbel(DSY) 1.450 [1.412, 1.487] 780.4 786.4
Clayton(DSY) 0.781 [0.726, 0.837] 802.1 808.1
Gumbel(LBH) 1.384 [1.349, 1.419] 617.6 623.7
Clayton(LBH) 0.636 [0.582, 0.689] 594.0 600.1

Gumbel(MTM) 1.455 [1.418, 1.492] 791.2 797.2
Clayton(MTM) 0.753 [0.697, 0.808] 765.3 771.3
Gumbel(STN) 1.775 [1.149, 1.206] 175.5 181.6
Clayton(STN) 0.354 [0.305, 0.403] 233.9 240.0

First, we can notice from the table that the Gumbel copula provides the best fit to
the data between Sanlam, and Discovery, and Sanlam and Santam, since it has the lowest
values for the AIC criteria. This indicates a greater dependence in the positive tail than
in the negative. In other words, large gains from Sanlam and Discover; and Sanlam and
Santam are more likely to occur simultaneously than large losses.

On the other hand, according to the AIC criteria, Table 10 tells us that the Clayton cop-
ula provides the best fit to the data between Sanlam and Liberty, Sanlam and Momentum
Metropolitan, and Sanlam and the market, exhibiting greater dependence in the negative
tail than in the positive. This means that large losses from Sanlam and Liberty, Sanlam
and Momentum Metropolitan, and Sanlam and the market are more likely to happen
simultaneously than a large gain. This finding is in line with our previous results as we
expect a left tail dependence between Sanlam and the market.
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3.5.2. Impulse Response Function

In this section, we estimate a bivariate VAR model to determine the effect of a shock
to Sanlam on the market and the other insurers; and to also determine the effect of a shock
to the market on the five insurers. We use the Cholesky decomposition to orthogonalize
the innovation shocks.

Figure 2 exhibits the impulse response of Sanlam to the market and the other insurers,
while Figure 3 shows the impulse response of the market to the five insurers.
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Figure 2. Impulse response function: Response of the market and other insurers to Sanlam shock.

From Figure 2, we can first notice an initial increase from periods 1 to 2 of Discovery,
Liberty, and Momentum Metropolitan to a one standard deviation shock (innovation) to
Sanlam. Afterward, between periods 2 and 3, there is a sharp decline in their responses;
they become negative and increase from the negative region to the positive region until
they hit the steady-state. Conversely, we can see a sharp decline of Santam and market to a
one standard deviation shock (innovation) to Sanlam. They become negative and increase
gradually until they reach the steady-state.

In conclusion, this result confirms our previous findings as we expect a shock to
Sanlam to have an adverse effect on the market and the insurers in the short run.

From Figure 3, we can first observe an initial increase from periods 1 to 2 of Discov-
ery, Momentum Metropolitan, Sanlam, and Santam to a one standard deviation shock
(innovation) to the market. Afterward, between period 2 and 3, there is a sharp decline
in their responses, they become negative and increases from the negative region to the
positive region until they hit their steady-state, except for Santam, where, between period
2 to 3, there is a slight decline in the positive region and from period 3 to 4 it declines into
the negative region. Afterward, it reaches the steady-state between period 4 and 5, and
gradually increases and hit again the steady-state in the long run. Finally, we can see a
decline of Liberty to the negative region from periods 1 to 2 to a one standard deviation
shock (innovation) to the market. It gradually increases between periods 2 and 3 until the
positive region where it reaches the steady-state in the long run.
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In conclusion, our result support our previous findings as we expect a shock to the
market to have a negative impact on the insurance companies in the short run except
for Santam.

4. Conclusions

In this paper, a Dynamic Mixture Copula Marginal Expected Shortfall (DMC-MES)
is applied to measure systemic risk for five insurance companies in South Africa. Many
studies argue that a primary factor causing systemic risk is the dynamic and asymmetric
dependence between financial institutions. For this reason, we employed three copula
models that can measure dynamic and asymmetric dependence. We used two dynamic
mixture copula models, namely the Rotated Clayton and Clayton and the Rotated Gumbel
and Gumbel, and the time-varying Symmetrized Joe-Clayton copula. Then, we compared
the goodness of fit of the different copula models based on their log-likelihood estimates.
We found that the Rotated Gumbel and Gumbel had the lowest log-likelihood estimates
for all the pair of series, making it a suitable copula model for our data.

Finally, we used the Rotated Gumbel and Gumbel to estimate the marginal expected
shortfall of the five insurers. The main findings showed that Sanlam is the largest contrib-
utor to systemic risk over the sample period, followed by Discovery, and Santam turns
out to be the least systemically risky insurer. Our findings may imply that Sanlam and
Discovery are more likely to be involved in non-traditional insurance activities such as
financial securities, Credit Default Swap, derivatives, and many others.

In addition, our results revealed that the contribution of insurers to systemic risk in
South Africa is linked to the size of the insurer, as Sanlam and Discovery are among the
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largest insurers in South Africa. This may indicate that instability in the insurance sector is
more likely to occur if one of these two insurers is in financial difficulty. Thus, our results
confirm the assumption that “no financial institution should be too big to fail (TBTF)”.
Therefore, our findings could help South African regulators to have a better understanding
of the dynamic and asymmetric dependence between insurers and the market in order
to handle adequately systemic risk in the insurance sector by taking stricter regulatory
measures in the form of higher capital and loss absorbency requirements for systemically
risky insurers.

Due to data availability, we could not use all of the South African insurance companies
listed on the Johannesburg Stock Exchange in our analysis. A possible extension of our
study would be to include more copula models as well as other segments of the financial
system such as the banking sector, the hedge funds market, and the real estate market
so that one can have a broader picture of the systemically riskiest financial sector in
South Africa.

One could also be interested in conducting more research on non-core activities of
insurers in South Africa and their systemic impact.
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