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Abstract: This paper investigates the dynamic tail dependence risk between BRICS economies and
the world energy market, in the context of the COVID-19 financial crisis of 2020, in order to determine
optimal investment decisions based on risk metrics. For this purpose, we employ a combination of
novel statistical techniques, including Vector Autoregressive (VAR), Markov-switching GJR-GARCH,
and vine copula methods. Using a data set consisting of daily stock and world crude oil prices, we
find evidence of a structure break in the volatility process, consisting of high and low persistence
volatility processes, with a high persistence in the probabilities of transition between lower and
higher volatility regimes, as well as the presence of leverage effects. Furthermore, our results
based on the C-vine copula confirm the existence of two types of tail dependence: symmetric tail
dependence between South Africa and China, South Africa and Russia, and South Africa and India,
and asymmetric lower tail dependence between South Africa and Brazil, and South Africa and crude
oil. For the purpose of diversification in these markets, we formulate an asset allocation problem
using raw returns, MS GARCH returns, and C-vine and R-vine copula-based returns, and optimize it
using a Particle Swarm optimization algorithm with a rebalancing strategy. The results demonstrate
an inverse relationship between the risk contribution and asset allocation of South Africa and the
crude oil market, supporting the existence of a lower tail dependence between them. This suggests
that, when South African stocks are in distress, investors tend to shift their holdings in the oil market.
Similar results are found between Russia and crude oil, as well as Brazil and crude oil. In the
symmetric tail, South African asset allocation is found to have a well-diversified relationship with
that of China, Russia, and India, suggesting that these three markets might be good investment
destinations when things are not good in South Africa, and vice versa.

Keywords: BRICS; Markov-switching; GJR-GARCH; tail dependence; vine copula; conditional
value-at-risk

JEL Classification: C20; G10; G15; G19

1. Introduction

Understanding the complex dependence structure and marginal risk characteristics
between BRICS stock indices (Brazil, Russia, India, China and South Africa) and the crude
oil/energy market (e.g.,West Texas Intermediate (WTI) crude oil) is central in empiri-
cal finance primarily for risk management. For international investors, researchers and
policymakers, this could provide crucial information to construct and allocate wealth to
well-diversified asset portfolios. While a number of studies have analyzed this relationship
and the impact of oil price changes on equity markets (see, for example, Lin et al. (2021);
Umar (2017); Apergis and Miller (2009)), the literature on investigating the combined
impact of regime-switching volatility and multivariate copula dependence relationship
remains sparse.

By the same token, government regulatory institutions and policymakers have the
responsibility of ensuring the financial sustainability of the economy, where crude oil is
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one of the most essential global traded commodities driving economic growth. Crude oil
functions as the underlying asset class in the pricing of other financial assets. For instance,
the current global food supply chain is highly dependent on fuel and the logistics transport
systems. Hence, from an economic standpoint, volatility in crude oil prices can have a
major impact on the global economy, with the potential to drive food prices higher, thereby
inducing inflation and increased volatility in financial markets (see, for example, Nguyen
and Bhatti (2012)).

In wealth allocation and risk diversification strategies, investors are more sensitive to
portfolio downside risk than the upside risk. Hence, they are more risk-averse to extreme
negative returns and negative market sentiments, which induces herd behavior in stock
markets, consequently driving market volatility. The current global pandemic caused
by the coronavirus (aka COVID-19), coupled with oil price wars, has increased market
volatility, impacting portfolio performance and balance sheets gearing (leverage) ratios.
Furthermore, this has led to increased uncertainty about the dependence structure between
the recent oil price shocks and their impact on stock market performance in developing
economies, primarily due to their heavy reliance on oil as a commodity.

It has been well-documented that portfolio embedded risk measures are directly
associated with the dependence structure of portfolio risk factors (see, Brechmann and
Czado (2013); Kole et al. (2007)). For example, Junker and May (2005) alluded to the fact that,
when aggregating financial risk on a portfolio, it is important to understand the dependence
structure among risk factors. Since the establishment of BRICS group economies in 2009,
several empirical studies have been conducted using novel methodological approaches, to
understand the contagion and spillover effects in BRICS economies with other financial
markets and, in particular, other alternative asset classes such as precious metals and
cryptocurrencies (see, Jiang et al. (2019); Peng (2020); Thampanya et al. (2020)).

At the center of these lie the multivariate generalizations of GARCH models, first
introduced by Bollerslev (1990) and Engle (2002), along with a number of other researchers
in the field, who have attempted to address the existence and persistence of the conditional
volatility problem in financial assets and how it helps in portfolio diversification and asset
allocation. These models have undoubtedly emerged as the most popular tools that offer
flexibility for capturing the dynamics of conditional variance and covariance between
markets and, in turn aid with the interpretation of the multifaceted dependence structure.

For instance, a study by Morema and Bonga-Bonga (2020) used a vector autoregression
asymmetric and dynamic conditional correlation generalised autoregressive conditional
heteroskedasticity (VAR-ADCC- GARCH) method to assess volatility spillovers and hedge
effectiveness between gold, oil, and stock markets. They find significant volatility spillover
between the gold and stock markets, oil and stock markets. Salisu and Gupta (2020) em-
ployed the GARCH–MIDAS (Generalized Autoregressive Conditional Heteroskedasticity
variant of Mixed Data Sampling) model to investigate volatility transmission from BRICS
to oil shocks, and found mixed responses of stock volatility to oil shocks. Meanwhile,
Bonga-Bonga (2018) assessed the extent of financial contagion between South Africa and
other BRICS countries with VAR-DCC-GARCH, and found evidence of cross-transmission
and dependence between South Africa and Brazil. Hassan et al. (2020) estimated volatility
spillover in Islamic and conventional stock indices and crude oil in BRICS, using Threshold
GARCH (TGARCH) and generalized forecast error variance decomposition. They found
that significant volatility spillover exists among crude oil, conventional, and Islamic stock,
and suggested that investors rebalance portfolios regularly.

Contrary to what others have done, our study contributes to the existing literature on
BRICS and oil markets by using novel approaches, in order to overcome some of the weak-
nesses of traditional methods. These include methods, such as the multivariate-GARCH
models which postulate that assets returns follow a multivariate Gaussian distribution or
multivariate-Student t distribution (see, for example, Weiß (2013); Aas and Berg (2009)).
Multivariate data sets typically presents complex dependence structure, mostly in the
lower and upper tails combined with possible structural breaks which cannot simply be
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accounted for by the traditional multivariate Student t and Gaussian distributions. Fur-
thermore, our approach models portfolio risk by incorporating asset dependence structure
under specific market conditions.

Hence, in this study, we employ a Vector Auto Regressive (VAR) model to account for
the joint dependence in the mean returns followed by a Markov switching GJR-GARCH to
account for regime changing parameters in the volatility dynamics. In addition, we use
multivariate vine copula models to account for various dependence patterns in the tail
distributions that exist between BRICS economies and the world energy market. The results
are then applied to a portfolio optimization problem. Copula models have recently been
applied in portfolio optimization (see, for example, Gatfaoui (2019); Bekiros et al. (2015);
Sahamkhadam et al. (2018); Low et al. (2013); de Melo Mendes and Marques (2012)).

Given the limitations of the standard symmetric GARCH model which assumes that
the variance only depends on the magnitude and not the impact of positive or negative
sign of past innovations, we adopt an asymmetric conditional volatility specification.
Nelson (1991) proposed the most popular Exponential GARCH (EGARCH) model to cap-
ture the asymmetric effects in time-series data. Portfolio asset allocation for risk-averse
investors is conducted by minimizing the Conditional Value-at-Risk (CVaR). To achieve
optimal asset allocations and risk contribution, a Monte Carlo simulation is performed to
forecast asset returns. Portfolio optimization is then achieved by a Particle Swam Optimiza-
tion (PSO), a nature inspired evolutionary algorithm adapted from social swarm behaviour
which offers the advantage of simplicity and non-derivative (for details, see for example,
Boussaïd et al. (2013) and the references therein).

Our combined VAR-MS-GJR-GARCH-vine copula modeling strategy is flexible and
is able to account for leverage effects (asymmetry), regime-switching volatility, and the
pairwise dependence structure in asset returns. This empirical study also provides a degree
of robustness to capture outliers in the return series. Hence, the resulting information
obtained could be used to drive policy recommendations, as well as to improve hedging
strategies, portfolio risk management, and portfolio rebalancing strategies (see, for example,
Ji et al. (2018); Bouri et al. (2018); Hernandez (2014) and Salisu and Gupta (2020)).

There is an abundance of literature that has discussed the theory of short and long run
volatilities of stock market returns and the corresponding correlations (see, for example,
the study of Sensoy et al. (2015)). A few such studies include the most recent study in
McIver and Kang (2020), who proposed a multivariate dynamic equicorrelation model
(DECO-GJR-GARCH), introduced by Engle and Kelly (2012) in order to overcome the curse
of dimensionality of the Dynamic Conditional Correlation (DCC) GARCH. This study
examined the dynamics of spillovers between BRICS and U.S. stock markets, and conclude
that the U.S., Brazilian, and Chinese markets are major sources of volatility, whereas the
Russian, Indian, and South African markets are mostly on the receiving end.

A different approach has been conducted in Kocaarslan et al. (2017), in which the
authors investigated the impact of volatility between BRIC and U.S. stock markets with a
combination of quantile regressions and time-varying asymmetric dynamic conditional
correlation (aDCC) GARCH, and found volatility asymmetries between BRIC and U.S.
equity markets. Mensi et al. (2016) examined the dynamics of spillovers between the BRICS
and U.S. stock markets using multivariate Dynamic Conditional Correlation Fractionally
Integrated Asymmetric Power ARCH (DCC-FIAPARCH), which features a long-memory
property in time-series data, and found that Brazil and China are the major sources of
spillover effects. Bhar and Nikolova (2009) found a negative interdependence between the
BRICS and other markets.

Since the seminal paper of Sklar (1959), copula models have recently gained popu-
larity as robust tools with which to quantify non-linear dependencies and non-Gaussian
returns in financial markets, due to their flexibility in capturing and modeling the de-
pendence structure separately from the distribution margins, without loss of information
in the joint distribution. In particular, vine copulas, which are a class of copulas, also
known as pairwise copula constructions (PCCs), were first introduced in Aas et al. (2009)
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as more efficient techniques built from graph theory, in order to model high-dimensional
dependence structures. An early application to financial economics using a GARCH filter
can be found in Brechmann and Czado (2013). A study by Kumar et al. (2019) examined
the dependence structure between the BRICS stock and foreign exchange markets using
dependence-switching copula. They found symmetric tail dependence during negative
correlation regimes for all countries (with the exception of Russia) and found asymmetric
dependencies for all countries during positive correlation regimes. An application utilizing
a combination of GARCH and copula models can be found in Hou et al. (2019), where evi-
dence on the volatility spillover between fuel oil and stock index futures markets in China
was examined, using a DCC-GARCH model to quantify the non-linear interdependences.

Another recent similar studies was BenSaïda (2018), in which the authors investigated
the contagion effect in European sovereign debt markets and demonstrated the better
performance of regime-switching copula models, in comparison to the single-regime
copula. Meanwhile, Sui and Sun (2016) used a Vector Autoregressive model (VAR) without
the volatility structure to test spillover effects. They found U.S. shocks to significantly
influence stock markets in Brazil, China, and South Africa. Chkili and Nguyen (2014)
complimented this study by adopting a Markov-switching VAR framework with regime
shifts in both the mean and variance models. Their model choice allows for the detection
of probable regime shifts in stock market returns, and also assess the impact of financial
crises on the stock market volatility.

More copula approaches can be found in Kenourgios et al. (2011), where financial
contagion in (BRIC) and two developed markets (U.S. and U.K.) were investigated using a
regime-switching copula combined with a GARCH model. This study used a multivariate
time-varying asymmetric regime-switching copula model, with marginals assumed to
follow a GJR-GARCH framework. In another setting, Mba and Mwambi (2020) employed
Markov-switching GARCH to quantify risk in a cryptocurrency portfolio selection and
optimization problem.

Clearly, there is a vast literature detailing innovative methodological approaches, with
mixed findings on the direction and interdependence between BRICS and crude oil markets.
However, few studies have taken into account the impact of regime-switching volatility
markets and accounted for the joint dependency structure of BRICS and oil markets, in
order to assess portfolio diversification benefits and marginal risk contributions. Hence, this
study addresses a research gap as an opportunity to contribute to the existing literature, by
exploring the construction of an alternative model, which can capture complex dependence
structures and correctly account for downside risk in asset portfolios.

The remainder of this paper is organized as follows: Section 2 provides the adopted
methodological background. Section 3 outlines the data descriptive statistics of BRICS
and crude oil market indices, together with a detailed summary of the empirical findings.
Finally, Section 4 concludes the paper.

2. Econometric Modeling Framework

In this section, we present a combination of three econometric methodological ap-
proaches to achieve our main objectives of this study. Section 2.1 begins with the theoretical
construction of a vector autoregression model (VAR(2)) for the mean equation. This allows
us to investigate the return transmission effects between the BRICS and crude oil return
series. Section 2.2 builds on the results obtained from the VAR(2) model and specifies
the univariate conditional volatility model, based on a two-state Markov-switching GJR-
GARCH process to account for series asymmetries, leverage effects and regime changes in
the conditional variance thus, relaxing the strict assumption of fitting constant GJR-GARCH
parameters. Section 2.4 uses the filtered returns obtained from the MS-GJR-GARCH pro-
cess to construct the multivariate copula model, which is useful to model the dependence
structure (inter-linkages) between asset returns.
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2.1. Specification of VAR(2) Model

In the first step of the estimation process, we consider a d-dimensional random vector
of asset log-returns, ri,t = ln Pi,t

Pi,t−1
, where ri,t is the return of asset i at time t and Pi,t is asset

closing price at time t. Then, the vector autoregression model, VAR(2), is a multivariate
time-series model that specifies the linear dynamical relationship among assets and satisfies
the following equation:

r1,t = α1 + β11,1r1,t−1 + · · ·+ β1d,1rd,t−1 + β11,2r1,t−2 + · · ·+ β1d,2rd,t−2 + ε1,t
r2,t = α2 + β21,1r1,t−1 + · · ·+ β2d,1rd,t−1 + β21,2r1,t−2 + · · ·+ β2d,2rd,t−2 + ε2,t

...
...

rd,t = αd + βd1,1r1,t−1 + · · ·+ βdd,1rd,t−1 + βd1,2r1,t−2 + · · ·+ βdd,2rd,t−2 + εd,t,

(1)

where t ∈ T is the number of observations; T is called the sample size or time-series length;
the parameters βij,p (i = 1, · · · , d), j = (1, · · · , d), p = 1, 2) are fixed model coefficients,
where p denotes the lag length; αi = (1, · · · , d)′ forms a fixed (d× 1) vector of intercepts;
and εt = (ε1t, · · · , εdt)

′ is a d-dimensional vector of white noise or innovation process, such
that E(εt) = 0 and the covariance E(εt, ε′t) = Σεt and E(εs, ε′t) = 0, t 6= s. The covariance
matrix Σεt is assumed to be non-singular, if not otherwise stated. All variables in the system
are simultaneously estimated and each variable rit is a expressed as a linear function of the
lag 1 and lag 2 values of all other variables in the system.

2.2. Markov-Switching-GJR-GARCH Models

In the second step of estimation, we use the filtered residuals obtained from the
VAR(2) model described in Section 2.1 to model the unconditional volatility using an
asymmetric time-varying GJR-GARCH process, proposed by Glosten et al. (1993)1, with
skewed Student’s t innovations proposed by Hansen (1994). Another popular choice
is the fat tailed generalized error distribution (GED) proposed by Nelson (1991) and a
standardized skewed Student t distribution proposed by Lambert and Laurent (2001).
Specifically, we adopted a two-state Markov-switching GJR-GARCH(1,1) with skewed
Student’s t innovations to account for regime-switching volatility, fat tails, and skewness
(see Ardia et al. (2019); Ardia et al. (2018); Haas et al. (2004)). Thus, the model specification
for the conditional variance satisfies the following equation:

rk;i,t|sit, Ik;i,t−l = σk;i,tzk;i,t

zk;i,t ∼ sstd(0, 1, νk,i, ξk,i) (2)

σ2
k;i,t = ωk;i +

(
αk;i,1 + αk;i,2Irk;i,t−1

)
r2

k;i,t−1 + βk;iσ
2
k;i,t−1, i = 1, · · · , d; k = 1, 2

where Irk;i,t−1 =

0 if rk;i,t−1 ≥ 0 (good news)

1 if rk;i,t−1 < 0 (bad news)
,

where rk;i,t are pre-filtered residuals (marginals) obtained from the VAR(2) conditional
mean Equation (1), σk;i,t is the conditional volatility at time t, the innovations {zk;i,t} are
i.i.d. random variables distributed according to the skew Student’s t distribution with zero
mean and unit variance, and νk,i, ξk,i are shape (degrees of freedom) and scale parameters,
respectively. The assumption of skewed Student’s t is flexible and suitable when capturing
fat tails and skewness (refer to Hansen (1994); Trottier and Ardia (2016)). Ik;i,t−l , l > 0 is the
information set observed at time t− 1, the parameters satisfy ωk;i > 0, αk;i,j > 0, j = 1, 2 and
βk;i > 0, in order to guarantee positive variance. The condition for covariance stationarity
in each regime is satisfied by ensuring that αk;i,1 +

1
2 αk;i,2 + βk;i < 1 (k = 1, 2). Irk;i,t−1

is an indicator function, which controls the leverage effect and takes a value of 1 if the
conditions hold, being zero otherwise. The coefficient αk;i,2 is a state-dependent variable
which captures the degree of asymmetry in the conditional volatility, due to the impact of
positive and negative shocks.
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Hence, the flexibility of the MS-GJR-GARCH model allows for both good news
rk;i,t−1 > 0 and bad news rk;i,t−1 < 0 to have different volatility effects on the conditional
variance of returns. Thus, good news in the market will have αk;i,1 impact on volatility,
whereas, bad news will have a combined impact of αk;i,1 + αk;i,2 and, when αk;i,2 > 0, a lever-
age effect exists; hence, negative shocks will increase volatility more than positive shocks
and the leverage will increase. When αk;i,2 < 0, positive shocks will increase volatility more
than negative shocks. The model remains acceptable even when αk;i,2 < 0.

2.3. Transition Probabilities

As we do not know which state the process is in at any given time, we can estimate the
probabilities of a series transitioning from one state to another. Using a two-state regime,
the Markov probability of switching regime at time t can be formulated as follows:

pij = Pr(st = j|st−1 = i), for i, j ∈ s, t = 0, 1, 2, · · · (3)

P =

[
p11 p12
p21 q22

]
=

[
p 1− p

1− q q

]
,

where the distribution of st depends on the distribution of st−1 and P = (pij) denotes a
square matrix of transition probabilities, where each row sums to 1. The entry (pi,j) is the
conditional probability that a series is in state i (regime i) at time t and transitions to state j
at time (t + 1).

2.4. Copula Models

In this last step of model specification, we use the standardized filtered innova-
tions, obtained from the univariate Markov-switching MS-GJR-GARCH(1,1) process in
Equation (2), to model the joint distribution. Define a d-dimensional random vector
x = (x1, · · · , xd) having n independent and identically distributed random samples, such
that x1 = (x11, · · · , x1d), · · · , xn = (xn1, · · · , xnd). We use the first part of Sklar’s theorem
(Sklar (1959)), which states that any multivariate joint distribution function can be decom-
posed in terms of cumulative univariate marginal distribution functions and a copula
function, such that

F(x) : = F(x1, · · · , xd) = C(F1(x1), · · · , Fd(xd)), x ∈ Rd, (4)

where the function C : [0, 1]d 7→ [0, 1] defines the copula of the distribution function
F(.), which connects (couples) the marginals F1, · · · , Fd and Fi(xi) = F(∞, · · · , xi, · · · , ∞),
xi ∈ R. Hence, a copula model contains all the necessary information to describe the
dependency structure of a set of random variables. This copula representation allows
us to model the marginal distribution and the dependency structure in separate ways.
The corresponding density, f (.), with univariate densities f1(x1), f2(x2), · · · , fd(xd) can be
written as follows:

f (x) : = f (x1, · · · , xd) = c(F1(x1), · · · , Fd(xd))
d

∏
i=1

fi(xi), x ∈ Rd, (5)

where c(u1, · · · , ud) =
∂dC(u1, · · · , ud)

∂u1, ∂u2 · · · ∂ud)
is the density of the d-dimensional copula

C(u1, · · · , ud) and ui = Fi(xi).
Conversely, given a d-dimensional copula C(.) and univariate distribution functions

(dfs) F1, · · · , Fd , F(.) defined by Equation (4) is a d-dimensional df with margins F1, · · · , Fd,
expressed as follows:

C(u) : = C(u1, · · · , ud) = F
(

F−1
1 (u1), · · · , F−1

d (ud)
)

, u ∈ [0, 1]d. (6)
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It is the second part of the theorem that is more attractive in many applications of
financial economics, which quantifies the dependency structure. For a complete theoretical
treatment of copulas, the reader is referred to the references in Nelsen (2007) and Cherubini
et al. (2004).

2.5. Measure of Correlation and Tail Dependence Coefficients

Kendall’s tau (τ ∈ [−1, 1]) and Spearman’s rho (ρs ∈ [−1, 1]) are dependence measures
which are rank-based and, therefore, invariant with respect to monotone transformations of
the marginals (see, Czado (2019)). Let x1, x2 denote arbitrary continuous random variables.
Then, Kendall’s (τ) and Spearman’s (ρs) dependence measures can be expressed in terms
of the copula as follows,

τ = 4
∫
[0,1]2

C(u1, u2)dC(u1, u2)− 1 and ρs = 12
∫
[0,1]2

u1, u2dC(u1, u2)− 3. (7)

The coefficients of lower λl and upper λu tail dependence for x1, x2 captures the
dependence structure in the (joint) tails of a bivariate distribution with a copula C(.)
distribution defined as follows,

λu = lim
t→1−

Pr
(

x1 > F−1
1 (t)|x2 > F−1

2 (t)
)
= lim

t→1−

1− 2t + C(t, t)
1− t

λl = lim
t→0+

Pr
(

x1 ≤ F−1
1 (t)|x2 ≤ F−1

2 (t)
)
= lim

t→0+

C(t, t)
t

. (8)

2.6. Vine Copula Models

This section follows from Section 2.4 and presents the construction of vine copulas,
which are a special type of multivariate copula that describes the dependence structure
between a set of random variables. They use bivariate copulas, also known as pair-
construction copulas (PCC), to construct multivariate distributions, as well as to specify
the dependence and conditional dependence of selected pairs of random variables and all
marginal distribution functions (see, for example, Joe (1996); Aas et al. (2009); Bedford and
Cooke (2001)). Hence, the standardized residuals for each marginal distribution estimated
from Equation (2) are now considered as independent and identically distributed (i.i.d.)
samples generated over time.

Following Bedford and Cooke (2002), let x = (x1, · · · , xd) ∼ F(x) with joint density
function f (x1, · · · , xd). Then, from elementary distribution theory and performing recur-
sive conditioning, Equation (5) can be decomposed (factorized) into products of conditional
densities, as follows:

f (x) : = f (x1, · · · , xd) = f1(x1). f2|1(x2|x1). f3|2,1(x3|x1, x2) · · · fd|1:(d−1)(xd|x1 · · · xd−1). (9)

For the vine copula approach, Bedford and Cooke (2001) proposed graphical models,
known as Canonical vine (C-vine) and Drawable vine (D-vine) trees. In a C-vine tree, each
variable is represented by a node and nodes are connected by edges. The collection of all
connected nodes forms a tree, with the tree structure containing all of the information about
the dependency between each variable, where each root node is modeled by a particular
type of bivariate copula. The joint distribution of a regular vine is briefly outlined in
Appendix A.

3. Empirical Analysis
3.1. Data

We used a data set consisting of daily stock prices, including stock indices for Brazil,
Russia, India, China, South Africa, and crude oil, sourced from Yahoo finance and the
Eikon Thomson Reuters database. The data samples ranged from 1 January 2014, to 17 July
2020, giving a total of 1300 daily observations for each asset. This sample period included
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the 2020 period featuring the current coronavirus-related stock and oil market crashes.
Prices were converted to continuous compounded returns using the following relationship:
ri,t = ln Pi,t

Pi,t−1
× 100, t = 1, · · · , T = 1300, where ri,t is return of stock i and Pi,t is the closing

price of stock i at time t.
Table 1 provides a summary of descriptive statistics based on continuous compounded

returns. The sample means are all positive, except for crude oil (−0.0638%), and tall return
series exhibit negative skewness and excess kurtosis, indicating a lack of symmetry in
the underlying data distribution. This implies a higher probability of incurring extreme
losses on the left tail during market downturns. This observation is supported by the small
p-values < 5% significance level obtained from the Jarque–Bera test statistic, which leads
us to reject the null hypothesis of normality. This indicates the presence asymmetry in
asset returns and higher kurtosis in the tails more than the normal distribution (skewness
= 0, kurtosis = 3). Our modeling strategy aims to account for this asymmetry by using a
skewed Student’s t distribution for the innovations in our Markov-Switching GJR-GARCH
modeling framework.

Table 1. Descriptive statistics.

Brazil Russia India China South Africa Crude Oil

Mean% 0.0522 0.0487 0.0423 0.0346 0.0149 −0.0638
Min% −15.99 −8.70 −13.90 −10.83 −10.23 −32.44
Max% 13.02 9.36 8.40 10.05 7.2610 31.33
STD% 1.9250 1.34 1.22 1.62 1.2220 3.48
Ann SD 30.43 21.31 19.44 25.61 19.33 55.08
Kurtosis 13.02 9.32 20.37 8.01 10.69 20.85
Skewness −0.8886 −0.4062 −1.5740 −0.6850 −0.8625 −0.5184
JB 9393 4764 23,120 3595 6377 23,700
Q(10) 42.92 30.87 59.44 10.03 10.46 35.82
Q2(10) 1251.0 316.5 798.5 298.9 1374 1196
acf 0.5520 0.2234 0.2038 0.2130 0.2731 0.3166

Kendall’s Tau Correlation Matrix

Brazil 1 0.223 0.124 0.072 0.212 0.217
Russia 0.223 1 0.202 0.116 0.317 0.177
India 0.124 0.202 1 0.140 0.286 0.044
China 0.072 0.116 0.140 1 0.195 0.056
South Africa 0.212 0.317 0.286 0.195 1 0.122
Crude Oil 0.217 0.177 0.044 0.056 0.122 1

Notes: Both the Jarque–Bera (JB) test for normality and Box–Ljung (LJ) test for autocorrelation at lag 10, (Q(10 ), and squared returns Q2(10)
test statistics were rejected at the 5% significance level. SD stands for standard deviation, Ann SD stands for annualized standard deviation,
and acf represents the autocorrelation function at lag 1.

Figure 1 provides basic insight into the BRICS and world oil markets. They all provide
further evidence of asymmetric behavior and dependence structures that need further
investigation, through use of our proposed framework.
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Figure 1. Actual historical closing log-prices and log-returns of BRICS and crude oil from January 2014 to July 2020.

3.2. Estimation Results of VAR(2) Model

Table 2 reports the initial estimation from the vector autoregression VAR(2) model
with lag length based on the BIC and AIC information criteria. The results show that the
variables were bidirectional in some of the coefficients of the time-series, indicating a strong
influence on current values of the dependent variables through lag 1 and lag 2 past values.
In summary,

• Brazil’s current values were linearly dependent on lag 1 past values of Brazil, India,
and crude oil, with p-values statistically significant at the 5% level.

• Russia’s current values were linearly dependent on lag 1 past values of Brazil, India,
and crude oil and lag 2 values of Russia and South Africa, with p-values statistically
significant at the 5% level.

• India’s current values were linearly dependent on lag 1 past values of Brazil, Russia,
India, and crude oil as well as lag 2 values of Russia and South Africa, with p-values
statistically significant at the 5% level.

• China’s current values were linearly dependent on lag 1 and lag 2 past values of crude
oil, with p-values statistically significant at the 5% level.

• Crude Oil’s current values were not linearly dependent on the other BRICS stock
returns, with p-values not statistically significant at the 5% level.

These results further highlight that the current BRICS returns are influenced by the
past values of crude oil. These findings were also supported by the values of the correlation
matrix on residuals, which motivates us to further investigate the overall dependence
structure of crude oil with BRICS stock returns.
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Table 2. Estimation results of VAR(2) model.

Dependent Variable

Brazil Russia India China South Africa Crude Oil

Brazilt−1 −0.084 *** 0.083 *** 0.092 *** 0.057 0.064 *** −0.028
(0.012) (0.0003) (0.00001) (0.041) (0.002) (0.640)

Russiat−1 0.033 −0.036 0.068 *** −0.033 0.029 −0.043
(0.484) (0.284) (0.023) (0.414) (0.322) (0.620)

Indiat−1 −0.112 *** −0.124 *** −0.093 *** −0.041 −0.135 *** 0.061
(0.037) (0.001) (0.005) (0.358) (0.00005) (0.530)

Chinat−1 −0.032 −0.021 −0.029 0.012 −0.037 −0.048
(0.358) (0.375) (0.177) (0.676) (0.082) (0.448)

S.Africat−1 0.046 0.059 0.039 0.105 *** 0.005 0.066
(0.442) (0.152) (0.289) (0.035) (0.902) (0.541)

Crude.oilt−1 0.044 *** 0.035 *** 0.043 *** 0.038 *** 0.066 *** −0.017
(0.007) (0.002) (0.00003) (0.006) (0.000) (0.564)

Brazilt−2 −0.021 −0.001 0.041 0.016 0.043 0.066
(0.526) (0.980) (0.047) (0.578) (0.040) (0.283)

Russiat−2 −0.040 0.008 −0.105 *** 0.011 −0.017 0.141
(0.405) (0.814) (0.0004) (0.783) (0.563) (0.107)

Indiat−2 0.015 −0.038 0.005 0.005 0.033 −0.058
(0.782) (0.300) (0.869) (0.911) (0.322) (0.549)

Chinat−2 −0.056 −0.013 −0.018 −0.005 −0.011 −0.036
(0.107) (0.595) (0.392) (0.864) (0.595) (0.564)

S.Africat−2 0.105 0.131 *** 0.100 *** 0.048 0.015 0.136
(0.075) (0.001) (0.006) (0.336) (0.684) (0.205)

Crude.oilt−2 0.035 −0.029 ** −0.024 −0.035 *** −0.003 −0.048
(0.034) (0.012) (0.022) (0.011) (0.740) (0.115)

Intercept 0.071 0.051 0.042 0.032 0.019 −0.073
(0.182) (0.165) (0.203) (0.481) (0.560) (0.451)

Notes: p-Values are reported in brackets. ** significant at 5% level; *** significant at 1% level. Portmanteau test: The null hypothesis of no
autocorrelation was rejected, as the p-value of 0.000 < 0.05 was lower than the significance level.

3.3. Results of Marginal Models Using MS-GJR-GARCH

Table 3 presents in-sample parameter estimates for the MS-GJR-GARCH model with
Skew Student’s t innovations and structural breaks (regime-switching). The table highlights
interesting findings, where not all parameter estimates were statistically significant. The
results also indicated that the evolution of the volatility process was not homogeneous
across the two regimes. The estimated coefficient for the leverage effects, α2,i, i = 1, 2, was
not statistically significant in regime 1 for Brazil, Russia, India, and China. This indicates a
lack of leverage effects, which implies the symmetric impact of bad news (negative news)
and good news (positive news). Good news had an effect α1,i, i = 1, 2, while bad news
had an impact of α1,i + α2,i, i = 1, 2. Furthermore, regime 1 was characterized by low
unconditional volatility, while regime 2 was characterized by high unconditional volatility.
The large degrees of freedom (ν1, ν2) suggest that Russia, South Africa, and India could be
modeled by normally distributed innovations.
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Table 3. Parameter estimates of a two-state MS-GJR-GARCH(1,1) model with skewed Student’s t innovations.

Brazil Russia India China South Africa Crude Oil

Regime 1

α01 0.124 *** 0.016 0.008 0.012 0.026 *** 0.023 ***
(0.002) (0.094) (0.188) (0.024) (0.001) (0.000)

α11 0.023 0.046 0.010 0.031 0.00000 0.00002 ***
(0.141) (0.102) (0.201) (0.081) (0.493) (0.000)

α21 0.046 0.0001 0.006 0.019 0.105 *** 0.050 ***
(0.085) (0.481) (0.387) (0.265) (0.0005) (0.000)

β1 0.913 *** 0.931 *** 0.977 *** 0.950 *** 0.913 *** 0.966 ***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ν1 8.890 *** 99.800 *** 100.000 *** 3.670 *** 19.200 *** 5.550 ***
(0.001) (0.000) (0.000) (0.000) (0.061) (0.000)

ξ1 1.110 *** 0.436 *** 0.708 *** 1.010 *** 0.848 *** 0.869 ***
(0.000) (0.003) (0.000) (0.000) (0.000) (0.000)

Regime 2

α02 0.272 *** 0.110 ** 0.059 ** 3.580 *** 0.734 ** 0.424 ***
(0.001) (0.050) (0.029) (0.003) (0.358) (0.000)

α12 0.00000 0.0004 0.004 0.0001 0.0002 0.00002 ***
(0.495) (0.496) (0.448) (0.495) (0.384) (0.000)

α22 0.246 *** 0.152∗ 0.470 *** 0.728 *** 0.056 0.385 ***
(0.012) (0.083) (0.041) (0.044) (0.419) (0.000)

β2 0.773 *** 0.870 *** 0.746 *** 0.312 *** 0.940 *** 0.807 ***
(0.000) (0.000) (0.000) (0.011) (0.000) (0.000)

ν2 4.320 *** 3.710 *** 4.420 *** 5.300 *** 100.000 *** 99.800 ***
(0.00000) (0.00000) (0.000) (0.017) (0.000) (0.000)

ξ2 0.870 *** 1.110 *** 0.988 *** 0.866 *** 0.402 *** 0.994 ***
(0.000) (0.000) (0.000) (0.000) (0.011) (0.000)

Transition probabilities

p11 0.996 *** 0.424 *** 0.487 *** 0.996 *** 0.990 *** 0.992 ***
(0.000) (0.024) (0.011) (0.000) (0.000) (0.000)

p21 0.005 0.399 *** 0.433 *** 0.021 *** 1.000 *** 0.027 ***
(0.023) (0.002) (0.002) (0.00000) (0.091) (0.000)

Long run stable probabilities

Regime 1 0.604 0.409 0.457 0.832 0.990 0.763
Regime 2 0.396 0.591 0.543 0.168 0.010 0.237

Unconditional volatility

Regime 1 26.91 13.03 13.52 17.83 14.78 30.24
Regime 2 26.93 20.77 21.11 53.65 85.66 110.1

Volatility persistence

Regime 1 0.9590 0.9771 0.9900 0.9905 0.9655 0.9910
Regime 2 0.8960 0.9464 0.9850 0.6761 0.9682 0.9995

Mean recurrence time (days)

Regime 1 1.656 2.445 2.186 1.202 1.010 1.311
Regime 2 2.524 1.692 1.843 5.940 101.200 4.211

Notes: p-Values are reported in brackets. ** significant at the 5% level. *** significant at the 1% level. Volatility persistence in the two
regimes was calculated as αk;i,1 +

1
2 αk;i,2 + βk;i , for regimes k = 1, 2, i = 1, 2. Unconditional variance in the two regimes was calculated

as αk;0,i

[1−(αk;i,1+
1
2 αk;i,2+βk;i)]

, for regimes k = 1, 2; i = 1, 2. The corresponding probabilities were computed as follows: p22 = 1− p21 and

p12 = 1− p11.
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Thus, each stock market can be summarized as follows:

• Brazil: Regime 1 was characterized by (i) lower unconditional volatility, (ii) low
and non-significant reaction to past negative returns α21 ≈ 0.046, and (iii) higher
persistence of the volatility process. Regime 2 was characterized by (i) higher uncondi-
tional volatility, (ii) high and statistically significant volatility reaction to past negative
returns α22 ≈ 0.246, and (iii) lower persistence of the volatility process.

• Russia: Regime 1 was characterized by (i) low unconditional volatility, (ii) low and
non-significant volatility reaction to past negative returns α21 ≈ 0.001, and (iii) high
persistence of the volatility process. Regime 2 was characterized by (i) high uncondi-
tional volatility, (ii) high volatility reaction to past negative returns α22 ≈ 0.152, and
(iii) low persistence of the volatility process.

• India: Regime 1 was characterized by (i) low unconditional volatility, (ii) low volatility
reaction to past negative returns α21 ≈ 0.006, and (iii) high persistence of the volatility
process. Regime 2 was characterized by (i) high unconditional volatility, (ii) high
volatility reaction to past negative returns α22 ≈ 0.470, and (iii) high persistence of the
volatility process.

• China: Regime 1 was characterized by (i) low unconditional volatility, (ii) weak
and non-significant volatility reaction to past negative returns α21 ≈ 0.019, and (iii)
high persistence of the volatility process. Regime 2 was characterized by (i) high
unconditional volatility, (ii) high volatility reaction to past negative returns α22 ≈ 0.728,
and (iii) low persistence of the volatility process.

• South Africa: Regime 1 was characterized by (i) low unconditional volatility, (ii)
high and significant volatility reaction to past negative returns α21 ≈ 0.105, and (iii)
low persistence of the volatility process. Regime 2 was characterized by (i) high
unconditional volatility, (ii) low volatility reaction to past negative returns α22 ≈ 0.056,
and (iii) high persistence of the volatility process.

• Crude oil: Regime 1 was characterized by (i) low unconditional volatility, (ii) low
and non significant volatility reaction to past negative returns α21 ≈ 0.050, and
(iii) low persistence of the volatility process. Regime 2 was characterized by (i) high
unconditional volatility, (ii) high volatility reaction to past negative returns α22 ≈ 0.385,
and (iii) high persistence of the volatility process.

The table also reports the long-run behavior Markov chain and the final matrix, which
is called a stationary matrix, represented by long run stable probabilities. Clearly, for Brazil,
the process stayed longer in regime 2 (≈1.7 days), Russia stayed longer in regime 1 (≈2.4
days), India stayed longer in regime 1 (≈2.2 days), China stayed longer in regime 2 (≈5.9
days), South Africa stayed longer in regime 2 (≈101.2 days), and Crude oil stayed longer in
regime 2 (≈4.2 days). The average amount of time elapsed between visits to state i (called
the mean recurrence time)2 was given by the reciprocal of the ith component of the long
run stable probabilities (fixed probability vector).

3.4. Measuring Dependence with Vine Copula

In this section, we present the analytical estimates of the multivariate copula using
regular vine (R-vine) and canonical vine (C-vine) models. Based on the AIC and BIC
information criteria (C-vine: logLik: 646, AIC: −1245, BIC: −1126; R-vine: logLik: 643,
AIC: −1244, BIC: −1136), we found that both models were adequate in capturing the
dependence structure. However, the C-vine provided slightly better results, in comparison
to the R-vine copula. Furthermore, for each variable pair, we first tested for the presence of
an independent copula C(u1, u2) = u1.u2 and the small p < 0.05 values leads us to reject
the null hypothesis of independence and conclude that there exists pairwise dependence
between the variable.

Table 4 shows the parameter estimates for the proposed 6-dimensional C-vine pairwise
dependence among the variables, together with detailed information on the number of tree
sequences, the family of the fitted bivariate copula (C(.), Kendall’s tau (τ), and lower λl
and upper λu tail dependence probabilities.
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Figure 2 displays the corresponding Tree 1 and Tree 2 for the C-vine, where the nodes
represent random variables (assets); thus, node 1: = Brazil, node 2: = Russia, node 3: =
India, node 4: = China, node 5: = South Africa, and node 6: = crude oil. The corresponding
edges represent the type and best family copula, fitted with values shown in brackets,
which measure the strength of the dependence structure based on the Kendall’s tau rank-
based correlation.

As can be seen from the plots, South Africa (represented by node 5) was selected as
the center root node, as it showed stronger dependence with the other five assets. The
pairwise empirical Kendall’s τ values ranged from 0.130 to 0.301. We found two types of tail
dependence structure: symmetric tail dependence between South Africa and China, South
Africa and Russia, and South Africa and India; and asymmetric lower tail dependence
between South Africa and Brazil, as well as South Africa and crude oil. However, the
dependence in Trees 2–5 were relatively small, preventing us from drawing any meaningful
conclusions. The information about the lower tail probability found between South Africa
and Brazil (14.6%) and the South Africa and crude oil (17.4%) markets are important
indicators for investors, as they may help investors to diversify their portfolios during
times of financial distress.

Table 4. Results of C-vine copulas, with Kendall’s tau and upper/lower tail dependences.

Copula Edge Parameter 1 Parameter 2 Tau Lower Tail Upper Tail
C(.) Ei θ1 θ2 τ λl λu

Tree 1 t 5,4 0.293 *** 16.600 ** 0.189 0.006 0.006
(0.026) (8.200)

t 5,3 0.430 *** 7.900 *** 0.283 0.093 0.093
(0.023) (1.820)

t 5,2 0.455 *** 7.700 *** 0.301 0.106 0.106
(0.023) (1.690)

BB1 5,1 0.328 *** 1.100 *** 0.220 0.146 0.123
(0.053) (0.029)

SBB7 6,5 1.150 *** 0.125 *** 0.129 0.174 0.004
(0.030) (0.037)

Tree 2 I 1,4|5 0.000 0.000 0.000 0.000 0.000
t 1,3|5 0.109 *** 15.000 ** 0.070 0.002 0.002

(0.029) (6.080)
t 1,2|5 0.241 *** 9.470 *** 0.155 0.029 0.029

(0.028) (2.970)
F 6,1|5 1.570 *** 0.000 0.167 0.000 0.000

(0.171)

Tree 3 I 2,4|1,5 0.000 0.000 0.000 0.000 0.000
t 2,3|1,5 0.103 *** 14.300 *** 0.066 0.003 0.003

(0.029) (5.300)
BB8 6,2|1,5 1.450 *** 0.794 *** 0.093 0.000 0.000

(0.299) (0.180)

Tree 4 t 3,4|2,1,5 0.088 *** 11.400 *** 0.056 0.007 0.007
(0.030) (3.930)

BB7-90 6,3|2,1,5 −1.030 *** −0.067 ** −0.048 0.000 0.000
(0.018) (0.033)

Tree 5 I 6,4,|3,2,1,5 0.000 0.000 0.000 0.000 0.000

Notes: p-Values are reported in brackets. ** significant at the 5% level. *** significant at the 1% level. I: = Independent copula; t: = t copula;
BB1: = Clayton–Gumbel; SBB7: = Joe–Clayton copula; BB8: = Frank–Joe; BB7-90: = rotated Joe–Clayton copula (90 degrees). node 1 = Brazil,
node 2 = Russia, node 3 = India, node 4 = China, node 5 = South Africa, node 6 = crude oil.
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Figure 2. Results of C-vine copula dependency, showing trees 1 and 2, with nodes (variables) and
edges (Kendall’s Tau).

Table 5: Results of R-vine Copulas, with Kendall’s tau and upper/lower tail dependences.

Copula Edge Parameter1 Parameter2 Tau lower Tail upper Tail
C(.) Ei θ1 θ2 τ λl λu

Tree 1 t 1,6 0.307∗∗∗ 10.500∗∗∗ 0.199 0.030 0.030
(0.026) (3.250)

t 2,1 0.358∗∗∗ 5.420∗∗∗ 0.233 0.129 0.129
(0.026) (1.020)

t 5,2 0.455∗∗∗ 7.700∗∗∗ 0.301 0.106 0.106
(0.023) (1.690)

t 5,3 0.430∗∗∗ 7.900∗∗∗ 0.283 0.093 0.093
(0.023) (1.820)

t 5,4 0.293∗∗∗ 16.600∗∗ 0.189 0.006 0.006
(0.026) (8.200)

Tree 2 F 2,6,1 1.060∗∗∗ 0.000 0.116 0.000 0.000
(0.167)

t 5,1|2 0.215∗∗∗ 11.000∗∗∗ 0.138 0.017 0.017
(0.028) (3.640)

t 3,2|5 0.124∗∗∗ 12.400∗∗∗ 0.079 0.006 0.006
(0.029) (4.230)

t 4,3|5 0.096∗∗∗ 8.470∗∗∗ 0.061 0.020 0.020
(0.030) (2.250)

Tree 3 I 5,6|2,1 0.000 0.000 0.000 0.000 0.000

Tree 3 I 3,1|5,2 0.087∗∗∗ 16.700∗∗ 0.055 0.001 0.001
(0.029) (7.380)

t 4,2|3,5 0.000 0.000 0.000 0.000 0.000

Tree 4 BB7-90 3,6|5,2,1 −1.030∗∗∗ −0.066∗∗ −0.047 0.000 0.000
(0.018) (0.032)

I 4,1|3,5,2 0.000 0.000 0.000 0.000 0.000

Tree 5 I 4,6|3,5,2,1 0.000 0.000 0.000 0.000 0.000

Notes: p-Values are reported in brackets. ∗significant at the 10% level. ∗∗significant at the 5% level. ∗∗∗significant at the 1%
level.
I:=Independent copula;t:=t copula; F:=Frank copulas; BB7-90:=rotated Joe–Clayton copula.
node 1=Brazil, node 2=Russia, node 3=India, node 4=China, node 5=South Africa, node 6=crude oil.

Figure 3. Results of R-vine copulas dependency showing trees 1 and 2, with nodes (variables) and
edges (Kendall’s Tau).

Figure 2. Results of C-vine copula dependency, showing trees 1 and 2, with nodes (variables) and
edges (Kendall’s Tau).

The R-vine copula results are reported in Table 5. The dependence was captured using
the bivariate elliptical Student’s t copula, with which exhibited symmetric tail dependence
between Brazil and crude oil, Brazil and Russia, South Africa and Russia, South Africa
and India, and South Africa and China. The dependences in Trees 2–5 were too small to
draw any meaningful conclusions. Figure 3 shows the corresponding dependence trees in
graphical format.

Table 5. Results of R-vine copulas, with Kendall’s tau and upper/lower tail dependences.

Copula Edge Parameter 1 Parameter 2 Tau Lower Tail Upper Tail
C(.) Ei θ1 θ2 τ λl λu

Tree 1 t 1,6 0.307 *** 10.500 *** 0.199 0.030 0.030
(0.026) (3.250)

t 2,1 0.358 *** 5.420 *** 0.233 0.129 0.129
(0.026) (1.020)

t 5,2 0.455 *** 7.700 *** 0.301 0.106 0.106
(0.023) (1.690)

t 5,3 0.430 *** 7.900 *** 0.283 0.093 0.093
(0.023) (1.820)

t 5,4 0.293 *** 16.600 ** 0.189 0.006 0.006
(0.026) (8.200)

Tree 2 F 2,6|1 1.060 *** 0.000 0.116 0.000 0.000
(0.167)

t 5,1|2 0.215 *** 11.000 *** 0.138 0.017 0.017
(0.028) (3.640)

t 3,2|5 0.124 *** 12.400 *** 0.079 0.006 0.006
(0.029) (4.230)

t 4,3|5 0.096 *** 8.470 *** 0.061 0.020 0.020
(0.030) (2.250)

Tree 3 I 5,6|2,1 0.000 0.000 0.000 0.000 0.000
Tree 3 I 3,1|5,2 0.087 *** 16.700 ** 0.055 0.001 0.001

(0.029) (7.380)
t 4,2|3,5 0.000 0.000 0.000 0.000 0.000

Tree 4 BB7-90 3,6|5,2,1 −1.030 *** −0.066 ** −0.047 0.000 0.000
(0.018) (0.032)

I 4,1|3,5,2 0.000 0.000 0.000 0.000 0.000

Tree 5 I 4,6|3,5,2,1 0.000 0.000 0.000 0.000 0.000

Notes: p-Values are reported in brackets. ** significant at the 5% level. *** significant at the 1% level. I: = Independent copula; t: = t copula;
F: = Frank copulas; BB7-90: = rotated Joe–Clayton copula. node 1 = Brazil, node 2 = Russia, node 3 = India, node 4 = China, node 5 = South
Africa, node 6 = crude oil.
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Figure 2. Results of C-vine copula dependency, showing trees 1 and 2, with nodes (variables) and
edges (Kendall’s Tau).

Table 5: Results of R-vine Copulas, with Kendall’s tau and upper/lower tail dependences.

Copula Edge Parameter1 Parameter2 Tau lower Tail upper Tail
C(.) Ei θ1 θ2 τ λl λu

Tree 1 t 1,6 0.307∗∗∗ 10.500∗∗∗ 0.199 0.030 0.030
(0.026) (3.250)

t 2,1 0.358∗∗∗ 5.420∗∗∗ 0.233 0.129 0.129
(0.026) (1.020)

t 5,2 0.455∗∗∗ 7.700∗∗∗ 0.301 0.106 0.106
(0.023) (1.690)

t 5,3 0.430∗∗∗ 7.900∗∗∗ 0.283 0.093 0.093
(0.023) (1.820)

t 5,4 0.293∗∗∗ 16.600∗∗ 0.189 0.006 0.006
(0.026) (8.200)

Tree 2 F 2,6,1 1.060∗∗∗ 0.000 0.116 0.000 0.000
(0.167)

t 5,1|2 0.215∗∗∗ 11.000∗∗∗ 0.138 0.017 0.017
(0.028) (3.640)

t 3,2|5 0.124∗∗∗ 12.400∗∗∗ 0.079 0.006 0.006
(0.029) (4.230)

t 4,3|5 0.096∗∗∗ 8.470∗∗∗ 0.061 0.020 0.020
(0.030) (2.250)

Tree 3 I 5,6|2,1 0.000 0.000 0.000 0.000 0.000

Tree 3 I 3,1|5,2 0.087∗∗∗ 16.700∗∗ 0.055 0.001 0.001
(0.029) (7.380)

t 4,2|3,5 0.000 0.000 0.000 0.000 0.000

Tree 4 BB7-90 3,6|5,2,1 −1.030∗∗∗ −0.066∗∗ −0.047 0.000 0.000
(0.018) (0.032)

I 4,1|3,5,2 0.000 0.000 0.000 0.000 0.000

Tree 5 I 4,6|3,5,2,1 0.000 0.000 0.000 0.000 0.000

Notes: p-Values are reported in brackets. ∗significant at the 10% level. ∗∗significant at the 5% level. ∗∗∗significant at the 1%
level.
I:=Independent copula;t:=t copula; F:=Frank copulas; BB7-90:=rotated Joe–Clayton copula.
node 1=Brazil, node 2=Russia, node 3=India, node 4=China, node 5=South Africa, node 6=crude oil.

Figure 3. Results of R-vine copulas dependency showing trees 1 and 2, with nodes (variables) and
edges (Kendall’s Tau).

Figure 3. Results of R-vine copulas dependency showing trees 1 and 2, with nodes (variables) and
edges (Kendall’s Tau).

3.5. Market Risk under Portfolio Rebalancing

In this section, the above results were applied to a portfolio optimization problem and
the model performance was compared, based on four data sets: (i) the data with returns
that did not account for switching and dependence, (ii) returns with switching but no
dependence, (iii) returns with switching and C-vine dependence, and (iv) returns with
switching and R-vine dependence. Markowitz’s mean variance portfolio Markowitz (1959),
which focuses on the variance risk measure, has been criticized by finance practitioners as
it penalizes extreme tail losses. This problem has been addressed by using alternative risk
measures, such as Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) is a coherent
risk measure proposed by Rockafellar and Uryasev (2000), which has now replaced VaR in
BCBS (2019) under the revised market risk models. Here, we propose an asset allocation
model for a portfolio that minimizes 95% of portfolio Conditional Value-at-Risk as the
objective function.

Let w = (w1, w2, w3, w4, w5, w6) be the portfolio weights vector representing the num-
ber of stocks held in asset i, (i = 1, · · · , 6). Thus, wi are decision (optimization) variable
and, r = (r1, · · · , r6) denote a random vector of asset returns with a multivariate probabil-
ity density function denoted by p(r|w). Let the one dimensional loss function ξ = f (w, r)
be a random variable observed over time. Then, the cumulative distribution function of
the loss for the return vector given a threshold value ξ0 can be written in integral form
as follows,

Ψ(w, ξ) =
∫

f (w,r)≤ξ0

p(r|w) dr = Pr(ξ ≤ ξ0) (10)

Then, for a given confidence level α, VaR α is the α-quantile of a loss distribution
associated with portfolio which can be represented as,

VaR α(ξ) = inf (ξ ∈ R|Ψ(w, ξ) ≥ α) (11)

However, VaR measure does not take into account losses beyond the threshold ξ0 and
it is nonconvex and not subadditive like CVaR see, Fabozzi et al. (2007).

Accordingly, the investor whose focus is in the lower tail dependence, solves the
minimization of the CVaR for the portfolio excess loss function as follows,

minimize
w

CVaRα(ξ) = E[ξ|ξ > VaRα(ξ)]

d

∑
i=1

wi = 1

wi ≥ 0, i = 1, · · · , 6

, (12)
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where E[ξ|ξ > VaRα(ξ)] =
1

1−α

∫
f (w,r)≥VaRα(ξ)

f (w, r)p(r|w) dr, and VaRα(ξ) is defined as

the smallest number ξ0 such that the probability of a negative loss ξ0 is not higher than the
(1− α) quantile of the distribution set at α = 95%. We assume no short-selling portfolio
(long portfolio) thus, wi ≥ 0 are non-negative portfolio weights and ∑6

i=1 wi = 1 is the
capital budget constraint.

Figure 4 displays four equity plots, highlighting the in-sample relative performance
of minimum CVaR, compared with the mean variance (MV) portfolio (also known as the
global minimum variance portfolio). The MV finds a trade-off between the expected return,
E(r), and the risk of the portfolio, measured by the variance wTΣw. The performance
measurement was based on a starting capital allocation of 100 with a rebalancing strategy.
The C-vine portfolio strategy clearly outperformed all other portfolio constructions: Thus,
it outperformed the portfolio without regime-switching and without dependence, the
portfolio with a two state regime-switching but without dependence, and the R-vine
portfolio. We argue that a C-vine portfolio construction strategy can adequately model the
portfolio risk and account for the asset dependence structure and draw-downs observed
during the COVID-19 financial market crisis in 2020.

Tables 6–9 report the estimated minimum CVaR portfolios with percentage marginal
contribution of each return series under a rebalancing framework. It is evident that
the C-vine and R-vine portfolios contributed the lowest aggregated risk. We argue that
portfolio construction that takes into account both regime-switching and the dependence
structure can yield optimal risk diversification. Overall, the C-vine portfolio had the best
performance over the rebalancing period, as depicted in Figure 4, when compared to a
benchmark global minimum variance (GMV) portfolio.

Figure 4. Trajectory of Minimum CVaR vs. Global Minimum Variance (GMV) rebalancing portfolio performance.
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Table 6. Risk and weight allocation without regime-switching and dependence.

Period Cvar Brazil Russia India China South Africa Crude Oil

1 0.01900 0.14545 0.15776 0.18743 0.12297 0.20197 0.18442
2 0.02088 0.13791 0.16760 0.16398 0.14302 0.20625 0.18123
3 0.02785 0.16968 0.16417 0.16575 0.16574 0.20288 0.13177
4 0.03043 0.13701 0.21248 0.14158 0.16319 0.15157 0.19417
5 0.03061 0.10606 0.19845 0.13964 0.15770 0.17669 0.22147
6 0.02924 0.15521 0.18522 0.14004 0.20150 0.17874 0.13928
7 0.02798 0.16008 0.19691 0.10827 0.16227 0.20428 0.16819

Table 7. Risk and weight allocation with regime-switching and without dependence.

Period Cvar Brazil Russia India China South Africa Crude Oil

1 0.01380 0.16264 0.17232 0.17319 0.13308 0.19422 0.16456
2 0.01504 0.16869 0.16766 0.17844 0.13099 0.17722 0.17701
3 0.01561 0.17285 0.16899 0.17977 0.12241 0.17540 0.18058
4 0.01558 0.17413 0.16835 0.17943 0.12225 0.17490 0.18094
5 0.01551 0.17417 0.16790 0.18037 0.12211 0.17475 0.18070
6 0.01548 0.17370 0.16785 0.18024 0.12263 0.17488 0.18070
7 0.01542 0.17271 0.16791 0.18086 0.12291 0.17543 0.18019

Table 8. Risk and weight allocation with regime-switching and C-vine dependence.

Period Cvar Brazil Russia India China South Africa Crude Oil

1 0.01060 0.18690 0.18879 0.14672 0.13690 0.19998 0.14071
2 0.01060 0.18687 0.18650 0.14343 0.13857 0.20132 0.14331
3 0.01058 0.18724 0.18578 0.14385 0.13941 0.20130 0.14242
4 0.01070 0.19441 0.18951 0.14296 0.13371 0.20086 0.13856
5 0.01061 0.14386 0.20222 0.15399 0.16276 0.19128 0.14589
6 0.01037 0.15062 0.14601 0.15646 0.17047 0.16127 0.21516
7 0.01060 0.19368 0.19135 0.14334 0.13373 0.19860 0.13931

Table 9. Risk and weight allocation with regime-switching and R-vine dependence.

Period Cvar Brazil Russia India China South Africa Crude Oil

1 0.01019 0.19888 0.19317 0.14236 0.12400 0.18836 0.15323
2 0.01024 0.19718 0.19220 0.14472 0.12159 0.18990 0.15441
3 0.01023 0.19634 0.19209 0.14445 0.12188 0.19030 0.15494
4 0.01019 0.19646 0.19255 0.14343 0.12192 0.18959 0.15604
5 0.01015 0.19591 0.19213 0.14433 0.12259 0.18945 0.15560
6 0.01018 0.19518 0.19383 0.14415 0.12121 0.19012 0.15551
7 0.01017 0.19608 0.19366 0.14450 0.12074 0.19066 0.15437

Figure 4 displays the four return trajectory plots, together with bar plots (blue) show-
ing the relative performance between the CVaR versus a benchmark GMV portfolio. The
C-vine portfolio strategy with re-balancing strategy clearly outperformed both the MS-
GJR-GARCH without dependence and the benchmark portfolio with no regime-switching
and no dependence. Therefore, the extreme portfolio draw-downs observed during the
COVID-19 financial market crisis in 2020 could be adequately captured.
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4. Conclusions

In this study, we attempted to analyze the tail dependence structure in BRICS and
crude oil markets, as well as to determine optimal investment decisions in these markets,
by using a combination of different statistical techniques, including vector autoregression
(VAR2), Markov-switching GJR-GARCH, vine copula, and particle swarm optimization
techniques. First, the returns series for the indices were pre-filtered using VAR(2) to
model the conditional mean and to account for the linear influence of lag 1 and lag
2 of other variables. Second, a Markov-switching Garch (MS-GJR-GARCH) volatility
process was adopted, in order to remove the effects of autocorrelation and to account
for heteroscedasticity, leveraging effects and regime-switching parameters. The results
of modeling the volatility process showed evidence of two separate regimes, indicated
by the in-homogenous (different) unconditional volatility. We also found high volatility
persistence across all return series, in both regime 1 and regime 2, with the exception of
China in regime 2; as well as high persistence in transition probability between the two
regimes. That is, the Markov chain showed the propensity to stay equally as long in both
regimes, as indicated by the high probabilities of staying in regime 1 and regime 2.

On the other hand, the results of modeling the dependence structure using the
Pairwise Copula Construction (PCC) with vine copula provided more insight into the
complex relationships among the returns. This multivariate copula approach was adopted
to account for different dependence structures between asset returns in the BRICS and
crude oil markets. Based on the Akaike Information criteria (AIC), we found that the
C-vine copula model was adequate in describing the complex relationships.

As a result, we found two types of tail dependence structures: symmetric tail depen-
dence, captured by an elliptical Student’s t copula, between South Africa and China, South
Africa and Russia, and South Africa and India; and asymmetric lower tail dependence
between South Africa and Brazil, as well as South Africa and crude oil. Therefore, we
argue that information about the lower tail probability found between South Africa and
Brazil (14.6%) or South Africa and crude oil (17.4%) markets are important indicators for
investors, which may help investors to diversify their portfolios during times of financial
distress. However, the dependence in exhibited in Trees 3–5 were negligible, preventing
us from drawing any meaningful inferences. In addition, the symmetric tail dependence
coefficients are also vital, which may help investors to diversify or hedge their portfolios
during times of financial distresses.

To determine optimal investment strategies in these markets, we made use of the
estimated C-vine and R-vine copulas, in order to simulate returns, and applied the Particle
Swam optimization technique to the quantile-transformed innovations, in order to deter-
mine the overall minimum CVaR and the corresponding marginal risk contributions of
each asset return. The Particle Swam was metaheuristic, requiring few assumptions about
the problem being optimized and providing greater flexibility due to being a derivative-
free optimization algorithm. It is a naturally inspired technique that finds the optimal
solution iteratively, by trying to improve the candidate solution and avoiding sub-optimal
investment solutions.

The optimization results under a rebalancing strategy confirmed the existence an
inverse relationship between the risk contribution and asset allocation of South Africa and
oil, supporting the existence of a higher lower tail dependence between them. We argue that,
when the South African stock market is in distress, investors tend to shift their holdings in
oil market. Similar results were found between Brazil and crude oil. Furthermore, we found
that the rebalancing strategy which accounts for regime-switching and the dependence
structure outperformed all other portfolio strategies, including a portfolio without regime-
switching and dependency or a portfolio with only regime-switching. In the symmetric tail,
South African asset allocation was found to have well-diversified relationships with those
of China, Russia, and India, suggesting that these three markets might be good investment
destinations when things are not good in South Africa, and vice versa.
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These findings are vital for international investors, policymakers, and regulators
during both bull and bear markets. However, the limitation of this model is its inability to
account for other hidden stylized facts, such as price jumps and long-memory processes in
stock returns. in future research, we will try to account for these factors.
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Appendix A. Regular Vine Distributions

Appendix A.1

Bedford and Cooke (2001) shows the density of an d-dimensional distribution in terms
of a regular vine. Thus, the joint probability density function for a d-dimensional C-vine
copula can be expressed as follows:

f (x1, · · · , xd) =
d

∏
k=1

fk(xk)×
d−1

∏
j=1

d−i

∏
i=1

cj,j+i|1:j−1

(
F(xj|x1, · · · , xj−1), F(xj+i|x1,··· ,xj−1

)|θj,j+i|1,··· ,j−1

)
,

where index j identifies the trees, while i are the edges in each tree, fk(xk) denotes the
marginal density of the variable xk, k = 1, · · · , d, and cj,j+i|1:j−1 are bivariate copula densi-
ties of each pair copula. In order to draw statistical inferences, Joe (1996) and Czado (2019)
showed that the recursion of the conditional marginal distribution functions F(x|v) of a
d-dimensional random vector v can be expressed as a pair-copula distribution function,
as follows:

F(x|v; θ) =
∂Cx,vj |v−j

(
F(x|v−j, F(vj|v−j)|θ

)
∂F(vj|v−j)

, (1)

where, for every j, Cx,vj |v−j
is a bivariate copula distribution function with parameter(s) θ,

v is a d-dimensional vector, vj is an arbitrarily chosen element of v, and v−j denotes the v
excluding vj

Vine copulas have links to graph theory. A regular vine copula consists of a sequence
of different nested trees (i.e., collections of nodes and edges), of which the C- and D-vine
trees are special cases (see Bedford and Cooke (2002); Jaworski et al. (2010)). A graph
satisfies the following conditions:

1. A graph is a pair G = (N, E) of sets such that E ⊆ {{x, y} : x, y ∈ N}}.
2. The elements of E are called edges of the graph G, while the elements of N are

called nodes.
3. The number of neighbors of a node v ∈ N is the degree of v, denoted by d(v).

Hence, a regular vine distribution, where all margins are uniformly distributed on
[0, 1], is a d-dimensional tree structure V = (T1 · · · Td) having a tree sequence of d − 1
linked trees, which satisfy the following conditions:

https://finance.yahoo.com
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1. T1 is a connected tree with nodes N1 = (1, · · · , d) and a set of edges denoted by E1;
2. For i = 2, · · · , d− 1, Ti is a connected tree with nodes Ni = Ei−1 and edges Ei;
3. The edges in tree Ti become nodes in tree Ti+1; that is, if two edges in tree Ti are to

be joined as nodes in tree Ti+1 by an edge, they must share a common node in Ti
(Proximity condition).

Thus, a regular vine is called a canonical vine (C-vine) if each tree Ti has a unique
node of degree d− 1. on the other hand, a regular vine is called a drawable vine (D-vine) if
all the nodes in T1 have degree no greater than 2. Note that the construction of an R-vine is

not unique. The number of regular vine tree structures on d variables is d!
2 × 2

(
d−1
2
)

while,
for a C-vine, it is d!

2 .

Notes
1 Other variations of asymmetric volatility models include: Exponential GARCH (EGARCH) of Nelson (1991);

Threshold GARCH (TGARCH) of Zakoian (1994); and Asymmetric GARCH (AGARCH) of Engel (1990)
2 The expected time to return to a recurrent regime (state), in the case that the Markov chain starts in that regime (state).
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