
International Journal of 

Financial Studies

Article

Artificial Intelligence Approach to Momentum Risk-Taking

Ivan Cherednik

����������
�������

Citation: Cherednik, Ivan. 2021.

Artificial Intelligence Approach to

Momentum Risk-Taking. International

Journal of Financial Studies 9: 58.

https://doi.org/10.3390/ijfs9040058

Academic Editors: Sabri Boubaker

and Ronald A. Ratti

Received: 13 July 2021

Accepted: 18 October 2021

Published: 21 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Mathematics, UNC at Chapel Hill, Phillips Hall, Chapel Hill, NC 27599, USA;
chered@email.unc.edu

Abstract: We propose a mathematical model of momentum risk-taking, which is essentially real-time
risk management focused on short-term volatility. Its implementation, a fully automated momentum
equity trading system, is systematically discussed in this paper. It proved to be successful in extensive
historical and real-time experiments. Momentum risk-taking is one of the key components of general
decision-making, a challenge for artificial intelligence and machine learning. We begin with a
new mathematical approach to news impact on share prices, which models well their power-type
growth, periodicity, and the market phenomena like price targets and profit-taking. This theory
generally requires Bessel and hypergeometric functions. Its discretization results in some tables of
bids, basically, expected returns for main investment horizons, the key in our trading system. A
preimage of our approach is a new contract card game. There are relations to random processes and
the fractional Brownian motion. The ODE we obtained, especially those of Bessel-type, appeared to
give surprisingly accurate modeling of the spread of COVID-19.
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1. Introduction
1.1. Objectives and Tools

We propose a new theory of momentum risk-taking, which is basically real-time
risk management, one of the key components of general decision-making. We focus on
momentum risk-taking, MRT, when the decisions must be fast and mostly short-term. This
is a development of “thinking fast” from (Kahneman 2011). Applications to stock markets
are key to us; a new approach to short-term volatility and high- frequency trading is the
main theoretical result of this paper. Its implementation is a momentum trading system,
which was extensively tested in stock markets, including real-time trading. The discussion
of its performance is an important part of the paper. Stock markets provide a unique
opportunity to test our theory, but the core mechanisms of MRT seem quite universal. We
will argue that MRT is a major component of any intelligence. Our results indicate that
modeling such mechanisms is within the reach of artificial intelligence systems; they can
be natural “ends” and also indispensable research “means”.

The key components are our new continuous mathematical model of news impact
on share prices and its “stratified discretization” necessary to deal with discontinuous
functions and different investing horizons. Basically, the spread of news for a single
event is tr in terms of time t with fractional powers (exponents) r multiplied by proper
functions in the form cos(A log(t)). The log(t)-periodicity here resembles that of Elliot
waves. The refined version of the corresponding ODE requires Bessel functions. It gives the
t-periodicity, modeling profit taking. Understanding profit-taking is of obvious importance
in the theory of market volatility (see, e.g., Andersen et al. 2017; Engle and Ng 1993;
Fouque and Langsam 2013; Fouque et al. 2003; O’Hara 2015). Hypergeometric functions
naturally occur when the impact of two events is considered, which is related to certain
types of hedging.
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Power-laws. The power laws for price functions are fundamental in Econophysics.
The so-called efficient market hypothesis and similar approaches are essentially based on
the assumption that returns follow the normal distribution. This contradicts the behavior
of modern markets, especially short-term fluctuations of share prices. The power-law
hypothesis is much more suitable for this; see, e.g., (Mantegna and Stanley 2000). There are
various market processes beyond the power-law, but this is basically sufficient; see, e.g.,
(Gubiec et al. 2012).

Power-laws are quite natural for almost any physics approaches, well beyond stock
markets. They serve quite a variety of different economics areas, which was convincingly
demonstrated in (Gabaix 2016). A starting point for us is that they describe very well news
impact and momentum risk-taking, MRT. Their origin in Behavior Science and Behavior
Finance is significant in this work.

From this perspective, it is not very surprising that the systems of differential equations
we obtained for share prices appeared applicable to model the spread of COVID-19 in
many countries and for various waves of this pandemic. To be more exact, the two-phase
solution proposed in (Cherednik 2020), matches very well the curves of total numbers of
detected infections, practically without exception. Let us provide some detail.

The first phase is modeled by Bessel functions. Systems (14) and (15) are used, where
c is the transmission rate and e the intensity of protective measures. The second phase is
described by systems (14) and (15). Both are of power-type and have some saturation.
The saturation and related periodicity are of course more difficult to observe in the stock
markets due to the constant stream of market related news and high volatility. This is
different for epidemics; the usage of Bessel functions was convincingly confirmed for
COVID-19. The accuracy and the uniformity of our ODE appeared well beyond what
anyone could expect for epidemics.

The power-law of epidemics contradicts the usual SIR-type models, which are based
on the assumption of the exponential growth of the number of cases unless under the herd
immunity. With COVID-19, the exponential growth, if any, can be observed only during
very short initial periods (never during the middle stages). This is discussed systematically
in (Cherednik 2021).

Discretization. As with any theory, our one must be checked experimentally. Stock
markets are the main examples for us; they are quite a test for any risk-management theories.
An obvious problem is that stock charts are discontinuous, so differential equations must
be generally replaced by difference ones. Novel approaches to the discretization appeared
necessary; cf. (Cheridito and Sepin 2014). We restrict ourselves with relatively short time
periods after the event; the high volatility right after the news is mostly avoided. Then the
core of our approach is the usage of tables of bids, which is essentially a ranked collection of
sample time-forecasts for different time-horizons.

Given a chart, these tables provide a short-term prediction of its evolution, which
extrapolate the prior behavior in some “non-linear” way; cf. (Guéant 2013). Forecasting
here is not on the basis of derivatives of price-functions or their difference counterparts,
though they are employed too. This is quite a non-linear process, which includes various
time-horizons. Our approach actually reflects the ways our brains work.

Our tables of bids are similar to bidding tables in contract card games, though the
role of time, the non-linearity of our tables, and some other features have no counterparts
with cards. In the realm of stock markets, the tables help to determine the proper time-
horizons: optimal durations of the investments. Basically, this is short-term forecasting the
share prices based on auction-type procedures. We think that our brain “employs” similar
procedures for risk-taking, so the usage of such bidding tables can be quite universal, well
beyond playing cards and trading stocks.

Risk-taking. The standard approach to understanding the ways our brain works is via
carefully designed experiments, which are mostly focused on very basic tasks, which are
mostly very simplified and sometimes artificial. However, the simpler the challenges the
more special and primitive tools our brain invokes. This means that laboratory experiments
can generally clarify only very basic features; they are games in a sense. With any game,
our brain readily switches to the corresponding optimal thinking mode, at least upon some
training; we are good with this. Therefore, the experiments mostly measure our ways
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to play very specific “games”, which is insufficient to understand what is general purpose
AI. The risks must be as real as possible to force our brain to use its full potential, which
is hardly possible in experiments. Real behavior from people is difficult to recreate in
artificially designed situations, even well crafted.

It seems that the most promising, if not the only, rigorous approach to understanding
risk-taking and other processes of this kind is to do our best with creating artificial intelli-
gence systems and then comparing their decisions in real situations with those of people.
Of course, the aim here is to improve our decision-making, but any “simple” reproduction
of our real behavior is of course a breakthrough of a great scale.

Toward AI systems. The automated momentum trading system based on our ap-
proach can be seen as a step in this direction; it is discussed in the second part of this
paper. Its preimage is a new contract card game presented at the end. By design, our
trading system uses only the changes of share prices; i.e., it operates only on the basis of
the technical analysis. So it is inevitably “late” with any decisions vs. professional traders
and investors, and is subject to the bid-ask spread and many other factors reducing the
profitability. In spite of such disadvantages, the system proved to be profitable, which is
some justification of our approach.

We discuss the main features of our trading system in the paper and provide some
typical results of its performance. Designing historic experiments is always a very serious
problem: the usage of any kind of “future” must be fully excluded. The real-time trading is
an ultimate test: the system was tested systematically (with about 1000 companies). The
results we provide can supply those who will try to follow our approach and implement
our tables with some benchmarks. We think that the pont-tables from Section 4.3 can
significantly help to get used to the 2-bid tables from Section 3.3.

Importantly, we can always “explain”, interpret to be exact, the trades our system
makes. Our system is not a black box; its risk-taking preferences can be seen. In a sense,
it is a quantitative model of “thinking fast” from (Kahneman 2011). Indeed, traders must
promptly react to many unknown factors, which is based on some special market intuition.
The latter must be of obvious interest to cognitive theory and behavioral finance.

1.2. Organization of the Paper
Here, in the Introduction, we describe our approach and discuss its general origins,

including risk-management and some aspects of cognitive theory. Momentum risk-taking is
essentially short-term forecasting based on the current information (frequently incomplete).
We demonstrate that it can be modeled mathematically. Due to our focus on professional
trading, we disregard the expected utility hypothesis originated by Daniel Bernoulli, the
asymmetry between loss and gain from prospective theory, and similar aspects. The market
agents are assumed to act “rationally” on the basis of the current news impact: the purpose
of our AI system is to capture their preferences.

Section 2 presents our mathematical model of market news impact, based on systems
of differential equations resulting in Bessel functions, hypergeometric functions, and their
degenerations. These systems are closely connected with new tools in harmonic analysis
and random processes, namely, with the Dunkl eigenvalue problem (see, e.g., Opdam 1993;
Cherednik 2005) and Macdonald’s processes (Borodin and Corwin 2014).

As a demonstration of the universality of our system, we show that it models well the
tree growth in a difference setting and provide other examples.

The connection with fractional Brownian motion (fBM) is briefly discussed at the end of
Section 2.4. Our price-functions are related to the standard deviations and transition probabil-
ity densities of the corresponding processes, which provides a statistical framework for our
approach. See (Cheridito 2001; Gatheral et al. 2018; Guasoni et al. 2017; Bouchaud 2001)
concerning fBM in studying market volatility and power-laws for price functions. See,
also, (Mantegna and Stanley 2000; Gabaix 2016; Gubiec et al. 2012) on the power-laws
in econophysics.

Using a single fBM with a small Hurst exponent as a model for a price function creates
a theoretical problem with the existence of arbitrage (some kind of “free lunch”) due to the
negatively correlated increments. However, mixed fBM are arbitrage free, and we are using
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only relatively short time-intervals, where this concern is not quite relevant. The author
thanks Patrick Cheridito for a discussion.

We mostly consider the impact of one-two events. Statistical ensembles of news are
mathematically significantly more challenging. The corresponding stochastic processes are
similar to those in (Borodin and Corwin 2014). Our trading system provides experimental
support for our approach mostly within modeling the impacts of isolated consecutive events.
The “multi-dimensional” theory of ensembles of events is generally doable mathematically
but seems really difficult to check experimentally in real markets.

Section 3 contains a reasonably complete description of the algorithms of our trad-
ing system. The results of extensive experiments, including real-time trading, serve two
purposes. First, we provide evidence for power-laws for price functions with exponents
depending on the investment horizons (say, it can be 0.137 for day-trading).

See here (O’Hara 2015) concerning general aspects of high-frequency market micro-
structure and its effect on the strategies of traders and markets. Another study, (Brogaard
et al. 2014), contains a general discussion of the price movements for high-frequency
trading and the role of horizons.

Let us mention that there are various models that distinguish between informed and
uniformed traders, for instance, the Kyle model and the Glosten-Milgrom model from (Glosten
and Milgrom 1985). They are important to understand the bid-ask spread. The assumption
is that the price schedule is linear, different to our power-growth hypothesis. We do not
follow this way, but significant changes of prices are the main trading signals for us.

Second, we provide some performance benchmarks for those who may follow our
approach in their own trading systems. Our system has many new features, including the
simultaneous running of its multiple variants (sometimes even with identical opti-parameters
but with different entry points), simultaneous pro-trend and contra-trend trading, the
usage of the results of optimization for creating weights of companies, and so on. Potential
followers must know what to expect, theoretically and practically. We also explain how
testing the system was performed.

We do not discuss much the machine learning procedures we employ, namely the opti-
mization of parameters and creating the company weights. The discretization parameters,
counterparts of action potentials for neurons, are the key for us, but there are also important
difference counterparts of first and second derivatives for the charts we use for forecast-
ing and trading. There is vast ML literature on entropy, information theory, Bayesian
predictive method, and generative adversarial networks, GAN. The latter approach is
somewhat similar to our auction-type procedure, when different decision-making “bids”
from different investment horizons contest with each other; (cf. Delpini and Bormetti 2015;
Ho and Stefano 2016). See also (Sirignano and Cont 2019) about some general perspectives
of deep learning.

Since we deal with a limited number of opti-parameters (all of them have theoretical
meaning), a relatively straightforward gradient method is mostly used for the optimiza-
tion. It is rare when our AI system cannot find the parameters providing a solid jump in
performance for almost any “education periods”, though their uniqueness is of course
not granted. This is for individual companies or for portfolios. The weights of the com-
panies we use are based on the results of prior optimization. We omit the discussion
of the usage of correlations between equities in this paper, which is common in auto-
mated investing systems. This is present in our system, but mostly via creating some
clusters of companies/equities to be traded under the same opti-parameters. The impact
of our optimization-based weights can be significant, but using them generally restricts the
trading volumes, which is a consideration for us.

Section 4 is exceptional. We motivate our 2-bids by designing a contract card game,
pont, combining the elements of bridge and poker. It adds poker-style uncertainty to the
bridge-type auction. The contract is declared on the basis of six cards, but the hand can
consist of up to nine, which is determined by the declarer, the winner of the auction. The
flexible size of hands is a counterpart of time-horizons. Thus, we add poker risk-taking
to bridge-type bids, which is similar to 2-bids in our trading system. It appeared that the
players can easily get used to such “fractional bids”; the size of the hand is the denominator.
It is closely connected with our approach to discretization and actually models that in neural
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networks. Our 2-bids are discrete, though the threshold is subject to their optimization.
The play (taking tricks) has almost nothing to do with stock markets: pont is just a game.
However, its role as the justification of bids is quite similar to markets. The bidding is
sufficiently non-trivial in pont; we consider it a good model of real risk-taking. The play
(the process of justification of the bids) is missing in poker.

1.3. AI and Risk-Taking
The purpose of artificial intelligence (AI) systems is to perform tasks that require

human cognition. Actually, the aim here is to exceed human decision-making abilities using
computers and machine learning. Even if the quality of automated decisions is mediocre,
the cost efficiency, speed, and the broad range of applications can be “superhuman” and
result in great societal and economic benefits. There is a lot of progress with narrow AI,
focusing on special tasks. However, we are decades away from general purpose AI according
to the conclusion from “The National Artificial Intelligence Research and Development
Strategic Plan (2019 update)” by the National Science & Technology Council (USA). The
astonishing versatility and flexibility of human intelligence remains quite a challenge, and
not only because our brain contains about 100 billion neurons.

Decision-making is the key test for any AI systems. This is quite a complex process. Risk
management is one of its important components, which generally requires an ample system
of protection measures aimed at reducing future risks. The focus of decision-making is
generally on the latter, not on exact timing. The prediction of earthquakes is an example: we
almost never know in advance when they might occur. For us, risk-taking is a permanent
process of corrections, including the termination of unsuccessful positions and opening
new ones. See, e.g., (Fouque and Langsam 2013) for various aspects of risk management,
including high-frequency trading, and (Engle and Ng 1993) for some mathematical aspects.

Momentum risk-taking can be then broadly defined as real-time risk management,
which includes prompt responses to any events and developments and short-term fore-
casting. This is momentum, but a lot of prior knowledge and experience is needed; see, e.g.,
(Engle and Ng 1993). The events we are reacting to are mostly not of a brand new type;

almost always, similar ones occurred before. The problem is to address quickly their type,
strength, and other factors involved. Real-time monitoring of the developments before and
after the decision is an important part of risk-taking. The action can be required immedi-
ately, so it can be difficult to understand what really affected our decision. Kahneman’s
“Thinking fast”, intuition, subconscious processes are certainly involved. Though this can
be not too transcendental: we switch to a special mode of our brain for fast managing
time-sensitive information.

Such “momentum” (sometimes subconscious) processing the signals can be not very
different from the usual (systematic, rational) one, but it is with many simplifications. AI
can be relevant here. Moreover, AI can help a lot to understand which kind of “thinking
fast” and “intuition” is used; this alone is quite a motivation of the present paper and our
project. One of our main observations (based on machine modeling) is that core risk-taking
is actually controlled by very few parameters. Moreover, these parameters seem to be of
universal nature, though they are obviously adjusted to concrete situations.

The broad nature of risk-taking can be seen in stock markets. For instance, the results
based on the optimization of individual companies are only somewhat better than the results
based on the optimization performed for the portfolios of companies. Generally, the greater
variety of different risk-taking tasks someone went through, games included, the greater
someone’s risk-taking skills. This sounds quite obvious but is very difficult to implement in
any automated systems; developing general purpose artificial intelligence systems is needed
here, not just those focused on specific tasks. We mention (Buchanan 2019) that contains
an extensive list of references on AI in finance and a timeline (from 1937). See also recent
(Novak et al. 2021) for some other aspects.

1.4. Universality of MRT
Let us try to outline minimal tools that seem necessary for any risk-taking. This will be

not a biological (neuroscientific) or philosophical discussion. Our approach is actually via
mathematical universality of the corresponding differential equations.
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Our brain does many things; decision-making is one of the keys for any intelligence.
Though the latter is, of course, much broader. Science is an example of “broad intelligence”.
However, even very abstract research directions involve risk-taking: the evaluation of
the importance, the choice of methods, expectations, and so on. Games are examples
of “abstract activities”, but they serve a clear purpose of developing and training our
decision-making abilities (social skills included).

With this understanding of momentum decision-making, there must be no significant
difference between humans, other creatures, and artificial systems. Instincts and reflexes
are important here, but this a rational and uniform process. Our ability to plan long-term
is of course a cultural phenomenon; this requires a concept of time and many intellectual
abilities. Generally, long-term forecasting and planning seem beyond what AI can be
expected to do, especially with the processes of high uncertainty.

However, mathematical modeling seems doable for small periods under momentum
risk-taking, for short MRT. Almost any creatures have some basic concepts of time, at least
short-term, sometimes at the level of chemical and physical processes. The results of MRT
can be clearly seen and the corresponding learning process must be universal.

It is not impossible that the core mechanisms of MRT can be observed in the neural
architecture of our brain. One of the main mechanisms is the well-studied action potential;
its counterparts are the key for the discretization in this paper. The action-type procedures
between different options are obviously present in our brain, too. Mathematically, any
decision making must require some price-functions. It is, of course, a great challenge to
understand how such functions can be formed and “stored” in our brain.

Basically, MRT is news-driven short-term forecasting and the corresponding risk-
taking. Our brain does a lot of things; e.g., about 50 percent of the cortex is doing vision.
MRT is about a very exact segment of its activities: fast analysis of new events.

After information reaches the level of news by our brain (which itself is quite a process),
the process of its initial classification begins, including its rank, weight, etc. The weight is,
of course, based on prior experience and “deep learning”.

We demonstrate that the differential (or difference) equations must be for the news-
function (the spread of news) combined with the price-function. For modeling epidemics
in (Cherednik 2020, 2021), the active management plays the role of the price-function; the
match with the waves of COVID-19 appeared to be almost perfect.

For brain processes, the news-function basically measures the resources (the number of
neurons) currently involved in the analysis of an event. The price-function provides expected
importance of this particular event vs. other events and the corresponding expected brain
resources needed for its analysis. The latter can be increased or diminished in process,
depending on the news-function. For instance, the “price of news” will increase when
the news generates neural activities greater than expected. When the current number of
neurons involved approaches the levels provided by the price-function, the news “fades”.
Its impact can still continue to grow, as well as the price-function, but the brain will then
attempt to reduce the resources used for its analysis.

This sort of interaction is essentially the system of differential equation we suggest,
which can be solved in terms of power-type functions and Bessel functions. We expect
that such 2-function “interaction”, the actually needed resources vs. those expected to be used,
is present in almost any MRT. The simplicity and fundamental nature of the correspond-
ing differential and difference equations is a strong (mathematical) confirmation. These
equations are relatively new, though with very strong connections with classical special
functions. Nonsymmetric Bessel functions, Dunkl operators, and other recent tools in
harmonic analysis are involved here (in dimension one).

An example: driving. Brain activities while driving a car provide a convenient
example of “general” MRT. Permanent visual information and a lot of similar information
is a must here for MRT. Obtaining and processing such information is very resource
consuming, much greater than MRT itself.

The actual beginning of MRT is when our brain identifies events. They can be condi-
tions of the road, especially those requiring special attention, road signs, pedestrians, neigh-
boring cars, navigation matters, and so on; see, e.g., arXiv:1711.06976, arXiv:1906.02939
on self-driving cars. Importantly, all such categories of potential events are supposed to
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be analyzed constantly and simultaneously, even if the current news is in one particular
category. There is an almost exact analogy with trading stocks, especially when they are
treated independently, the main regime for our trading system: all stocks considered for
potential investing and investment horizons must be constantly monitored, regardless of
the current or expected positions.

Only some events will reach in our brain the level of signals. The separation of the
signals from noise is quite a problem, which requires a lot of prior experience. By noise,
we mean “insignificant events”, those that hardly require special consideration. After the
signals are determined, our brain is supposed to estimate the resources needed for the
analysis of the signal. This stage requires invoking from the memory the average cost of the
analysis of similar events, which is essentially an estimate for the expected brain resources
(neurons) needed for its analysis. The “cost-function” replaces here the “price-function”
p(t) for stocks.

Then a systematic analysis begins, which can trigger the number of neurons signifi-
cantly different from what was initially “allocated”. This can be because of unexpected
complexity of the event, due to changing its priority for driving, and so on. When the “cost”
of the activity becomes beyond projected cost-levels, our brain will automatically attempt to
reduce the number of neurons involved.

The risk-taking in this example is a combination of such analysis with the correspond-
ing driving decisions. The latter must be obviously fast. The rank (category) of the news
and its “intensity” must be high enough to enter and then win the “action”, which is similar
to our 2-bids.

The general assumption is that short-term event impact is of power-type with some fractional
exponent. Our brain (conjecturally!) constantly produces short-term predictions for the
importance of the event, some “termination curves” of power-type in terms of t. They are
used to end or restrict our analysis when the importance of the current event (measured by
our brain) becomes under such a curve. The “final cost” of the performed analysis reflects
its current importance and may influence the general weight of the corresponding type of
event; it will be then stored in our memory in some form (presumably).

1.5. Games as Concepts
AI systems do not always follow the ways of our brain, even if the problems are

human-related. However, nature, our brain included, is definitely the prime source of
concepts for any AI. Just to give an example, airplanes are very different from birds,
but the concept of flying is from nature. This is no different for AI. Narrow AI systems, in
specialized well-defined domains, can sometimes follow “non-human”, ways. However
general AI systems are expected to borrow a lot from human intelligence, though the final
implementations can be quite different: “aircrafts vs. birds”.

Importantly, many faces of decision-making are reflected in the games we play. Some
include timing, some do not. For instance, solving puzzles and playing chess are not
focused on timing, unless in tournaments. On the other hand, poker and contract card
games are time sensitive. The interaction and risks in card games are as close as possible
to real life, for models of course, which they are. Investing is obviously closer to playing
poker than to playing chess or bridge. Poker’s bidding is a great model of dealing with
uncertainties, but the risks are too “mathematical” and the actual “play” is missing. Solid
rules and protocols make the stock market some kind of a game, but here the risks are
(more than) real. From this perspective, it provides a highly developed and quite universal
“model” of risk-taking, which is of obvious interest.

Psychologically, games reflect life in various ways, potentially preparing us for real-life
challenges; we discuss “intellectual games”. Some are designed to deal with real tasks;
playing them can be more dangerous than life itself. Using game theory, especially mean
field games, is quite common in financial mathematics; see, e.g., (Guéant et al. 2011). We
found no card game reflecting our concept of momentum risk-taking and invented a new
one, pont, which is essentially a version of bridge with poker-style bidding.

Stock markets by design mean that their “agents” look only to their own interests
and to market prices (Guéant et al. 2011), though investing is a complex and very much
interactive process with solid grounds in our psychology. As such, investing is a great
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confirmation of the universality of momentum risk-taking, MRT. It looks like there is some
general purpose risk-taking source code in our brain in charge of all kinds of momentum
risks, which constantly improves itself whatever the nature of the risk and uncertainty. If
this is true, then we can try to use AI to understand this code and to model it!

Philosophically, we test here Kant’s antinomy 2 (atomism), by considering risk-taking
as a composite substance, and his antinomy 3 (causal determinism) concerning the flexibility
of decision-making. We study the stock markets as “an end in themselves”, disregarding
their economic and societal purpose for the sake of mathematical modeling.

1.6. Momentum Investing
Marshmallow test. A well-known test for children, “one marshmallow now or two

in 15 min”, is actually one of the origins of our modeling risk-taking in stock markets. The
latest psychological experiments found limited support to the thesis that delayed gratification
with children leads to better outcomes in their futures (Watts et al. 2018). “Two in 15 min”
can be simply because a child already learned that “patience is rewarded”. The 15 min
interval can also be not that short for little ones. Then the impatience depends on the age,
social and economic background, etc. Some can simply favor short-term solutions. If the
interval increases (say, days) or the reward is diminished, the “impatience” can be well
justified. This means the problem is actually quantitative.

Similar to (Kahneman 2011), we began with some analysis of psychological roots. A
starting point of our research was a postulate that we have quite a rigid “table” of risk
preferences in our brain. To give a simple example, if the return was 1% today and you
can count on an extra 1% tomorrow, then do not sell. However, if “only” 0.5% can be
expected tomorrow and even this is not granted, then probably sell now and avoid extra
risks. Basically, with 2% for 2 days, we would wait, but with 1% for 2 days, we certainly sell,
because we have already made 1% for 1 day. Presumably, our brain takes the average here,
which makes 1.5% tomorrow a “reasonable compensation” for the delay. This is ignoring
the risks and uncertainty, which are always present and influence decision-making.

The auction in pont does almost exactly this. For instance, the smallest bid during the
auction is 3/6 (3 from 6), which means that you are obliged to take 3 tricks with 6 cards
(your initial hand), or, upon the “increases”, 4 from 7–8, or 5 from 9 (requesting up to
3 additional cards). So the pont-bids are actually fractional; the next bid is 4/7, where your
contract (if you win the auction) must be 4/6, 4/7, 5/8, or 6/9. The number of cards in your
hand and the number of taken tricks reflect respectively the duration of the investment
and the return.

The play itself (the process of playing) is of course not market-related; this is simply
a way to validate your bid. In real investing, the “contract” means opening a position
and the “play” is finding the moment of its termination. The resulting return is similar
to the value of the contract. There are many successful ways to invest; picking one of
them resembles very much bidding in card games, but “timing” is not well reflected in
card games. Pont somehow addresses this; it is a model of our approach to comparing
returns for different durations of positions. Comparing different horizons is not something
unusual for our brain. Interesting mathematics is involved here, including Bessel and
hypergeometric functions.

Stock markets are, of course, much more sophisticated than this. For instance, the
execution risks are connected with the investment risks (Engle and Ferstenberg 2007).
Also, opening short positions and terminations of long ones are frequently based on the
same sell signals, so they are related. Mathematically, pont-bids are linear; the tables of bids
we use in our trading system are nonlinear. Though the similarity is strong.

Market implementation. The termination rules we use are based on termination
curves. These curves are directly linked to forecasting share prices. The hierarchy of basic
pont-bids discussed above is such a curve (with 4 points): 3 tricks from 6 cards, 4 tricks
from 7 or 8 cards, and 5 from 9. As with cards, the discretization of stock market bids
is necessary for our trading system to work. The separation of the signals from noise,
which we do successfully, absolutely requires such a discretization. Stock market charts are
discontinuous functions by their nature, especially short-term. The discretization of bids is



Int. J. Financial Stud. 2021, 9, 58 9 of 42

also closely related to the discretization of time, which is inevitable for finding the optimal
time range of investments (in hours, days, weeks).

We will argue below that the prediction and termination curves are of type const · tr,
where t is time and r is some fraction (generally, below 1/2). This assumption matches
well momentum investing, which can be defined as “investing on news”. It works well for
individual companies, portfolios of companies, market indexes, including SPY, the spider,
and for commodities; it seems to us of quite general nature.

We note that the optimization becomes significantly more involved for our trading
system when strict hedging was imposed, i.e., when for any open position, an equal amount
is invested in the opposite direction in SPY or similar; see (Bouchard et al. 2018). Theo-
retically, hypergeometric functions are needed here; using {tr} becomes too approximate.
The system worked, but the returns were less impressive. More generally, the correlations
between companies are important; this is beyond the system we present, though we did
the group optimization.

In our approach, we do not even try to evaluate the news itself. Its impact is measured
through the response of the markets via stock prices and trading volumes. Thus, the
parameters we find and use actually reflect investor risk-taking preferences, which can be
expected sufficiently stable. The trading frequency is one of the main factors here; see
for instance (Almgren 2012; Cheridito and Sepin 2014; Chan and Sircar 2015). The risk
preferences of day-traders are quite different from those of mutual funds. The challenge
is that a stock can be involved in trading with different frequencies and horizons, which
was addressed in our bidding tables. This is especially applicable to trading indices; see, e.g.,
(Fouque et al. 2003; Guasoni et al. 2019). All kinds of trading patterns are present for SPY,
and our system mostly managed them well. See (Bouchaud 2001; Delpini and Bormetti 2015)
on using typical time scales.

The design of our trading systems includes many special market twists. For instance,
the counter-trend (contrarian) variants of our trading system frequently outperform pro-
trend ones. We actually used both variants simultaneously, which is some kind of hedging.
Contra-trend trading can be successful because of several reasons. Our system needs time
to measure the impact of the news to be sure that this is not “noise”; large trade sizes
are a consideration too (see Gökay et al. 2011). Counter-trend trading is not unusual in
stock markets (Conrad and Kaul 1998). Let us mention here that the initial version of our
trading system mostly relied on the intersections of termination curves with actual charts,
changing the directions of positions correspondingly. It worked reasonably, but reacted
slowly to fast market moves, which was improved via “start 2-bids”, where we used the
same curves to produce signals for opening new positions; this complemented well our
usage of the intersections.

To trade real-time, our system was designed completely automated, a must for any
AI even if they are used interactively. See (Cartea et al. 2015) concerning various as-
pects of automated high-frequency trading. We note that the trades of our system are
fully explainable; it is not a “black box”. Only such AI can be really trustworthy; see, e.g.,
(Horel and Giesecke 2019).

2. Modeling News Impact
In this section, a simple mathematical model of short-term impact of news is suggested.

News-driven fluctuations of share prices are the core examples. We come to certain linear
differential equations, which can be generally solved in terms of hypergeometric functions.
We focus on elementary solutions only. They have market applications, which were
extensively tested in various stock markets, including real-time experiments. There is
another way to obtain essentially the same equations via random processes, but it will not
be touched upon in this paper. See (Engle and Ng 1993); e.g., compare their News Impact
Curves with our ones.

2.1. Hierarchy of News
Let us briefly describe the types of company or industry news, which can be primary

and secondary. The primary ones are basically core events and announcements. For instance,
(a) new products or acquisitions, (b) significant changes of earning estimates by the com-
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pany, (c) upgrades or downgrades by leading market analysts. Major sector, industry, or
economy news are of this kind, too.

Almost any core news generates a flow of secondary news in the form of (highly
correlated) reports, reviews, and commentaries. They mostly present the same core news,
but sometimes can impact our behavior even greater than the original event. In our model,
commentaries will be generally treated on equal grounds with the core announcements.

By reports, we mean analysts’ reports on the core event including perspectives and
predictions. Then reviews collect and present the main findings in reports, mostly aiming at
professional investors. Finally, the news itself and the findings above reach all consumers
via mass media mostly in the form of commentaries.

Importantly, consumers will be influenced by all primary and secondary news more or
less regardless of the level, the “distance” from the actual event. The actual originality is not
the point here. So the impact of the commentaries can be significant and quite comparable
with the impact of the event itself.

The Basic Equation
We assume that the impact of an event at the moment t is proportional to the t-derivative

of the total number of pieces of news reflecting the event after it and before t. The coefficient of
proportionality 0 < c ≤ 1 will be called the reduction coefficient; it depends on time, but
mostly it will be treated as a constant.

The value c = 1 can be reached right after the news, and then c tends to 0 with time, de-
pending on the “investment horizon” (hours, days, months); cf. (Delpini and Bormetti 2015).
Let us comment on this. Generally,

(i) analytic reports and all secondary news tend to soften the expected implications of
the core news,

(ii) commentaries of all kinds disperse the original core news and diminish the expecta-
tions even further,

(iii) the longer time passes after the core event and the core news, the smaller their
impact becomes.

All three mathematically mean that the coefficient c approaches zero as t→ ∞. Indeed,
putting news into perspective is the purpose of analysis and commentaries, but this almost
always reduces the original expectations. In momentum investing, the impact of news fades
faster for short-term investing vs. long-term. Approximately, if the trading positions are in
days or weeks then c ∼ 1/2 can be expected vs. c = 1 for months; it can be significantly
smaller for high-frequency trading. Our tables provide some “natural” c-coefficients for
different trading frequencies, investment categories.

From now on, news will be represented by a positive or negative real number, i.e., we assign
a numerical value to it. Also, we assume that the time distribution of news is essentially
uniform in the following sense.

Let N(t) be the total sum of news values (positive or negative numbers) released from
0 to moment t. Then the number of pieces of news (their total value, to be exact) arriving
from t to t + δ for some δ, i.e., N(t + δ)− N(t), equals approximately c · δ · N(t)/t, which
is δ times the reduced average of all previous news from 0 till t. The greater the intensity
(time-density) of commentaries, etc., triggered by an event, which is N(t)/t, the greater
the number of new commentaries. We come to the following differential equation:

dN(t)
dt

=
c
t

N(t). (1)

It can be solved immediately if c is a constant: N(t) = A tc for a constant A > 0.
When c = 1 the growth of N(t) is linear, i.e., the event does not “fade” with time and
continues to attract constant attention. We disregard that N(t) can be bounded; adding the
“saturation” will be addressed later. A physics-style argument in favor of this equation is its
self-similarity: the solutions are multiplied by some constants when the time units change,
and c does not depend on the choice of units.
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Tree growth. Equations of this type can be expected to have many applications. Let
us give one example. We will switch to a difference counterpart of (1), naturally adding
minimal “maturity”:

fn − fn−1 =
c

n− 2
fn−2 − λ fn−1 for n > 2, λ ≥ 0. (2)

when λ = 0, this is a variant of the famous Fibonacci recurrence with the birth rate c
n−2 , i.e.,

when it is inversely proportional to “time”. The term−λ fn−1 here restricts over-population
by allowing “emigration”.

Setting λ = 0, c=1, the fundamental solutions are: f 0
n = n, f 1

n = Dn/(n− 1)!, where
Dn is the number of n-derangements, permutations of n elements without fixed elements.
The second solution approaches n/e as n→ ∞, so both have linear growth at infinity. We
argue that fn in (2) basically describes the height of a tree at its nth year.

In contrast to the “Fibonacci rabbits”, trees grow linearly at most. The corresponding
fn− fn−1 is proportional to the corresponding fn−2, where the coefficient of proportionality,

“the birth rate”, is roughly the surface area of the root system divided by the volume of the
tree, i.e., it is qualitatively r2/r3 = 1/r. Then we take the “radius” of the tree r proportional
to n. It is directly correlated with the number of tree rings and is approximately about the
same for the tree and its root system. We obtain c

n−2 . This can be somewhat similar to
the growth of neuron nets in our brain. Providing the potential for the peripheral area of
the existing net must be sufficient to keep the whole net active. So the rate of change is
vaguely inversely proportional to the radius, which we make t, assuming that the total
electric charge (“nutrition”) that can be used for this particular net is limited.

Making c ' 1 corresponds to the “middle stage” of tree growth. In the beginning,
the volume of the tree is r2 rather than r3, so the tree can grow exponentially for a short
period of time. Only the “active part” of its root system contributes to the growth, which
eventually diminishes r2 to r or so. This gives the term c

(n−2)2 fn−2 in (2) and results in the
saturation of the tree size at the late stage of its life cycle, which matches real tree growth.
This is parallel to the fact that the reduction coefficient c for N(t) tends to 0 when t→ ∞.

There are obvious differences between news impact and tree growth. For instance,
adding −λ fn−1 is secondary for trees (due to their aging or similar growth reductions),
but this term is of fundamental importance for the news. It reflects “pricing news”; see
Section 2.2. Surprisingly, such different processes are quite similar mathematically, which
clearly indicates that (1) and (2) are of universal nature.

Without going into detail, let us mention that solving (2) and similar difference Dunkl-
type equations generally requires basic (difference) hypergeometric functions and their
variants. This is actually a relatively recent direction; see, e.g., (Cherednik 2005).

2.2. Adding Price Targets
So far, we have not considered the following market-style response to news: when

the news is already priced in, i.e., the current share price already includes it, the effect of
further (secondary) news goes down. Similarly, when the stock is considered underpriced,
positive commentaries have a greater impact. There is a specific market way to address this:
upgrades and downgrades. They generally set new share price targets. The main difference here
from general news is the dependence on the current share price. Generally, upgrades, are all
market, company, or equity news of any levels addressing (depending on) the share prices.

Similar to N(t), we represent upgrades by positive or negative numbers, using the
notation U(t) instead of N(t). Thus U(t), the sum of values of upgrades, depends on the
share price. The following normalization u(t) = U(t)/U(0)− 1 will be convenient below.

Let Pt be the share price and p(t) = (Pt − P0)/P0 be the rate of return from the
price-level P0. The equation above must be corrected for u(t), since U(t) goes down if
the share price “sufficiently” went up after the event, i.e., the news is already priced in.
Similarly, it goes up if the stock is considered undervalued. This correction can be assumed
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proportional to p(t)/t, the average rate of change of p(t) from 0, which is more “balanced”
vs. taking dp(t)/dt here. Thus we arrive at the differential equation:

du(t)
dt

=
c
t

u(t)− 1
σt

p(t). (3)

We note that the term p(t)/t can be replaced by “more aggressive” p(t)tν−1 for
0 < ν ≤ 1; see system (20) and (21) below. For instance, it means for c = 0: the longer p(t)
grows as tν−1, the greater the number of downgrades. i.e., p(t) ≈ Const t1−ν is considered
non-sustainable.

We will switch from now on from N(t) to u(t). Here σ is qualitatively proportional to
the P/E or P/S. More generally, it reflects the expected growth of the company. Mathemat-
ically, σ is essentially as follows.

Let us assume that p(t) is basically linear in terms of t and “shift” t = 0 to the moment
when the company is rated “strong buy”. For sufficiently large t, we can assume that
u(t) ∼ U(t)/U(0) and ignore u(t)/t; so u(t) ∼ 1− p(t)/σ and p(tmax) = σ at t = tmax
such that u(t), the current rating of the company, becomes 0. This moment of time, tmax, is
when analysts change their stock ratings from “buy” to “neutral” on the basis of its price
valuation. So σ is essentially the relative price-target, i.e., σ ∼ p(tmax) = (Ptarg − P0)/P0,
where tmax is the moment of time when the news is fully priced in. We will make this
analysis somewhat more rigorous in Section 2.3.

Now let us involve the differential equation for the share price. Almost no company
event or news influences the share price directly; this depends on the way the market reads
the news. The simplest news-driven equation for p(t) is as follows:

dp(t)
σdt

=
a
t

u(t) + b
du(t)

dt
. (4)

As with N(t), here u(t)/t is the average upgrade from the zero moment in time, which
measures the global news impact from 0, essentially the commonly used consensus rating
of the company shares. The term with du(t)

dt is local : the response to the rate of change of
u(t) at t.

2.3. Logistic Modification
Before further analysis, let us touch upon the modification of Equation (3) under the

assumption that the number of upgrades or downgrades is limited. Let Ũ(t) be the sum of
±1 for upgrades and downgrades, an integer. The relation with U(t) is basically as follows:
Ũ(t) = [U(t)] for the integer part [x] of real x.

Since Ũ(t) is bounded, let u(t) = U(t)/Utop < 1 for some bound Utop. Then (3) must
be modified if we want to use it for sufficiently large t. Namely, we must multiply the right-
hand side of (3) by (1− u(t)), which reflects the “number of remaining commentators”.
One has:

d u(t)/dt = (1− u(t))(
c
t

u(t)− 1
σt

p(t)). (5)

In the absence of the price-term, it is a well-known logistic equation, with the following
modification: the interaction coefficient is proportional here to 1/t. When p(t) ≡ 0, it can
be readily integrated.

Equation (4) remains unchanged:

dp(t)
σdt

=
a
t

u(t) + b
d u(t)

dt
. (6)
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System (5) and (6) has no elementary solutions for a 6= 0. Let us solve it when a = 0,
for b-investing in the terminology below. One has:

u(t) = (β + Btr−β)/(r + Btr−β), r = c− b, (7)

p(t) = σ(bu(t) + β), 0 ≤ β < r, B ≥ 0. (8)

If B > 0, then u(0) = β/r, p(0) = σcβ/r, u(∞) = 1, p(∞) = σ(b + β).
Let us assume that u(0) = 0, i.e., the rating of the company is “neutral” at t = 0.

Then β = 0, p(0) = 0 and p(∞) = (Ptarg − P0)/P0 = σb. So σ is (Ptarg − P0)/(bP0) for the
price-target Ptarg, which matches the interpretation of σ from Section 2.2 for b ∼ 1.

When a 6= 0, the system can be solved numerically, but it is not clear whether the
corresponding solutions are more relevant than those obtained from the original system (3)
and (4). This is especially true if we do not focus on large t, and the simpler the better!
The stochastic and discontinuous nature of price fluctuations also restrict using differential
equations here. Furthermore, a, b, c, σ can depend on time and do depend on the basic
time-intervals, which is another reason to stick to the simplest assumptions.

Thus, we will continue with systems (3) and (4). Furthermore, to address the discon-
tinuous and discrete nature of share prices, we will later switch from this system to “tables”
of its “basic solutions”. The main conclusion we will need from the analysis performed
above is that (Pt − Pt0)/Pt0 after the news at t0 can be assumed Const (t− t0)

r for some r
for short, but not too short, time intervals [t0, t].

2.4. Investing Regimes
Let us solve systems (3) and (4). Recall that it describes fluctuations of share prices

under news-driven investing. Both a, b there are non-negative. The term b du/dt in (4) or (6)
is typical for “local” pure momentum investing, when only the latest upgrades are taken
into account. The term a u(t)/t reflects a more “global”, balanced, and less “aggressive”
approach, when the average of all news values after the event is considered.

We call the case b = 0 pure a-investing, and the case a = 0 pure b-investing. If both
terms are non-zero, it is naturally mixed investing. The greater t− t0 after the major event at
t0, the greater chances that a-investing dominates.

Equations (3) and (4) can be readily integrated. Substituting u(t) = tr, the roots of the
characteristic equation are:

r1,2 = d±
√

D, d = (c− b)/2, D = d2 − a. (9)

Accordingly, unless D = 0, the formula for p(t) is as follows:

p(t) = C1tr1 + C2tr2 if D > 0 for some constants C1, C2, (10)

p(t) = td(C1 sin(
√
−D log(t))+C2 cos(

√
−D log(t))) if D < 0 (11)

We will consider only d > 0. For negative d, p(t) approaches zero for large t and
therefore this is focused on “the final stage” of the impact of an event; our model and
trading system are designed to serve mainly the beginning of this period. We also assume
that c is a constant and that 0 ≤ c ≤ 1, so d ≤ 1/2. In fact, c slowly goes to zero as t
increases and the impact of the event gradually diminishes, but we will not do large t.
Similarly, c may be greater than 1 right after the major event, but this stage is disregarded
too; this is addressed in our trading systems by proper “discretization”.

Let us briefly discuss the oscillatory regime in (11). It can happen only for a-investing
or for the mixed one. According to (11), the quasi-period in terms of log(t) is 2π/

√
−D. So

the durations of the oscillations form a geometric sequence. The magnitude will grow in
time as a power function of degree 0 ≤ d ≤ 1/2. If b = c, then d = 0 and the function p(t)
is bounded.

If the news is important for the share price, a can be significantly larger than d2. Then√
−D ∼

√
a, and the quasi-period for the logarithmic time log(t) is about 2π/

√
a, which

clarifies the role of a.
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Let d = 1/2 for pure a-investing (when b = 0). This gives c = 1, i.e., the initial
news-function N(t) grows linearly. Then the p-function behaves as a sum of random
independent jumps of the share price by σ or −σ for proper σ, “heads or tails”, distributed
uniformly. So our equations have some statistical meaning; cf. (Guéant 2013).

For the pure b-investing with b > 0: p(t) = C1tc−b + C2 and its leading term is C1tc−b,
since a = 0 and c > b. By the way, p(0) may be non-zero here; for instance, we can set
p(t) = (Pt − Pt0)/Pt0 for any point t0 in Equation (4).

Now let us assume that c > 2b, and let b̂ = 0, â = b(c− b). Then the corresponding D̂
is (c/2− b)2, r̂1,2 = c/2± (c/2− b) = {c− b, b}, and p̂(t) = Ĉ1tc−b + Ĉ2tb. Since c− b > b,
the leading term here coincides with that from the previous formula. We conclude that for
c > 2b, pure b-investing gives essentially the same as pure a-investing for proper a. This
happens for sufficiently large t: then b eventually tends to zero.

The difference between these two regimes becomes significant only when b < c < 2b,
i.e., during the middle stage of the “impact period”. Indeed, the exponent r1 cannot be
made smaller than c/2 for a-investing. As to b-investing, r1 = c− b < b approaches zero
when the news “fades” and the contribution of du/dt to p can be disregarded.

Discussion. The leading exponent r in tr, which is r1 in (10) and d in (11), satisfies
d ≤ r ≤ 2d for d = (c− b)/2. Here r ∼ 2d occurs when b-investing dominates. The lower
bound r ∼ d can be reached only when a-investing is strongly present. If b = 0, then
r = c/2 for sufficiently large a. Recall that the news-reduction coefficient c is generally
from 0 to 1; it is close to 1 when the initial news-functions N(t) grows linearly. Practically,
the values r < 0.5 indicate short-term positions. If c = 1, then r ∼ 1 only if a ∼ 0 ∼ b. Each
type of investing has its own natural time-intervals, prime time-units, and its own typical
average durations of positions. The time-unit can be from hours (or smaller) to months, it
was mostly 2h in our trading system. Let us refer to (Bouchaud 2001) on power-laws for
price functions, though our approach is different (we study short-term news impacts). See
also (Mantegna and Stanley 2000; Gabaix 2016).

The C-constants above are essentially proportional to the value of the news and are
related to the company momentum volatility, which depends on the investment horizons
(reflected in the tables below). See, e.g., (Engle and Ng 1993; Andersen et al. 1999;
Fouque et al. 2003). The dependence of the volatility on the horizon is reflected in our
tables below; it is connected with the exponent r. The t-periodicity due to profit-taking is
an important factor here. Then the stochastic volatility can be generally modeled via Bessel
processes, similarly to the usage of fBM discussed a bit below.

Connection to statistical framework. The leading term tr of our p(t) is the square
root of the variance Var(BH) of the fractional Brownian motion BH(t) (fBM for short) for the
Hurst exponent H = r, where r is as above. It also appears in the self-similarity property
of fBM: Br(ts) ∼ trBH(s). One can try to introduce generalized fBM for the full solutions
from (11) or even for those from Section 2.6 below in terms of Bessel functions. A more
systematic way to link our ODE to SDE is via the Kolmogorov-type equations for the
transition probability density; see, e.g., Equation (1.7) from (Katori 2011) for Bessel processes.

We refer to (Cheridito 2001; Gatheral et al. 2018; Guasoni et al. 2017) for the basic
properties of BH(t) and their applications in financial mathematics; fBM is an important
tool for modeling volatility of stock markets. A qualitative reason for the connection with our
approach is that the expected (percent) growth of the share price is essentially proportional
to the standard deviation of the corresponding stochastic process. Another (essentially
equivalent) connection goes via expected values of options. We will not discuss the passage
to SDE any further in this paper; at least, it explains that r is closely correlated with the
market volatility.



Int. J. Financial Stud. 2021, 9, 58 15 of 42

2.5. Two Events, Comments
The impact of two events at −τ < 0 and 0 on the share price p(t) can be naturally

described by the system

du(t)
dt

=
c0

t
u(t) +

cτ

t + τ
u(t)− 1

σ(t + τ)
p(t), (12)

dp(t)
σdt

=
a
t

u(t) + b
du(t)

dt
for c def

== c0 + cτ . (13)

when cτ = 0, it describes the case when there is no news at −τ, but this moment
is taken as the support for the price-target; generally, price-targets do depend on his-
torical levels. Let b = 0 here and below. We obtain: t(t + τ)d2 p/dt2 + ((1 − c)t +
(1− c0)τ)dp/dt + ap(t) = 0, which can be integrated in terms of hypergeometric func-
tions. Namely, p(t) = F(α, β; γ,−t/τ) is a solution for γ = 1−c0, α+β = −c, α, β =

−c/2±
√

c2/4− a; see, e.g., Abramowitz and Stegun (1972), Ch.15, or use Mathemat-
ica function Hypergeometric2F1[α, β, γ, x]. One can also take here p1(t) = t−βF(β,−α−
cτ , 1 + β− α,−τ/t) and p2(t) upon α↔ β in p1(t). When τ/t ∼ 0, such p1,2 with proper
coefficients of proportionality approach tr1,2 as t >> 0 for r1,2 from (9) under b = 0.

Using deviations. Hedging vs. SPY or some index is an example; see, e.g.,
(Bouchard et al. 2018; Bank et al. 2017). The assumption is that after the companies
within the index reacted to some index news at the moment −τ, a specific company’s news
arrives at 0. So if a position in a stock is hedged by investing an equal amount in the
corresponding index in the opposite direction, the return will be p(t)− pind(t), where p(t)
is governed by (12) and (13) an pind, the index’ rate of return, is in the form of (10) or (11) for
proper parameters. Practically, our trading system automatically determines rind, Cind, r, C
such that p(t)−pind(t) ' C tr−Cind trind . However, more refined p(t), solutions of (12)
and (13) instead of C tr, are significant here, especially for (relatively) small t.

We mention that it makes perfect sense to switch here to the corresponding difference
equations. See, e.g., (Cherednik 2018), Section 1, concerning the one-dimensional global
hypergeometric function.

Practical matters. Such adjustments are quite natural, but it appeared that the ele-
mentary solutions of systems (10) and (11) already describe well the real market processes
when we focus on the impact of a single event and when the time interval is not too large.
The following key features of these solutions can be observed in stock markets:

(i) tr-dependence of the envelope of the price-function for 0 < r ≤ 1,
(ii) quasi-periodic oscillations of the price-function in terms of log(t).

Here t is the time from the event. In our trading system, (i) is the key; the peri-
odic oscillations are addressed using different tools, not really connected with solving
differential equations.

Quasi-periodic oscillations (our second observation) are more difficult to observe and
measure. Mathematically, such oscillations are typical for a-investing and do not appear
for pure b-investing. They are “around” the mean values, and generally require involved
statistical analysis; cf. (Fouque et al. 2003). They can be mostly seen only for relatively big
t, so they can be “overwritten” by other general market and company news and trends. As
to (i), the market evidence is solid.

From the perspective of a-investing, the term p(t)/t is some kind of profit-taking,
though we will argue below that taking p(t) instead of p(t)/t is more relevant for “pure”
profit-taking. Practically, the events or commentaries are sometimes used simply as triggers
when profit-taking. Under a-investing, such “overreacting” mathematically means that the
coefficient a becomes relatively large; see (11).

Generally, our model “predicts” that in the absence of other major news, the intervals
between consecutive rounds of a-type profit-taking tend to grow approximately as a
geometric sequence, i.e., we arrive at some kind of Elliot waves (associated with Fibonacci
numbers). Strictly speaking, the profit-taking is the effect of second order, i.e., for the
share price minus its expected average. Mathematically, the average satisfies (11) in our
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model. The oscillations of this difference are actually t-periodic, not just log t-periodic as
for a-investing, which will be addressed below using Bessel functions.

It is important that long-term returns of different companies become comparable in
spite of very different trading patterns and volatility. i.e., they become closer to each
other almost regardless of their short-term behavior. There are of course winners and
losers, but the long-term rate of change is sufficiently uniform even for quite different
types of companies. Mathematically, it means that the smaller r, the bigger the constants C
in (10) and (11). We will reflect this in our g-functions (23)–(26) and tables, making “basic
returns” comparable after 3–4 months. This can be important for extending our system to
trading options.

To conclude, let us emphasize that the analysis above is by no means restricted to
stock markets. Market instruments and tools have various counterparts beyond trading
equities. For instance, short-trading, profit-taking, hedging, doing derivatives are quite
common in some forms, though reach the most sophisticated levels in stock markets. The
discontinuous nature of market data is not unusual too; it will be addressed “practically”
in Section 3.

2.6. Profit-Taking etc.
The model above addresses well quasi-periods under a-investing (or mixed investing).

The periodicity with respect to log(t) is some kind of profit-taking, but the actual one is
significantly more momentum: sell when p(t) reaches some level. This is a major reason for
short-term “periodic” volatility, which is an important feature of stock markets; see also
(Andersen et al. 2017).

Its role is crucial not only for short-term trading; see (Fouque et al. 2003). Figures 3 and 8
in (Fouque et al. 2003) are the keys for them (and for us too). The short-term volatility is
“around” the mean value p(t) = pavrg(t).

The periodicity of the volatility provides an explanation of the profitability of counter-
trend (contrarian) strategies.

For “pure” profit-taking, u(t) must be understood as some market “consensus” on
keeping a stock at its current price. So the “upgrade function” must react here to p(t), not
to p(t)/t as above. This is relative to p, an effect of “second order”, so we will need to
switch to p̃(t) = (p(t)− p(t))/p(t) and the corresponding ũ(t).

The most natural assumption is the proportionality of dp̃(t)/dt to ũ(t). Adding the
term a ũ(t)/t to (15) is possible too (see (21)), but the key change is the replacement of
p(t)/t there by p(t). One has:

dũ(t)
dt

=
c
t

ũ(t)− 1
σ

p̃(t), (14)

dp̃(t)
σdt

= e ũ(t). (15)

This is almost exactly (3.14) from (Cherednik and Ma 2013). Generally, the spinor
Dunkl eigenvalue problem is the differential equation for v = {v0(t), v1(t)}:

dv(t)
dt

def
== { d

dt
v1,

d
dt

v0} = {
c
t

v1, 0} − {λv0, λ′v1}, (16)

See (Cherednik and Ma 2013): Sections 2 and 3, e.g., Lemma 3.4. This is a spinor
variant of the equation dv(t)

dt = c
2t (v(−t)− v)− λv, where we switch to v0 = v(t)+v(−t)

2 ,

v1 = v(t)−v(−t)
2 , considering them as independent functions, i.e., we switch from v to a

super-function v, where λ is extended to a pair {λ, λ′} acting on v “diagonally”.
To solve Equations (14) and (15), we obtain:

t2 d2 p̃
dt2 − ct

dp̃
dt

+ et2 p = 0 = t2 d2ũ
dt2 − ct

dũ
dt

+ et2u + cu, (17)

p̃=A1 p̃1+A2 p̃2, p̃1,2(t)= t|α| Jα1,2(
√

et) for α1,2=±
1+c

2
. (18)
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Here the parameters a, c are assumed generic, A1,2 are undermined constants, and we
use the Bessel functions of the first kind:

Jα(x) =
∞

∑
m=0

(−1)m(x/2)2m+α

m!Γ(m + α + 1)
.

See (Watson 1944, Ch.3, S 3.1) We will also need the asymptotic formula from S 7.21.
There:

Jα(x) ∼
√

2
πx

cos(x− πα

2
− π

4
) for x >> α2 − 1/4.

The latter gives that p̃1,2(t) are approximately C̃ tc/2 cos(
√

et−φ1,2) for some constants
C̃, φ1,2. Interestingly, the phases φ1,2 = ± 1+c

2 π + π
4 are uniquely determined by c. We

conclude that for sufficiently big t, the function p(t) under the profit-taking as above
is basically:

p̃(t) ≈ tc/2(A sin(
√

et− πc/2) + B cos(
√

et + πc/2)
)
, (19)

for some constants A, B; the t-period is 2π√
e .

Let us now replace p̃/σ by p̂ tν−1/σ for 0 < ν ≤ 1 and dũ/dt − eũ(t) by dû/dt −
eû(t)/t in (14) and (15). The system becomes:

dû(t)
dt

=
c
t

û(t)− tν

σt
p̂(t), (20)

dp̂(t)
σdt

=
e
t

û(t). (21)

It can be solved in terms of Bessel function too. The corresponding fundamental
solutions are p̂1,2(t) = tc/2 J±c/ν (

2
√

e
ν tν/2 ). One has:

p̂1,2(t) ≈ Ĉ t
c
2−

ν
4 cos(2

√
etν/2/ν−ψ1,2) as t >> 0,

i.e., p̂(t) is slower than p̃(t) from (19) and the periodicity is for tν/2 in this case; it even
tends to 0 as t→ ∞ for c < ν/2.

Finally, combining (19) with pavrg = p taken from (11), p(t) can be assumed a linear
combination of trcos(ρ log(t)+ζ)

(
1− ε cos($t+ξ)

)
for proper parameters r, ρ, $, ζ, ξ, ε.

This holds asymptotically but seems basically sufficient for practical modeling momentum
trading. We note here a connection with (Cheridito 2001), where the sum of Brownian
motion, BM, with fBM was considered; see also the end of Section 2.4.

The t-periodicity of profit-taking is directly related to short-term volatility in stock
markets. This is generally a stochastic phenomenon (Engle and Ng 1993; Fouque and
Langsam 2013; Fouque et al. 2003). However, as we see, the volatility due to profit-taking
has solid “algebraic origins”. Namely, relatively simple algebraic-type formulas with few
parameters, which reflect investors’ trading preferences, can look quite chaotic. This was
actually the key for us: there are very many traders, but possibly only very few trading patterns.

Such periodicity is generally not too simple to measure practically. The best confir-
mation of the systems of differential equations we propose is in modeling the spread of
epidemics in (Cherednik 2020, 2021). The same equations are used and all their features,
including the saturation and periodicity of the corresponding solutions, can be really seen.

Let us provide a numerical example of such “algebraic volatility”. Using the g-
functions from (23) and (24) with 1 ≤ t ≤ 150h (1 month), let:

p(t) = 0.4(1−sin(t)/3) cos(2π log(t))g(t, 1) (22)

+0.5 (1−sin(t/5)/3) sin(2π log(t))g(t+12, 3).

In spite of a relatively simple formula, the fake chart in Figure 1 exhibits a lot of volatility,
which is mathematically hardly surprising for such trigonometric expressions. Before
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managing real charts, the system was “trained” to trade profitably such fake ones. This was
momentum; catching the periods and quasi-periods was not an objective. We do not have
sufficient “stability theory” for the periods. However, the exponents r can be reasonably
found by the system (automatically) for fake and real charts. In (22), r = 0.137, 0.418 for
g(1), g(3).

20 40 60 80 100 120 140

-6

-4

-2

2

4

6

Figure 1. Model chart: “algebraic volatility”.

3. Market Implementation
3.1. Major Challenges

The first challenge with the mathematical analysis of stock charts and other market
information is that the corresponding functions are of discontinuous nature. Automated
high-frequency trading adds a lot of volatility too (Cartea et al. 2015). This makes the
separation of the signals from noise and trading involved.

The second challenge is that even if the news has clear meaning, the corresponding
trading decisions can depend on many factors. For instance, it can be simply too late to
invest in this particular news. Executing large orders can be with significant losses right
after the news, and so on. The counter-trend (contrarian) variants of our trading system, i.e.,
those selling when the share price goes up and so on, can outperform the pro-trend variants.

The third challenge is picking the right moments for closing positions. We use the
termination curves discussed below and the “signals” opposite to the direction (long or
short) of the position taken, determined automatically. Obviously, the bid-ask spread reduces
the profitability; see (Korajczyk and Sadka 2004). This is one of the reasons why we
optimize returns per position; the positions generally last from 5 to 10 days.

The fourth challenge is that a significant variety of (profitable) strategies is needed
to address market volatility. In our system, using counter-trend and pro-trend variants
simultaneously, employing different opti-parameters, and varying the moments when the
system receives quotes provide reasonable stability. The number of different profitable
variants of the system is practically unlimited: 12 “production lines” were used in real-
time experiments.

The fifth challenge is using weights, which for us are mainly those based on the results
of the prior optimization. We obviously rely mostly on the equities the most suitable for
our system, i.e., those performed the best during the optimization process. However, the
opti-parameters and weights based on past performance can fail in the future.

The sixth is simply due to the novelty of our approach. The usage of our 2-bid tables
for creating momentum trading systems, trading options, and technical analysis of stocks
requires experience. The pont-tables from Section 4.3 can help to get used to our 2-bids.
We also provide various performance results of our own system, which can be used as
“benchmarks” for those who follow our approach.

3.2. Forecasting
The work of our system is based on the forecasting curves, automatically produced

time-predictions for share prices. The termination curves are their shifts up or down with
some coefficients of proportionality providing some room before their intersection with
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the actual share price graphs. These intersections trigger the terminations of the taken
positions (if any). This is similar to trading US-style options, when the termination curves
are horizontal lines shifted up or down for calls or puts. The curves we use are essentially
b (time)r for “bids” b and exponents r, assigned to the seven “categories” discussed below
(the main four and their three consecutive averages).

The basic functions we use are as follows:

g(t, 1) = 0.5 · Floor[1548 ( 0.26t + 0.74)x − 1548]/100 + 1, x = 0.137,

in the case of the super category (c = 1), (23)

g(t, 3) = 2 · Floor[10 ( 2(t/d)− 1)x]/10 for x = 0.418,

in the case of the ultra category (c = 3), (24)

g(t, 5) = 0.1 · Floor[22.875 ( 2.024
t

5d
− 1.024)x + 12.125], x = 0.5678,

in the case of the extra category (c = 5), (25)

g(t, 7) = 3.5 · (Floor[10.25 ( t/(22d))]/10 + 1), i.e., here x = 1,

which serves the regular category (c = 7), (26)

where t is measured in hours; 1h is the prime time-interval in the super case, d = 6.5h, the
duration of one Wall Street business day, is that in the ultra-category. Accordingly, the
prime time-intervals are 1 week = 5d in the extra category and 1 basic month = 22d in the
regular category. Here x ≈ 0.137 + log(u)/6 for u = {1, 1d, 2.5d, 22d}, where 2.5d (instead
of 5d for c = 5) is due to some practical reasons. Qualitatively, x is supposed to depend
linearly on the logarithm of the corresponding prime time-interval, but this can vary.

The bids are discrete and must be large enough (at least 1) to form an admissible 2-bid,
which is a pair {b = bid, c = category}. The 2-bids are ranked lexicographically, first with
respect to b (the bigger the better) and then, if the bids coincide, with respect to c: the
smaller c and its prime time-interval the better. The “winner” is the top bid. Bids below
the threshold in their categories are ignored as noise. The thresholds for prime-intervals are
1, 2, 3.5, 7 for c = 1, 3, 5, 7 times some common rescaling coefficient β; see the tables below.

Here Floor[z] means the maximal integer no greater than z. For 0 < t < t•, where
t• = 1, 1d, 5d, 22d correspondingly (t•i will be used here for i = 1, 3, 5, 7), we extend the
functions above by a uniform linear formula: g(t•)(2t + t•)/(3t•). Also, we define g-
functions for even categories c = 2i, where 2i = 2, 4, 6, as the averages of the neighboring
g, i.e., g(t, 2i) = (g(t, 2i− 1) + g(t, 2i + 1))/2; the prime time-intervals are t•2i = 2t•2i−1 (not
the corresponding averages).

Finally, the basic functions will be b g(t, c) , where b is the bid (an integer), c the
category. The trading system automatically determines the bids backward as price-changes
in percent divided by the corresponding g. This is performed at every moment when the
system obtains quotes in all seven categories, and with some depth, the number m of steps
back. i.e., it constantly calculates for the rescaling coefficient β :

bi(m) = Floor
[

100 β
| pt − pt−mt•i

|
g(mt•i , i)pt−mt•i

]
, 1 ≤ i ≤ 7, β ≥ 1, (27)

for the corresponding t•i and a sequence m = 1, 2, 3, . . . (mostly, 1 month back); here pt is
the share price at t, | · | the absolute value.

Then the highest 2-bid bi◦(m◦) among all i and m becomes the top 2-bid; if two 2-bids
coincide, the smaller m◦ the better. The corresponding bi◦g(t − t◦) for t◦ = t − m◦t•i◦ ,
shifted and with some proportionality coefficient, becomes the termination curve, which
can be changed if a higher top 2-bid arrives. To improve the performance, the top 2-bids
are renewed only when ±p(t) decelerates with some threshold (subject to optimization);
± for long/short or∓ for the “counter-trend”. The system also constantly produces top start
2-bids, changed when ±p(t) accelerates (with their threshold). They are used for opening
positions, forecasting, and terminations of the trades in the opposite mode.
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Finally, the trading signals are the increases of the top 2-bids or top start 2-bids and the
intersections with the termination curves.

Consecutive increases of top bids for the same equity in the same direction are used to
open multiple positions: of level 1 on the first bid, of level 2 for the first increase, and so on.
The trades based on level 2, 3 bids mostly outperform those of level 1. However, omitting
level 1 bids significantly reduces the total amount that can be invested; in professional
trading, the greater the better.

3.3. Tables of Two-Bids
Recall that there are four categories super (1), ultra (3), extra (5), and regular (7), and

also intermediate even categories. They are governed by different bid-tables, where 2-bids
are pairs (b, c). Usually, b are integers from 1 to 5. Practically, two to three categories are
mostly used for individual companies, though the system becomes less stable with two
categories. This can be greater than three when trading indices, but three seems reasonably
optimal. The average durations of positions are mostly in the range from 3–15 days for us,
so the regular category rarely occurs in our simulations and real-time runs.

The termination can be only due to the signals, unless for clear “hangs”, which requires
special consideration; see, e.g., (Broadie et al. 2011). The signals here are intersections with
termination curves or start bids in the opposite direction. So the average durations can
be adjusted only by choosing proper combinations of categories and initial parameters;
all parameters are subject to machine optimization. The system finds many “profitable”
and stable combinations of parameters, which can be used to obtain desired durations
of positions and for other adjustments. New positions are mostly open due to the new
start bids.

Using different initial values of parameters, pro-trend and counter-trend (contrarian)
modes, weights, and so on results in many different variants. Much also depends on the
moment the system enters the market, obtains quotes, and the prior history. The system was
proven to be able to produce a lot of profitable trading lines, which resembles very much human
decision-making. Even with playing simple games, there are almost always various ways
to win; so one can choose.

Super table (c = 1):
b \ h | 1 h 2 h 1 d 5 d 1 m 3 m
1 | 1 1.5 3 6.5 11 15
2 | 2 3 6 13 22 30
3 | 3 4.5 9 19.5 33 45
4 | 4 6 12 26 44 60
5 | 5 7.5 15 32.5 55 75
6 | 6 9 18 39 66 90.

Here and below 1 d equals 6.5 h, 1 m means 22·6.5 h, 3 m = 65· 6.5 h (working days
only). The (expected) return at t for a bid b and category i is simply bg(t, i), assuming that
the initial moment is t = 0.

Ultra category (c = 3):
b \ d | 1 d 2 d 5 d 15 d 45 d 6 m
1 | 2 3 5 8 13 20
2 | 4 6 10 16 26 40
3 | 6 9 15 24 39 60
4 | 8 12 20 32 52 80
5 | 10 15 25 40 65 100
6 | 12 18 30 48 78 120.

Here, additionally, 6 m means 6 months, which is 126 d, 2 months are (approximately)
45 d; d always means 6.5 h. Only working days are counted.

Extra category (c = 5):
b \ w| 1 w 2 w 1 m 3 m 9 m
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1 | 3.5 5.5 8.5 15.5 28
2 | 7 11 17 31 56
3 | 10.5 16.5 25.5 46.5 84
4 | 14 22 34 62 112
5 | 17.5 27.5 42.5 77.5 140,

where, as above, 1 week = 5 days, 1 months = 22 days, 3 months = 65 days,
9 months = 191 day, 12 months= 252 days (to be used next).

Regular category (c = 7):
b \m| 1 m 2 m 4 m 12 m
1 | 7 10.5 17.5 44.5
2 | 14 21 35 89
3 | 21 31.5 52.5 133.5
4 | 28 42 70 178.

Comparing the categories. Let us compare the minimal admissible bids (basic returns)
in the different categories for the 13 basic durations, mostly taken from the tables above.
Those from the tables above are in bold; the others are calculated using the corresponding
g-functions:

cat 1 h 2 h 1 d 2 d 1 w 2 w 3 w 1 m 2 m 3 m 4 m 6 m 9 m
7 — — — — — — — 7 10.5 14 17.5 23.8 34.3
5 — — — — 3.5 5.5 6.9 8.5 12.7 15.5 18.0 22.2 28
3 — — 2 3 5 6.8 8 9.6 13 15.2 17.0 20 23.8
1 1 1.5 3 4.3 6.5 8.5 9.7 11 13.6 15 16.1 17.8 19.7

Recall that we set as above:

1 d = 6.5 h, 1 w = 5 d, 1 m = 22 d, 2 m = 45 d,

3 m = 65 d, 4 m = 86 d, 6 m = 126 d, 9 m = 191 d. (28)

Recall also that 2-bids are ranked naturally: first b, the bigger the better, then c (when
b coincide) with the priority to smaller c, the shorter the durations of positions the better.

Note that for b = 1, which is the smallest bid, the returns after 3 or 4 months are
approximately comparable for all four categories. This is by design. The expected return
at 2t•i is 1.5 greater than that at t•i , which is the prime time-interval for the corresponding
category (i = 1, 3, 5, 7), with a minor deviation for i = 5 (the extra category). The curves
we use for prediction (and termination) heavily depend on the category, but they produce
reasonably comparable returns after 3–4 months; we aim at using and trading options here.

Any bid is automatically considered in all “higher” categories. For instance, the small-
est possible bid, which is the return of 1% next hour, in the super category, is “equivalent
to” 3% next day, so it “beats” the smallest ultra-bid, which is 2% a day. Then it is supposed
to generate 6.5% next week (vs. minimal 3.5% in the extra category), and 11% next month
(vs. 7% in the regular category). To make this table work, 2 times every bid in the same
column from the comparison table (with the same durations) is supposed to be greater
than any bid there, which holds. This matches well bidding in contract card games: the
greatest bid wins regardless of the suit.

The functions we used above are designed to provide such natural logical inter-
relations when comparing bids from different categories. Also, an integrality of some (not
all) bids is a consideration. This can help to use these tables manually without computers,
though the mathematical discretization is the main point here.

To avoid any misunderstanding, the bids above begin with 1 (1% per hour in the
super category) mostly for the sake of readability. The trading system divides these tables
(all of them) by the common rescaling coefficient β. For instance, the division of all bids
by 2 makes sense: 0.5% per hour is more realistic than 1%. Such rescaling significantly
increases the number of “admissible 2-bids”, which is generally needed for the trading
system to be stable and react promptly to the changes of share prices. This coefficient β is
subject to machine optimization, as well as all other parameters.
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Finally, let us provide the table where we compare in the same way the minimal bids
in all seven categories:

cat 1 h 2 h 3 h 1 d 2 d 4 d 1 w 2 w 1 m 2 m 3 m 4 m
1 1. 1.49 2.27 3. 4.31 5.92 6.49 8.44 10.99 13.57 15.01 16.16
2 — 1.28 1.87 2.5 3.65 5.16 5.74 7.62 10.29 13.28 15.1 16.57
3 — — — 2. 3. 4.4 5. 6.8 9.6 13. 15.2 17.
4 — — — — 2.54 3.71 4.25 6.15 9.05 12.85 15.35 17.5
5 — — — — — — 3.5 5.5 8.5 12.7 15.5 18.
6 — — — — — — — 4.97 7.75 11.6 14.75 17.75
7 — — — — — — — — 7. 10.5 14. 17.5.

3.4. Basic System Operations
SIGNALS. Producing buy signals and sell signals is the main purpose of our (any) trad-

ing system. When trading, our system generally processes the quotes for the periods about
one month backward, employing the parameters obtained during the prior optimization
and the weights based on the optimization too.

There can be multiple signals in the same direction, the first, the second, and so on.
The consecutive number of a signal is called the level of the signal. Using such levels is a
special feature of our system. Generally, the signals of levels 2-3 are better “protected“ than
those of level 1, the first signals in a certain direction; only the signals of level 1, 2, 3, 4 were
used in real-time runs.

Statistically, the number of signals of level 1, NL1, matches that for 2 + 3 + 4: NL1 ∼
NL2 + NL3 + NL4. Then NL2 ∼ NL3 + NL4, and so on. The combination of signals of
levels 2 and 3 gave better performance than the usage of all (statistically, about 20% better
than that for level 1), but the signals of level 1 are also of good quality.

The signals are mostly treated as orders. For instance, one sells short on a sell signal and
then buys to cover upon the first buy signal. This is the other way around for counter-trend
trading. The signals can be due to sufficiently big bids or intersections with termination
curves. The positions can be opened on the first, second signal or the signals of higher
levels. The positions of all levels are terminated altogether after the first signal comes in the
opposite direction.

Practically, up to 4 simultaneous positions can be open with an equity if the signals
of all 4 levels were present. All of them will be closed at once upon the first signal in the
opposite direction. We suggested some ways to split the termination of big positions into
several steps, say, involving “neighboring lines”, however, this was not tested. Executing
large orders is a well-known market concern (Moazeni et al. 2010; Gökay et al. 2011;
Cartea et al. 2015).

Using levels resembles using leverage, but the system does it in its own ways. Also,
we note that the signals are produced independently for different equities, although the
system can work in more sophisticated regimes, including different variants of hedging.

RETURNS. The return per one position is the main quantity the system optimizes. Here
the ask-bid spreads, the slippage with execution of the orders, and the broker commission
must be subtracted from the returns, practically, about 0.15–0.25% per one position for
“professional trading“. We always calculate pure returns, without taking the spread and similar
losses into consideration. The returns we provide below are mostly pure returns per position,
but we always calculate the usual (pure) returns during the periods under consideration too.

Pure returns like 0.4% per position are, generally, sufficient for profitability; the system
can do better than this in spite of relying on quotes only, as the source of market information,
various delays, and charges. The actual durations of the positions the system created were
mostly in the range of 5–10 days.

OPTIMIZATION. The optimization procedures can be for trading Longs Only, Shorts
Only, or (mostly) for trading both, L and S.

The optimization (“education”) periods are of obvious importance. Our system does
not have any prior information about the market and equities beyond the information
that it can extract from the data provided during the optimization periods. They can be
historical or based on prior trades by the system. Generally, the optimization periods
have to be 1 year or longer. Ideally, they must be diverse, i.e., must contain sufficiently
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long periods when the stock goes up and when it goes down. The more “difficult” the
optimization period, the better and more stable the out-of-sample returns.

These factors are of importance for choosing the optimization periods, and creating
real “trading lines”. However, after this, the real-time adjustment of parameters becomes
entirely automated. Mostly, the “real-time optimization” is for 6-month periods backwards.

Generally, the durations from 1 to 2 years of the optimization periods are statistically
reasonable to react properly to different types of volatility and various market trends.
However, 6 month periods and a simplified optimization are good enough to keep “lines”
running, until they are redesigned on the basis of more systematic optimization.

DURATIONS. The end-user can request the desired average durations of positions. For
our system, the range from 5 to 10 days was considered reasonable. However, if the
categories, trading modes, and the companies to trade are prescribed, it is for the system to
determine the most optimal “lengths” of positions. The positions are opened and closed
entirely on the basis of the signals, so the desired duration is not imposed in any form during
trading and tests. Generally, if the actual duration (length) of positions during the control
(out-of-sample) period appears sufficiently close to the desired duration, then this is just a
confirmation that the optimization was relevant. Stable rhythm is an important indicator of
the stability of the system.

3.5. Testing the System
Multiple experiments were conducted using historical and real-time data. Special

attention was paid to trading liquid companies and SPY, the trust that owns stocks in the
same proportion as that represented by the SP500 stock index.

CONTROL PERIODS. The most systematic historical testing was for the period
2006/01/01–2007/04/13. More exactly, five 4 month control periods (out-of-sample!)
were taken:
Period 1: 2006/01/01–2006/04/30, Period 2: 2006/04/01–2006/07/30,
Period 3: 2006/07/01–2006/10/30, Period 4: 2006/10/01–2007/01/30,
Period 5: 2007/01/01–2007/04/13.

The last period was a little shorter.
The historical testing consisted of

(i) optimization during the 12 month optimization period taken backward from the begin-
ning of the control period,

(ii) “trading from scratch” during the next 4 month control period with closing all positions
at the end of the period.
Note that the control periods overlap (1 month), to simulate continuous trading,

without closing all open positions at the ends of periods; this is how the system really
works. The optimization periods and the corresponding control periods do not overlap of
course. The system was used in the pro-trend variant in this test.

We evaluate the AVERAGE 4 MONTH RETURN for five 4 month control periods by
the formula:

AVRG RETURN = 88 ∗ (
5

∑
i=1

RETi ∗NUMi)/(
5

∑
i=1

LNGTHi ∗NUMi),

where 88 is the average number of business days in 4 months, RETi, NUMi, and LNGTHi
are the corresponding RET, NUM, LNGTH, the average return per position, the number of
positions, and the average length (duration in business days) of one position during the
corresponding 4 month period.

TRADING SPY (LONG ONLY). Let us provide the results of control “trading” SPY ,
without short positions and in the pro-trend regime. Generally, trading SPY is quite a
challenge; see, e.g., (Fouque et al. 2003) concerning some aspects of its fluctuations.
Mathematically, long and short trading are on equal grounds; addressing possible negative
developments is part of any risk-managements, which is quite universal.

The results for the signals of 4 levels are presented separately. By num, ret, lngth
we denote the number of (long only) positions, the returns per position, and their durations
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for each level. The number in (·) is the corresponding standard deviation. The averages
for all 5 periods, RETURN, LNGTH, and AVR CHANGE are provided. We mention that RETURN
becomes 15.3% in the (well-tested) variant with LNGTH = 5.53 d, instead of 3.0 d, which can
be more suitable for end-users; the duration can be made even longer, but this can reduce
profitability.

TRADING SPY (LONG ONLY)
AVERAGE POSITION LNGTH: 3.0 d;
AVERAGE 4 MONTH RETURN: 14.9%;
AVR SPY 4 MONTH CHANGE: 4.80%.

PERIOD: 20060101-20060430, SPY CHANGE=4.6%
NUM=18 RET=0.72(0.37) LNGTH=3.0d ALL
num=10 ret=0.58(0.38) lngth=3.1d lev=1
num=4 ret=0.87(0.23) lngth=4.0d lev=2
num=2 ret=0.79(0.19) lngth=3.1d lev=3
num=2 ret=1.1(0.15) lngth=0.5d lev=4
PERIOD: 20060401-20060730, SPY CHANGE=-1.0%
NUM=13 RET=0.45(1.26) LNGTH=5.2d ALL
num=4 ret=-0.23(1.15) lngth=7.0d lev=1
num=3 ret=0.17(1.05) lngth=6.3d lev=2
num=3 ret=0.97(1.12) lngth=3.7d lev=3
num=3 ret=1.11(1.19) lngth=3.3d lev=4
PERIOD: 20060701-20061030, SPY CHANGE=9.0%
NUM=23 RET=0.56(0.43) LNGTH=2.2d ALL
num=13 ret=0.44(0.42) lngth=2.1d lev=1
num=5 ret=0.44(0.26) lngth=2.2d lev=2
num=3 ret=0.8(0.15) lngth=2.9d lev=3
num=2 ret=1.28(0.22) lngth=2.0d lev=4
PERIOD: 20061001-20070130, SPY CHANGE=8.5%
NUM=12 RET=0.59(0.35) LNGTH=2.2d ALL
num=8 ret=0.46(0.33) lngth=2.4d lev=1
num=3 ret=0.89(0.12) lngth=2.3d lev=2
num=1 ret=0.8(0.09) lngth=0.8d lev=3
PERIOD: 20070101-20070413, SPY CHANGE=2.0%
NUM=17 RET=0.1(1.47) LNGTH=2.4d ALL
num=8 ret=0.08(1.58) lngth=2.4d lev=1
num=5 ret=0.22(1.7) lngth=2.2d lev=2
num=3 ret=0.31(0.52) lngth=2.2d lev=3
num=1 ret=-0.94(0.02) lngth=3.1d lev=4.

Short trading with a market that essentially goes up is quite a challenge for any trading
system. Short trading here provides some “insurance” for the periods when SPY goes
down. Some losses can be acceptable when it goes up, but the system actually remains
profitable. Let us demonstrate this for the same periods and data. As we wrote, the bid-ask
spread is not counted, not too high for liquid assets.

TRADING SPY (SHRT ONLY)
AVERAGE POSITION LNGTH: 3.2 d;
AVERAGE 4 MONTH RETURN: 3.15%;
AVR SPY 4 MONTH CHANGE: 4.80%.

PERIOD: 20060101-20060430, SPY CHANGE=4.6%
NUM=33 RET=0.02(0.72) LNGTH=3.7d ALL
num=14 ret=-0.06(0.81) lngth=3.5d lev=1
num=10 ret=0.19(0.69) lngth=3.2d lev=2
num=5 ret=-0.11(0.51) lngth=4.6d lev=3
num=4 ret=0.(0.62) lngth=4.5d lev=4
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PERIOD: 20060401-20060730, SPY CHANGE=-1.0%
NUM=46 RET=0.5(0.61) LNGTH=2.7d ALL
num=18 ret=0.31(0.65) lngth=2.8d lev=1
num=13 ret=0.6(0.58) lngth=2.8d lev=2
num=8 ret=0.65(0.49) lngth=2.7d lev=3
num=7 ret=0.64(0.53) lngth=2.0d lev=4
PERIOD: 20060701-20071030, SPY CHANGE=9.0%
NUM=66 RET=0.04(0.77) LNGTH=2.9d ALL
num=24 ret=0.01(0.83) lngth=2.7d lev=1
num=15 ret=0.03(0.75) lngth=3.4d lev=2
num=14 ret=0.04(0.75) lngth=3.1d lev=3
num=13 ret=0.09(0.65) lngth=2.6d lev=4
PERIOD: 20061001-20070130, SPY CHANGE=8.5%
NUM=42 RET=0.05(0.64) LNGTH=4.4d ALL
num=14 ret=-0.18(0.7) lngth=4.5d lev=1
num=12 ret=0.11(0.56) lngth=4.4d lev=2
num=10 ret=0.21(0.62) lngth=4.0d lev=3
num=6 ret=0.18(0.49) lngth=4.8d lev=4
PERIOD: 20070101-20070413, SPY CHANGE=2.0%
NUM=68 RET=0.(0.93) LNGTH=2.5d ALL
num=31 ret=0.09(0.96) lngth=2.0d lev=1
num=17 ret=0.06(1.08) lngth=2.6d lev=2
num=11 ret=-0.17(0.68) lngth=2.8d lev=3
num=9 ret=-0.22(0.7) lngth=3.2d lev=4.

TRADING LIQUID COMPANIES. For the same periods, let us present data for “trading”
of 165 stocks, mostly liquid. It is for longs and shorts and pro-trend, i.e., essentially under
the mean reversion trading. The AVERAGE LNGTH = 5 and RETURN = 9.56% are the averages
over all five periods; NUM and num are the numbers of positions.

AVERAGE POSITION LNGTH: 5.0 d;
AVERAGE 4 MONTH RETURN: 9.56%;
AVR SPY 4 MONTH CHANGE: 4.80%.

PERIOD: 20060101-20060430, SPY CHANGE=4.6%
NUM=2236 RET=0.64(3.4) LNGTH=5.2d ALL
num=1105 ret=0.55(3.57) lngth=5.4d lev=1
num=602 ret=0.68(3.25) lngth=5.2d lev=2
num=344 ret=0.81(3.31) lngth=5.1d lev=3
num=185 ret=0.79(2.89) lngth=4.7d lev=4
PERIOD: 20060401-20060730, SPY CHANGE=-1.0%
NUM=2433 RET=0.14(4.08) LNGTH=5.4d ALL
num=1169 ret=0.13(4.19) lngth=5.3d lev=1
num=628 ret=0.16(4.12) lngth=5.6d lev=2
num=394 ret=0.09(3.89) lngth=5.4d lev=3
num=242 ret=0.25(3.78) lngth=4.9d lev=4
PERIOD: 20060701-20071030, SPY CHANGE=9.0%
NUM=2401 RET=0.66(3.93) LNGTH=4.5d ALL
num=1248 ret=0.64(3.92) lngth=4.4d lev=1
num=619 ret=0.74(3.91) lngth=4.5d lev=2
num=344 ret=0.53(3.98) lngth=4.5d lev=3
num=190 ret=0.7(3.99) lngth=4.2d lev=4
PERIOD: 20061001-20070130, SPY CHANGE=8.5%
NUM=2174 RET=0.71(3.67) LNGTH=5.2d ALL
num=1101 ret=0.67(3.73) lngth=5.2d lev=1
num=566 ret=0.77(3.66) lngth=5.2d lev=2
num=324 ret=0.74(3.54) lngth=5.d lev=3
num=183 ret=0.73(3.62) lngth=5.2d lev=4
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PERIOD: 20070101-20070413, SPY CHANGE=2.0%
NUM=1812 RET=0.65(3.05) LNGTH=5.d ALL
num=934 ret=0.56(3.1) lngth=5.1d lev=1
num=476 ret=0.79(3.05) lngth=5.d lev=2
num=257 ret=0.71(3.06) lngth=4.9d lev=3
num=145 ret=0.62(2.63) lngth=4.9d lev=4.

The list of stock symbols of these companies is as follows:

"AA", "AAP", "AAPL", "ABC", "ABT", "ACAS", "ADBE", "ADM", "ADP", "ADSK",
"AIG", "AIV", "ALL", "AMAT", "AMGN", "AMTD", "AMZN", "ANF", "ANN", "APA",
"APC", "ATI", "AVP", "AXP", "BA", "BAC", "BBBY", "BBY", "BEAS", "BEN",
"BHI", "BJS", "BMET", "BMY", "BNI", "BP", "BRCM", "BSC", "C", "CAL", "CAT",
"CCU", "CELG", "CEPH", "CFC", "CHK", "CHRW", "CHS", "CMCSA", "CMCSK", "CMI",
"COF", "COP", "COST", "CSCO", "CTSH", "CVS", "CVX", "D", "DE", "DELL",
"DO", "DVN", "EBAY", "EK", "EOG", "EQR", "ERTS", "ESRX", "FD", "FDO",
"FDX", "FNM", "FPL", "FRE", "GE", "GENZ", "GG", "GILD", "GLW", "GM", "GPS",
"GRMN", "GS", "GSF", "HD", "HON", "HPQ", "IBM", "INTC", "IP", "ITG", "ITW",
"JCP", "JNJ", "JPM", "JWN", "KLAC", "KO", "KR", "KSS", "LEH", "LLY", "LMT",
"LNCR", "LOW", "LRCX", "MCD", "MER", "MET", "MIL", "MMM", "MO", "MON",
"MOT", "MRO", "MRVL", "MSFT", "MXIM", "NBR", "NE", "NEM", "NKE", "NOV",
"NSC", "NUE", "ORCL", "OXY", "PEP", "PFE", "PG", "POT", "PRU", "QCOM",
"RIG", "ROK", "SBUX", "SLB", "SNDK", "SPG", "STN", "SU", "SUN", "SUNW",
"SYMC", "TEVA", "TGT", "TWX", "TXN", "UNH", "UNP", "UTX", "VLO", "VNO",
"VZ", "WAG", "WB", "WFMI", "WMT", "WYE", "X", "XLNX", "XOM", "XTO", "YHOO".

Let us combine all five control intervals in one period (avoiding terminations of the
ends of the intervals) and show all levels and the corresponding numbers of positions
taken, NUM for all and num for levels; the lengths are the average durations of the positions.
One has:

Period: FROM 1/1/2006 TO 4/13/2007

NUM=9332 RET=0.6 LNGTH=5.5d ALL
num=4143 ret=0.52 lngth=5.6 lev=1
num=2228 ret=0.67 lngth=5.4 lev=2
num=1285 ret=0.63 lngth=5.3 lev=3
num=735 ret=0.69 lngth=5.1 lev=4
num=416 ret=0.76 lngth=5.3 lev=5
num=237 ret=0.6 lngth=5.6 lev=6
num=131 ret=0.55 lngth=5.7 lev=7
num=76 ret=0.57 lngth=5.5 lev=8
num=54 ret=0.99 lngth=4.9 lev=9
num=27 ret=0.52 lngth=5. lev=10.

A simplified optimization was performed here, with only two fixed categories (c = 2, 4)
and a reduced number of iterations. For this period, 24 stocks (from 165) performed nega-
tively, including INTC, DELL, EBAY. Trading such “heavy-weighters” generally requires
full optimization and at least three categories. However here we made the optimization
fully uniform for all companies and fast, aiming at thousands of companies. The opti-
mization for INTC or similar, if this is the objective, must be done more thoroughly. The
following 24 companies had negative returns:

ADBE num= 90 ret=-0.29% lngth=3.9
AMGN num= 49 ret=-0.48% lngth=9.1
APA num= 66 ret=-0.25% lngth=5.6
BJS num= 68 ret=-0.88% lngth=6.9
CHK num= 58 ret=-0.7% lngth=8.1
CHS num= 74 ret=-0.4% lngth=6.1
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COF num= 49 ret=-0.05% lngth=6.4
COP num= 45 ret=-0.51% lngth=9.2
DELL num= 88 ret=-0.32% lngth=4.8
EBAY num= 101 ret=-0.51% lngth=4.3
EOG num= 82 ret=-0.64% lngth=5.4
HD num= 47 ret=-0.05% lngth=8.5
INTC num= 89 ret=-0.53% lngth=7.1
JNJ num= 26 ret=-0.94% lngth=11.6
MMM num= 50 ret=-0.53% lngth=7.2
MOT num= 67 ret=-0.86% lngth=5.3
NBR num= 80 ret=-0.99% lngth=5.3
NOV num= 87 ret=-0.66% lngth=5.1
SNDK num= 90 ret=-0.73% lngth=2.8
SUN num= 79 ret=-1.04% lngth=3.8
SYMC num= 83 ret=-0.69% lngth=4.2
TEVA num= 80 ret=-0.15% lngth=4.2
TWX num= 46 ret=-0.27% lngth=10.4
XLNX num= 82 ret=-0.16% lngth=5.5.

Here and above only signals of levels no greater than 4 were used for trading. We
invested a symbolic $100 in every position, so multiple signals in one direction increased
this amount up to $400, which resembles trading on margin. The first signal in the opposite
direction (for this stock) results in the termination of all positions. This regime can signifi-
cantly improve profitability. Higher levels are more frequent for actively traded companies,
so this is some kind of leverage.

We do not use weights here. Let us just mention that investing only in 100 companies
from 165 above with the best optimization results constantly improves the performance
of the systems; which is a variant of using weights. However, some companies with solid
optimization returns, i.e., suitable for our system, performed just so-so during the control
periods. This is the nature of stock markets, discussed well in the literature; see, e.g.,
(Yang and Zhang 2019).

Let us now provide some auto-generated results of real-time trading simulation with
170 companies, similar to those listed above, under long and short with 4 levels (L1, L2, L3,
L4), and for 3 “production lines” (A,B,C). The lines were with different “opti-parameters”
and/or different entry points; “B” was counter-trend. The first half, “no weights”, describes
the uniform trading of all companies, the second half is for the 100 companies with the best
returns during the optimization:

TRADING FROM 2007, 2, 20 TO 2007, 6, 4; ALL, NO WEIGHTS:

RET AVR A: RETL1=0.68 RETL2=0.76 RETL3=0.89 RETL4=1.04
RET AVR B: RETL1=0.67 RETL2=0.7 RETL3=0.86 RETL4=0.84
RET AVR C: RETL1=0.61 RETL2=0.7 RETL3=0.75 RETL4=0.75

TRADING FROM 2007, 2, 20 TO 2007, 6, 4; FOR 100 FROM 170:

RET AVR A: RETL1=0.57 RETL2=0.79 RETL3=1.16 RETL4=1.4
RET AVR B: RETL1=0.96 RETL2=1.04 RETL3=1.23 RETL4=1.23
RET AVR C: RETL1=1.08 RETL2=1.11 RETL3=1.19 RETL4=1.17.

The returns here are per position; the average position lasted about 5 days; SPY
increased 5.5% during 2007/02/20–2007/06/04. Actually, about 1000 companies were
traded for this period combined in groups based on trading volumes, with about 170 in
each. Every company was traded in 12 different “lines“, so the total was 72 lines. The
average return was about 0.7% per position; the average position was about 5 days. The
results above are for 3 lines only.

The optimization procedure is based on the gradient method and is actually not far
from the methods used in networks; see (Borovykh et al. 2019; Horel and Giesecke 2019). It
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was almost always with solid returns for any equities and “learning periods” in spite of
using very few parameters. This alone is some discovery. However, predicting the future
is, of course, much more subtle and much less certain, in spite of the fact that risk-taking
preferences of investors are quite conservative. In our approach, we only try to predict the
ways investors react to news, but not the news itself! See here, e.g., (Chinthalapati and
Tsang 2019) for various algorithms used in financial mathematics.

3.6. Some Charts
To clarify the logic of the decision-making inside the system we will provide the

performance graphs describing pro-trend, long and short “trading” SPY and XAU (Gold
& Silver) using the historical stock quotes once a day.

In the trading charts we provide, all signals, trades, positions, and returns can be seen
under sufficiently high magnification. These charts are upon the optimization, i.e., not for
the control periods, where the usage of “future” is excluded. We provide them mostly to
clarify the “logic” of the system. Generally, using day-quotes only is a serious demerit; the
system works reasonably, but the performance is significantly worse than trading SPY with
three quotes a day.

Trading indices and commodities generally requires special approaches; see, e.g.,
(Fouque et al. 2003; Guasoni et al. 2019). Our system manages them reasonably, but it
appeared necessary to increase the number of used categories to four, especially for SPY,
versus our usual two to three for individual companies. Indices and some commodities are
subject to many kinds of investing and hedging.

We use green, grey, and cyan correspondingly for the price-change, the returns based
on level 1 signals, and those based on level 2 signals. Correspondingly, buy-sell signals
are marked by blue-red rectangles-ovals; large ones mark trades for level 1 signals. See
Figures 2 and 3.
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SPY: green. MODE: LONG,SHRT. LEVELS 1:grey, 2:cyan. FORECASTS BUY:rect,blue, SELL:disk,red.
RETURNS LEV1:20., LEV2:27.55. SIMPLE RETURN:4.51. LENGTHS LEV1:11.6days, LEV2:12.2days.

Figure 2. SPY, long and short, daily historical quotes.

The moments of buy signals (all of them, of all levels) are marked by blue rectangles;
the large ones correspond to level 1 signals. Accordingly, the sell signals are marked by red
ovals; large for level 1. The blue and red vertical lines connect the level 1 execution points
in the middle of the grey graph with those of the green equity chart. The returns graphs are
changed only upon the terminations. The cyan graph is for the trades based on level 2 signals;
here vertical lines are not used. The returns are in percent from the beginning of the graph.
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To help the readers, we provide a fragment of the XAU in Figure 4. For example,
here the first level 1 trade, marked by a large red oval (the first such), lasted till the first
large blue rectangle and was executed at a loss: a vertical drop of the grey strip after the
termination; XAU went up significantly and “unexpectedly” here. However, the next trade,
which was short on the sell signal of level 2, shown by the next (small) red oval, appeared
successful: a small increase of the cyan strip.
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Figure 3. XAU, long-short, daily historical quotes.
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Figure 4. Fragment XAU, long-short, daily historical quotes.

These two charts are upon the optimization, as well as in Figure 5, so they only evaluate the
quality of the optimization, i.e., what our automated optimization procedure produced for
this period. Only control periods (out-of-sample!) can be used to estimate real profitability.
However, these charts clarify the “logic” of the system. Its unstable performance in the
beginning is to be expected; the system needs sufficient “history”.
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WEIGHTED DAILY RETURNS: 60 days

Mean=1.59 Standard Deviation = 5.17

Annual Sharpe Ratio:= 15* DailySR = 4.6

RETURNS> 0 %

STRAIGHT DAILY RETURNS: 60 days

Mean=1.63 Standard Deviation = 5.19

Annual Sharpe Ratio:= 15* DailySR = 4.7

RETURNS> 20 %

STRAIGHT DAILY RETURNS: 60 days

Mean=1.81 Standard Deviation = 5.72

Annual Sharpe Ratio:= 15* DailySR = 4.74
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WEIGHTED DAILY RETURNS: 113days

Mean=1.55 Standard Deviation = 5.58

Annual Sharpe Ratio:= 15* DailySR = 4.15

RETURNS> 0 %

STRAIGHT DAILY RETURNS: 113days

Mean=1.29 Standard Deviation = 4.97

Annual Sharpe Ratio:= 15* DailySR = 3.88

RETURNS> 20 %

STRAIGHT DAILY RETURNS: 113days

Mean=1.33 Standard Deviation = 4.99

Annual Sharpe Ratio:= 15* DailySR = 3.99
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Figure 5. L and S, 75 companies, three quotes a day.

By simple returns here, we mean the total returns of SPY and XAU during the
considered period (green curves). Only signals of levels 1,2 were used for “trading” (grey
and cyan).

USING WEIGHTS. Let us provide the performance results for the following two periods:
3/21/2001/3/21 (9:30) –6/14/2001/6/14 (13:30), 2000/10/24 (9:30)–2001/6/10 (13:30),
with correspondingly 60 and 113 days. The graphs below are in terms of “trading points”,
when the system “visits the market” (receives quotes), here three times a day. So the
number of points is approximately 180 and 339 for these control periods. We focus on using
weights based on the prior optimization returns. Namely, the better optimization returns,
the greater amounts to invest in this stock. Picking the companies with optimization returns
greater than some limit is a variant of using such weights. The 75 companies were traded,
long and short, pro-trend (i.e., essentially under mean reversion trading); they were mainly
taken from the list of the most liquid ones. Sharpe Ratio (SR) is mean standard deviation.

By “straight”, we mean that the symbolic $100 were invested per any position (long
or short) for the companies with the optimization (prior!) returns > 0% and > 20%. The
latter bound was adjusted to reduce the number of traded companies approximately by
50%. Generally, using the weights (or using “> 20%”) improves the performance, but not
always significantly vs. “> 0%”, depending on the market types. “Red” is used for simple
(actual) portfolio returns (based on the changes of share prices), “blue” for the returns the
system achieves.

4. Pont, a Card Model
4.1. General Design

This game is a combination of bridge and Russian preference with poker-style auction.
The name “bridge” was derived from earlier “biritch”, so we make it further from the
origin (and shorter). It utilizes a standard deck of 52 cards or a smaller one of 36 cards. The
auction is quite different from that of bridge and involves more risks. See here and below
(Parlett 1991). The bidding does not use the denomination of suits. The player who starts

the auction has no advantage. The cards may be updated while bidding, which resembles
draw poker. The winner of the auction, the declarer, determines the final number of cards
per hand as part of the declaration of the contract: the trump and the minimal number of
tricks to be taken.

Following suit and the use of trump cards is similar to bridge-type games. The
scoring is simpler than that of bridge. The declarer’s award is based on the value of the
contract depending upon whether or not it was made. The game can be for 2, 3, 4 players,
2 partnerships, or for 1 versus computer. There is also a poker-like version. All variants are
almost equally dynamic and playable.



Int. J. Financial Stud. 2021, 9, 58 31 of 42

Stock market connections. The game, especially the auction, can be considered a
simple model of playing the market, especially under momentum “investing on news”.
The bids then are some counterparts of the forecasts of share prices. The play checks the
quality of the bid, but this is not related to real trading, where this quality is the return
upon the termination of the position taken.

The number of cards per hand and the number of taken tricks reflect, respectively, the
duration of the investment and the return. The downplay and misère resemble a bid selling
short, but this is superficial. This is a game: just a model.

The suits are substitutes for the time-horizons of investments or the companies con-
sidered for investing. They are on equal grounds in pont in contrast to other bridge-type
games. Given a suit, the better cards the more reasons to make it a trump. In our trading
system, the category of the top bid determines the time-horizon of the investment, though
the categories are ranked in contrast to suits in pont.

The players compete to become the declarer, which is somewhat similar to winning the
“right” to invest. The upgrades and increases are designed to reflect real-time actions. The
bids are actually 2-bids, which adds some “timing”; they depend on the size of hands (from
6 to 9), which has no counterparts in other bridge-type games.

The play itself has little to do with real playing the stock markets. For instance, the use
of trump cards and positions of players around the table have no market analogs. The role
of such special elements of card games is diminished in pont. However, they are inevitable;
the game must be not too primitive. Also, more playable games have stronger roots in
our psychology. Making pont playable was a challenge since it uses unusual fractional
bids, related to our approach to risk-taking. This was a test of the principles of our trading
system. we think that playing pont can help to get used to our 2-bids and in real playing
the stock markets, possibly better than playing poker or bridge.

4.2. Description
The game uses a standard card deck of 52 cards for 4 players or a smaller, four-suit

deck of 36 cards (from the ace down to the 6), when there are two or three players. In the
case of 4 players, they may divide themselves into two partnerships; here the whole deck
is used, too. The dealers are changed clockwise after each game. The cards are dealt singly
in the clockwise order and face down, giving each player six cards. After the players pick
up their hands, the dealer starts the auction by making the bid or passing.

Auction. A bid is a fraction N/D where the denominator D is from 6 to 8 and the
numerator N is no larger than D. Generally speaking, the bid is the expected number of
tricks to be taken (N) divided by the final number of cards per hand (D). The latter may be
from 6 to 9. The fraction must be no smaller than 3/6 for 3 or 4 individual players, and no
smaller than 4/6 for 2 players or partnerships. The fractions 4/8, 7/7, 8/8 are excluded.
The bids 3/6, 4/7, and 5/8 are not allowed for 2 players, but are accepted for 3 or 4 players.

The auction proceeds clockwise with each player either making a bid that is not lower
than the previous ones of other players; for instance, 4/6, 5/7, 6/8, 5/6, 6/7, 7/8, 6/6 may
be claimed after 4/6. Otherwise, say “pass”. Bidding is forbidden after the first bid was
made if a player has already passed. Passing is allowed after bidding only if there are
other players who did not pass; also, the last remained (survived) player may not pass.
The round of bidding continues until the last bid, when a player (who then becomes the
closer) repeats his/her previous bid for the first time, or simply says “close”. If the others
(two opponents for the team variant) passed after this, the closer becomes the declarer.
Otherwise, there is no declarer.

More rounds are necessary if all players passed or at least two of them claim the same
bid. To start the next round, the dealer upgrades the cards, giving out a card per hand face
down. Then each player picks up the card and after this removes one card from the hand
by laying it face down. i.e., the hands must be 6 again. Then the closer (or the dealer if
all passed) claims first, repeating or enlarging his/her last bid, and the auction continues
following the same rules until the first repetition. Those who passed during the previous
rounds do not bid, unless all passed. The cards may be upgraded only twice.

Taking no tricks. If all passed after the last (the second) upgrade, the dealer leads to
start the downplay notrump, where the players are trying to win the smallest number of
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tricks. The closer starts the downplay if two or more players (or both teams, if applicable)
do not pass after the second upgrade, which is the last, but claim coinciding bids, i.e.,
neither of them is the winner.

At the end of the game, the number of taken tricks will be diminished by the min-
imum number, which is to make it zero at least for one player, and subtracted from the
corresponding scores. In the case of 2 players, this diminished number must be divided by
two before subtracting; e.g., the player who took 4 tricks will lose 1 point, which is 4 minus
2, the number of tricks of the opponent, divided by 2.

A player may claim misère, which means that no tricks will be taken. This may be done
only before the first upgrade, and beaten by 6/7 or higher for 2 players (teams), by 5/6 or
higher for 3 or 4 players. Misère is played no-trump. The declarer makes the opening lead
by placing the card on the table face up. If there are 3 or 4 individual players all cards are
placed face up on the table after this. It is the same for partnerships, but the partner does
not participate laying his/her cards face down. The misère contract is defeated if either of
the opponents finds the way where the declarer takes at least one trick.

The play. After the auction, the declarer may increase, asking the dealer to deal out 1
card per player face down. The procedure can be repeated several times, but the maximum
number of cards per hand must be no greater than 9. The declarer picks up the cards every
time. The others will do this only after the declaration of the contract. Then the declarer
declares the contract, choosing the trump suit or no-trump, which is allowed, and stating the
minimal number of tricks to be taken (including the partner’s tricks for the partnerships).
The denominator “D” equals the number of cards per hand after the last increase.

The number of tricks to win cannot be smaller than the final number of cards per player (after
the last increase) times the fraction from the last declarer’s bid. The bid “misère” can be changed
by the declarer by the contracts 6/7, 7/8, 8/9, 6/6, 7/7, 8/8, 9/9. It is the same for 2, 3,
4 players, and the partnerships. Also, the last bid 6/8 can be changed by misère if there
were no upgrades and increases. The partner’s hand is discarded face down when playing
misère in the team variant.

The declarer starts the play trying to take enough tricks to fulfill the contract or take
no tricks for misère. For partnerships, anytime during the play the declarer may ask the
partner to place all his cards face up on the table and then he/she starts playing both of the
partnership hands (unless in misère). All players have to follow suit if they can. Otherwise,
they must trump. Only the declarer may lead a trump. Other players may do this only if
they have no other suits left. The play lasts until the declarer (together with the partner if
applicable) takes the necessary number of tricks or the contract is defeated.

Score system. At the end of the play, the declarer’s score goes up by the value of the
contract, the number of tricks from the contract minus 3 for 2 players (or partnerships)
and minus 2 for 3–4 individual players, if the contract was made. Otherwise, this value is
subtracted from the score. If the last bid before the first upgrading was more or equal than
5/6, then this value goes up by one, called premium (when adding or subtracting). The
same premium is added to misère, treated as 5/6 when calculating the score (3 points for
2 players/teams and 4 points for 3, 4 individual players). A fulfilled contract of fraction
= N/D = 1, gives 1 bonus point for 2 players (partnerships) and 2 bonus points for 3–4
individual players. For 3 or 4 individual players, successful contracts 5/6, 6/7, 7/8, 8/9,
9/10, and misère add 1 bonus point to the declarer’s score. In contrast to the premium, the
bonus is not subtracted from the score if the contract fails.

There is another, somewhat more involved, variant of the pont score system with more
“punishment” for defeated contracts. The play goes till the end. If the number of taken
tricks is less than it was declared than the score of the declarer is diminished by the value of
the contract multiplied by the number of missed tricks. Say, if the declare took the necessary
tricks but one, the score becomes smaller by the value of the contract. This scoring system
is for experienced players.

Finally, the rewards will be proportional to the scores of the players diminished by
their arithmetic mean, that is the total of all scores divided by the number of players. The
partners may redistribute the total partnership reward (the sum of their rewards). The
standard recommended way is as follows. If both rewards are positive or negative then it
is the same as for individuals. If the first reward is positive, the second is negative, and the
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total is negative, then the first partner does not pay. If the total is positive here, then the
second partner receives nothing (and pays nothing).

Bidding table. The following table is the list of bids in increasing order and the
corresponding minimum contracts for different numbers of cards per hand. The stars
(adding 1 point each to the score) show the premium p for declaring during the first round
of the auction and the bonus b for making the contract.

3–4 individual players contracts 2 players(partnerships)
names b p bids: tricks / cards :bids p b names

1 3/6: 3/6, 4/7, 4/8, 5/9 : — —
1+1 4/7: 4/6, 4/7, 5/8, 6/9 : — —
1+2 5/8: 4/6, 5/7, 5/8, 6/9 : — —

2 4/6: 4/6, 5/7, 6/8, 6/9 :4/6 1
2+1 5/7: 5/6, 5/7, 6/8, 7/9 :5/7 1+1
2+2 6/8: 5/6, 6/7, 6/8, 7/9 :6/8 1+2

m * * m/6: ...., 6/7, 7/8, 8/9 :5/6 * 2
3 * * 5/6: ...., 6/7, 7/8, 8/9 :m/6 * m

3+1 * * 6/7: 6/6, 6/7, 7/8, 8/9 :6/7 * 2+1
3+2 * * 7/8: 6/6, 7/7, 7/8, 8/9 :7/8 * 2+2

4 ** * 6/6: 6/6, 7/7, 8/8, 9/9 :6/6 * * 3.

Here misère (m = m/6) has the same list of admissible contracts as 5/6 but is ranked
higher for 2 players (partnerships) and lower for 3 or 4 individuals. Recall that the misère
contract may be played after the last bid 6/8 or smaller; m/6 is omitted in the column
of contracts.

The names of the bids are convenient when bidding. The name gives the number of
additional cards (after +) and the value of the (lowest) contract coinciding with the bid,
calculated without the premium and bonus. For instance, the value of 2 + 2 = 6/8 for 3,
4 players equals 2 + 2 = 4. For 2 players, the contract 1 + 2 = 6/8 gives 3 points.

4.3. Variants
Basic-Pont (BP). The simplest version of the game is the basic pont, which is played

without misère, and “premium”. The table is also simplified by dropping the bids of
denominator 8 (the +2-bids):

3–4 individuals contracts 2 players(teams)
names b bids: tricks / cards :bids b names

1 3/6: 3/6, 4/7, 4/8, 5/9 : — —
1+1 4/7: 4/6, 4/7, 5/8, 6/9 : — —

2 4/6: 4/6, 5/7, 6/8, 6/9 :4/6 1
2+1 5/7: 5/6, 5/7, 6/8, 7/9 :5/7 1+1

3 * 5/6: 5/6, 6/7, 7/8, 8/9 :5/6 2
3+1 * 6/7: 6/6, 6/7, 7/8, 8/9 :6/7 2+1

4 ** 6/6: 6/6, 7/7, 8/8, 9/9 :6/6 * 3.

Poker-Pont (PP). Another variant is poker pont for 2, 3, 4 individual players. It follows
the table of the basic pont, without bonuses.

bids: contracts 5/7: 5/6, 5/7, 6/8, 7/9
3/6: 3/6, 4/7, 4/8, 5/9 5/6: 5/6, 6/7, 7/8, 8/9
4/7: 4/6, 4/7, 5/8, 6/9 6/7: 6/6, 6/7, 7/8, 8/9
4/6: 4/6, 5/7, 6/8, 6/9 6/6: 6/6, 7/7, 8/8, 9/9.

PP-betting. As in poker, each player puts up ante (one chip or more) to form a pool,
which consists of the pot and the sectors, one for a player. A player always puts chips in
the corresponding sector. The dealer starts betting, adding chips to the pool or putting
nothing, passing. The player on the dealer’s left may pass, call by putting the same, or raise
by adding extra chips of his/her own. Other players continue clockwise until all have
finally called any raises. A player may raise after passing if the latter was before the first
raise. Passing is allowed after raising or calling if there are other players who did not pass.
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The first player who calls without adding is the closer. If all other players passed,
the closer is the declarer. If there is no declarer, the dealer upgrades cards and the closer
starts another round of betting by raising or doing nothing. Those who passed before, if at
least one player raised, may not bid. There are optional upgrades in poker pont; they may be
omitted. Then the card will be dealt to the next player. A player who upgrades puts a chip
to his/her sector (per each new card). The number of upgrades is no more than three (for
four rounds of betting). If still all pass after the last upgrade then the ante goes to the pot,
the dealer is changed clockwise, and a new game starts.

PP-play. If there are two or more players who put the same number of chips (regardless
of the extra chips for upgrades which may be different), then the closer begins one round of
bidding among those players only. It is as in the basic pont; the declarer is a player claiming
the highest bid. If still there is no declarer, there will be no more upgrades. Then the dealer
moves all chips but ante from the sectors to the pot, and the next dealer starts a new game.

The declarer may increase several times (no more than three), adding a chip per
increase to the pool. After the declaration of the contract, all opponents pick the cards
and respond or pass clockwise starting with the first on the declarer’s left. One must add
one chip per each increase (totally, the current number of cards per hand minus 6) to the
pool to respond and become an active opponent. Other opponents are passive. However, all
participate in the play, which follows the standard rules.

The declarer leads and wins the pool (including the pot) when making the contract. If
the latter is defeated then all the opponents, active and passive, take chips back from their
sectors and the active opponents divide the declarer’s chips and the pot among themselves
proportionally to the number of taken tricks. The fractions are ignored and the remaining
chips (if any) go to the pot. If there are no active opponents, the declarer takes his/her chips
back even in the case of the failure (but not the pot). The contract has to be the minimal
possible for the current number of cards per hand. Namely, 3/6, 4/7 for 3–4 players, 4/6,
5/7 for 2 players, and 6/8, 6/9 for either. It may not be lower than the last bid if there has
been a round of bidding to determine the declarer.

4.4. Comments
Additional rules. Extra penalties can be added for breaking the rules. The opponents

may decide to diminish the declarer’s or partnership’s score by the value of the contract
if the declarer (partnership) made a mistake against the rules when playing. Vise versa,
in the case of an opponent’s mistake, the declarer has the right to consider the contract to
be fulfilled and the other player(s) may decide to subtract its value (or its doubled value)
from the score of the opponent whose fault is it. In poker pont, the contract is considered
to be defeated in the case of a declarer’s mistake. If it is an opponent’s mistake, the chips
from the pool are distributed as if the contract were defeated, and the opponent who made
a mistake gives this very number of chips to the declarer. These are basics, to be developed
by players.

The following regulation could improve the coordination of the opponents (for 3 or 4
individual players) and may be added to the rules. The opponents have to play the lowest
card higher than the card of the declarer& partner to win the trick if they can. However, the
card must be the lowest possible to leave the trick to an opponent whose card already beats
the cards of the declarer and partner. As to the partnerships, a general regulation is to at
least repeat the bid of your partner if you have two sure tricks or more, i.e., could win two
tricks for any trump. For instance, it may be either “A A”, or “A K” in the same suit, or “A”
in one suit and “K Q” in another. When you pass, but the opponents don’t, it can stimulate
your partner to pass or claim misère. To avoid this, it makes sense to bid if you can count
on three (or more) tricks upon declaring your trump, especially if you have honors and the
hand seems good for the increases. Just to give an example of such coordination.

A computer version. The computer realization of the variant for two players is
based on the following principles. The computer is programmed to select the best one
considering several random choices of the hand of the player (taking into account all
information about the cards of the player appearing during the play). It does the same
when bidding and declaring, but diminishes the most likely bid and contract by one level.
The simplest one-way version is when the computer never bids (and has no score), and
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the player either determines the contract (without upgrades) and then plays following
the standard rules or passes subtracting 2 points from his/her score. It follows basic pont.
However, the bidding scale and the admissible contracts start from 4/7 considered as
0 + 1 and giving 1 point. More generally, 0 + k, which means (3 + k)/(6 + k), is counted as k
points for k = 1, ..., 6.

The computer basic strategy is to win the trick led by the player with the smallest
possible card and to play the lowest card otherwise. If it has no proper suit and no trump
left, the card can be the lowest (from the shortest suit, if there are several cards of the same
rank). However, the suits where the player has no cards according to the information
during the process of play are considered the best. When the computer leads, then the suit
where the player has no cards is the first choice too. If the highest card (one of them if
there are several of the same rank) has the adjacent one in the same suit (say, the pairs “A
K” or “K Q” are adjacent), or the next card in the suit is lower by 4 or more (say, “A 10”),
then this is the second choice for leading. Otherwise, the suit must be the longest and the
card the highest among the longest suits. However, the longest suit where the two highest
cards are adjacent is considered first. If still there are several choices the computer decides
randomly. These are, of course, very basic considerations; the actual computer program
can be significantly more developed.

5. Main Findings and Steps
As almost always with econophysics and modeling economic processes based on

physics principles, including investing and trading, the motivation for the usage of ODE,
PDE, SDE is of great importance. The justification of our approach to modeling momentum
processes in stock markets is based on behavioral finance and cognitive science. This is not
something unexpected. Let us outline the main steps of our analysis.

5.1. MRT and Two-Bids
The first step is the marshmallow test, a demonstration of the usage of different time

scales. Even in such a “baby example”, it is clear that the power-type growth of price-
functions with exponents < 1 can be expected. The second step is our analysis of thinking
fast due to Kahneman. We argue that the following is of key importance for modeling
“momentum trading” (mostly short-term): investors must decide quickly and almost always
on the basis of incomplete information.

Kahneman’s approach is qualitative and too basic, which is insufficient for us. There-
fore the third step is to make it quantitative: we propose the concept of MRT, momentum risk
taking. The fourth step is to justify the usage of 2-bids, which are in terms of the expected
returns during the variable time-intervals.

This definitely requires clarification. Generally, bids are “one-dimensional”. The
contract-type card games, which reflect many of the auction principles people use, are in
different suits, but they are 1-bids. Replacing cards in draw poker is some kind of adding
time to the bids (a similar kind of uncertainty), but this is not a contract game. We designed
pont, a poker-type card game with bridge-type auction and contracts, to demonstrate that
2-bids, with variable sizes of the hands, can be quite “playable”.

Pont provides some reasonable expectations for the number of categories, which are
investing horizons for us. There are four suits in cards. For us, this becomes seven
horizons: hours, days, weeks, months and three intermediate ones. The suits are ranked
lexicographically in card games. The ranking of our categories is much more meaningful.
To give an example, the first bid in category 1, which is 1% per 1 h, provides 3% in 1 day
according to the g-formula, which is greater than the first bid in category 3, which is 2%
per day. So if these bids arrive simultaneously, then the former bid “wins”, in category 1.

Practically, from two to four categories were used for trading individual equities and
reasonably uniform portfolios; though up to five can be suitable for trading the spider and
indices. The optimization is performed in two ways: for individual equities and for the
whole portfolio. It is not always true that the former way is more profitable.
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5.2. ODE and Sample Curves
Assuming the MRT concept, obtaining the differential equations is relatively straight-

forward. The key output is that the growth of price-functions is power-type: ∼ tr in terms
of time t. Here r ≈ 1/2 for positions lasted weeks and longer, but can become r ≈ 0.137
short-term, say for day-trading. This is one of the key discretization assumptions in this paper
and for our trading system.

Generally, sampling of this sort is frequently used in machine learning. For instance,
Navier–Stokes equations can be solved this way: by finding the closest “sample solutions”,
when the list of basic solutions is produced in advance.

The table of our basic price-functions is presented in (23)–(26). It is the result of our
analysis of the charts of different equities and portfolios for various time scales. The
corresponding 2-bids are linearly ordered; the ones in different categories can be compared,
not only those in the same category (for the same investment horizons). This table proved
to work well for many portfolios. Such 2-bids can be useful beyond the stock markets, but
we checked its efficiency only for trading market instruments.

Obviously, different tables lead to different trading systems, which can be profitable
as well. However, such tables must satisfy sharp restrictions. There must be inequalities
between the corresponding returns for different categories if the expected durations of
positions overlap: the smaller the number of the category the greater the return, as in the
example considered above.

There are also discretization matters. The basic returns must be ideally integers, to
be used manually, though this is not that important for automated trading. Also, given a
category, the number of considered durations of the bids must be not large. The bids are
discrete by their nature; the minimal return for a given category (for the time-unit of the
corresponding investment horizon) must satisfy some minimum requirement, which is a
clear counterpart of “action potentials” in neuron systems.

Next, not all bids become trading signals. A bid must reach some threshold in its
category. If this holds, then the auction begins: there can be signals from several categories.
The “winner” of the auction is determined using the table.

The auctions are performed regardless of the existing positions. If there is already a position
in the same direction for the instrument under consideration, then an additional position
will be open. We call such signals/positions of level 2; the levels can be greater than 2. If
there is no current position for this instrument or it exists in the opposite direction, then
this position (if any) will be terminated and the new one will be created with the expected
duration and return according to the bid.

5.3. From Signals to Trades
Assuming that the winning bid became a signal and that this signal resulted in opening

the corresponding positions, the termination curve will be started corresponding to this bid.
It gives the future expected returns for some period depending on the category of the bid.
They can be actually used for forecasting.

Such curves are “plotted” somewhat below the actual returns near the moments when
the trade begins. This is controlled by an important parameter of the system (subject to
the optimization). When the real return becomes below the tertmination curve (consid-
ered in the same category and subject to proper discretization), then the position will be
terminated. This is essentially the algorithm we employ. However, some additional factors
are considered.

There are some thresholds for the difference counterparts of the derivatives of price-
functions that are required to be satisfied to start or to terminate positions. The change of
the price must be large enough to trigger a trading action. The usage of derivatives and
their difference counterparts is standard in almost any trading systems, but they are very
volatile and generally insufficient to be used as main trading signals. Adding this feature
to our system appeared necessary to increase its profitability, to provide faster responses to
the changes of share prices, and to prevent “hangs” with some positions. The system is
fully automated and the hangs are not allowed to be corrected manually.

The categories, the minimal bids, the positions of the termination curves below the
actual ones, and the thresholds for the difference counterparts of derivatives are subject to



Int. J. Financial Stud. 2021, 9, 58 37 of 42

the optimization. The system was designed to work for months in a completely autonomous
regime, including auto-optimization of the parameters (normally during weekends) and it
worked as such.

Mostly, we used from two to four categories, which depends on the type of the
instrument and the average durations of investments requested by the end users of our
trading system. The other parameters are subject to constant optimization.

5.4. Other Aspects
Trading systems, especially fully automated ones, involve many procedures and

algorithms (very many in our case). Let us say little something about our optimization
procedures. Due to a limited number of parameters, we mostly use the gradient method,
which works very well. It is very rare when significant returns and good Sharpe ratios
cannot be achieved with individual equities and reasonably homogeneous portfolios. The
programs we use “capture” such jumps in the performance (for some combinations of
parameters), which occur almost always, but are generally not unique.

There are many practical matters to manage. For instance, our system constantly
produces full backups and allows emergency restarting. Splits, the share price adjustments
due to the dividends, renaming the stocks are automatically performed every day. Even
proper encoding the stocks regardless of their current symbols is quite a challenge: they
occur very many times in various programs in our system.

Producing trading signals is the key output of our and any system, followed by their
execution by the end users. Constant monitoring of the performance of the portfolios is
a necessity, too, including collecting, processing, and reporting the results. All kinds of
statistical data were produced at the end of every trading day.

We managed many portfolios (in the research mode and real-time), and, importantly,
multiple lines trading the same portfolio (for different categories and different sets of
optimization parameters). This provided the necessary diversification, which worked
reasonably even for individual stocks and relatively small portfolios.

An interesting way for creating a new line was by shifting the existing one by 1–2 h.
Then such a pair of lines worked similarly for some time, but eventually, their trades became
quite different (even with coinciding parameters). The profitability of such “parallel” lines
was generally comparable (but not always). Changing the trading modes was another
possibility for producing multiply lines. For instance, the lines could be with or without
short trading, though almost always both modes were present.

We note that the system was mostly used under hedging; it was provided by the
end users, but it can do this itself. Generally, strict hedging can create problems with the
performance: it is not always “momentum”. However, the system can be used this way.

Complete information for each and every bid and signal is stored by the system. The
number of signals and trades is huge, but checking “manually” the logic of some of them
was of importance (at least for designing new lines). This was generally possible because
our parameters are all meaningful: categories, various “action potentials”, etc. Practically,
the convenient charts presenting trading signals and the corresponding trades were mostly
used practically to control the “logic” and the “health” of trades. This means the system is
“trustworthy” in this respect, not a “black box”.

6. Concluding Remarks
6.1. The Key: Bidding Tables

Let us stress that our trading system is not a black box; the logic of its decisions
concerning trading stocks (any instruments) can be fully reconstructed and understood; cf.
(Horel and Giesecke 2019). We found not many situations where its decisions could be

questioned on the basis of the usual technical analysis, though the system uses the stock-
charts and its own prior decisions in novel ways. Pont clarifies some principles of our
approach and tests them “psychologically”. We also hope that playing pont can help to get
used to our 2-bids.

The bidding table of pont and the one used for the system’s 2-bids (b, c) are similar,
and this is not just an analogy! The auction and bidding seem fundamental for any
intelligence. This can be within some expert system, inside our brain, or AI. Poker and
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contract card games serve humankind well as a risk-taking playground: they obviously
capture something important about human cognition. See (Parlett 1991).

Obviously, using computers makes bidding formal and not “immediately understand-
able”. The automated optimization and deep learning are even more difficult to interpret,
even if every optimization step can be seen in detail, as in our programs. Generally, machine
learning is fully “trustworthy”, only if the results can be clearly interpreted “humanly”.
In our trading system, the optimization is mostly of this kind due to the small number
of parameters our system deals with. The main parameters are the categories, the modes
(long/short, pro/counter), key thresholds, and some derived parameters like the average
duration of positions; all are meaningful to investors. Our usage of power functions in the
tables of 2-bids has solid grounds too, as we tried to demonstrate.

The discretization, which is necessary to separate noise from signals, is not really
“intuitive”, but the “action potentials” are always necessary and any usage of computers
requires discretization. In our trading system, we made the discretization as “human” as
possible. The author of the paper is a specialist in discrete theories (mostly “integrable”),
but the market reality resulted in non-standard auction-style stratified discretization. It is
new, though using the data stratification and sample curves is common in neural networking.
It is likely that our approach reflects the risk-taking processes in our brain; its successful
market implementation can be regarded as some confirmation.

The importance of finding optimal relations between the decisions and sampling
frequencies is well recognized. Let us quote (Singleton 2006):

Though available data are sampled at discrete intervals of time—daily, weekly, and
so on—it need not be the case that economic agents make their decisions at the same
sampling frequency. Yet it is not uncommon for the available data, including their
sampling frequency, to dictate a modeler’s assumption about the decision interval of the
economic agents in the model. Almost exclusively, two cases are considered: discrete-time
models typically match the sampling and decision intervals—monthly sampled data
mean monthly decision intervals, and so on—whereas continuous-time models assume
that agents make decisions continuously in time and then implications are derived for
discretely sampled data. There is often no sound economic justification for either the
coincidence of timing in discrete-time models, or the convenience of continuous decision
making in continuous-time models.

This is actually the key problem we address in our trading system and this paper: how
to coordinate different “decision intervals” and what is optimal decision-making based on
a simultaneous analysis of several “frequencies”. This is a must for AI systems focused on
trading and of obvious importance well beyond stock markets.

Timing the market is and always was a great challenge, but now we have a new
chapter: a systematic AI-based research and optimization of the process of investing. The
usage of AI is a must here because the only reliable way to test the performance of any
trading system is (a) when it is fully(!) automated (machine learning included), (b) when
someone else (not the creator) runs it, (c) the design and analysis of the experiments is
as rigorous as possible, and (d) all findings are confirmed by real-time trading, which
obviously requires full automatization.

We provide a sufficiently complete description of the basic principles of our trading
system and the ways it was tested. Not all aspects of our approach were addressed here.
The system consists of a lot of programs; many are used for technical processing data,
including but not limited to managing historic and real-time quotes, practical matters
like splits-dividends, and so on. Quite a few serve the optimization, historical and real-
time. The real-time optimization uses the system’s own history of trades, upgrading the
parameters “while trading” (normally during weekends). Historic simulations require a
lot of special software, too. This is on top of actual trading programs and those monitoring
the performance. The coordination of such a ramified combination of service, optimization,
and action programs is quite a test for any system; this is no different from the ways our
brains work.
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6.2. Beyond Stock Markets
The stock markets can be considered a great model for many aspects of decision-

making. In our approach, the impact of “events” is measured indirectly, via the responses
of the “agents”, which is quite standard in sociology and statistical physics. Many of our
findings seem of a universal nature. For instance, our equations connecting price-functions
with the news-functions can be equally used to model the relation between the expected
resources for a task and those actually used, presumably including our brain.

“Investing” has its special features. Under momentum risk-taking, the agents seek to
optimize their actions: (a) entering the “game” quickly when a clear signal is detected,
and (b) exiting when some price-function reaches expected levels. Practically, we use here
tables of 2-bids and forecasting-termination curves. Theoretically, power functions and their
generalizations, Bessel and hypergeometric functions, are of significance here, as it was
demonstrated in Section 2.

Importantly, we focus on the time-intervals when the news impact remains growing.
The main reason is obvious: an objective of any trading is to capture local maxima of price-
functions. It is quite likely that other events will occur before the impact of particular news
reaches some saturation or periodicity due to profit-taking; they will certainly interfere.
Practically, only short-term news impacts and relatively short-term forecasts makes sense
for momentum trading.

This can be generally applicable to MRT in our brain, though with a huge number of
neurons and very complex interactions. Assuming this, “events” reveal themselves via
some waves of “mass behavior”. Accordingly, such waves are likely to be the main infor-
mation available to individual neurons and the key source of their “decisions”, governed
by action potentials and similar mechanisms. Eventually, our brain creates some “images”
of the underlying events. This way, we are even able to form abstract concepts, such as
space-time. Philosophically, let us at least mention here, Kant; see, e.g., (Janiak 2016).

Our analysis of stock markets, especially the simplicity of the basic differential equa-
tions we propose, can be an indication that the power-laws for the impacts of “events”,
auction-type procedures, and certain price-functions are present in the biology of the brain at
the neural level. This is related to neural networking. The price-function generally measures
the current importance of the event and the corresponding expected resources needed for
its analysis. Our brain will try to diminish the neural activity when some “price-levels”
are reached, though the price (the importance) varies depending on the intensity of the
triggered brain activity. This can even result in periodic “waves of interest” in an event: an
auto-mechanism for its abiding analysis, which we mathematically associate with Bessel
functions. There is a lot of “macro-management” here, beyond MRT, say corrections of
the failed decisions. The mechanisms of such conscious or unconscious “re-visiting” the
analysis of past events are obviously complicated.

Let us mention here that the systems of differential equations and their solutions,
Bessel-type and in terms of elementary functions, proved to be very useful for modeling
epidemics. They describe the curves of total detected infections for COVID-19 in many
countries almost with the accuracy of physics laws.

6.3. MRT: Main Findings
(1) Cognitive science. The origin of our approach in cognitive science is the concept of

momentum risk-taking, MRT, which can be defined as short-term decision-making and
forecasting based on the real-time monitoring of the actions of other agents. Poker
and our pont are good examples of games with similar data, but stock markets are of
course the main source of this concept. In contrast to thinking-fast and thinking-slow
from (Kahneman 2011), when the “agents” can generally choose between two modes
of thinking (unless in specially crafted experiments), there is no such choice here and
high uncertainty is generally involved. Investors are assumed to decide “optimally”
on the basis of the current news impact. Our restriction to short-term decisions and
forecasts makes it possible to propose a mathematical, quantitative model of MRT, in
contrast to thinking-fast, which is generally qualitative.

(2) Toward general-purpose AI. The restriction to MRT seems a realistic approach to
general purpose AI systems. MRT is obviously one of the key parts of any intelligence,
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not only with humans. There is an astonishing universality of momentum risk-taking;
those who master it in one field, can generally use their expertise in other fields
upon proper (sometimes little) training. We think that almost the same risk-taking
curves (we call them forecasting or termination curves) govern quite a spectrum of
short-term risk-management tasks and that the corresponding “learning” is quite
uniform almost regardless of the concrete tasks. The neural action potentials provide
some discretization and timing, but there must be other mechanisms in the biology
of the brain serving MRT. Some mechanisms are well beyond MRT, for instance, the
analysis of prior decisions. Expecting errors and correcting them is what intelligence
is about.

(3) Modeling MRT. Importantly, MRT can be modeled mathematically, which we per-
form thanks to our focus on short-term management. The power growth of our
forecasting curves holds only for relatively short periods “after the event”. The cor-
responding differential equations modeling news impact seem sufficiently reliable
to us. The trading system described in Section 3 is an experimental confirmation:
it is based on the “power-law” for price-functions with exponents depending on
the corresponding investment horizons. Mathematically, an argument in favor of our
approach is a model of profit-taking in terms of Bessel functions. This relates the
periodicity of profit-taking to the asymptotic periodicity of Bessel functions: a new
approach to the market volatility, one of the key subjects in quantitative finance.

(4) Market volatility. The closest approach to ours that we found in the vast literature
on volatility in stock markets is based on the fractional Brownian motion, fBM with
Hurst exponents reflecting the investment horizons. For instance, the usage of fBM
explains theoretically why the volatility is extreme for day-trading (with low Hurst
exponents). Some statistical variant of our approach is a consideration of a linear
combination of 2-3 fBM corresponding to “heterogeneous time scales”. Let us refer
here at least to (Cheridito 2001; Delpini and Bormetti 2015); see Section 2 above. The
approach via fBM does not separate the profit-taking from the “stochastic” volatility
of stock markets, which is of key importance for practical trading (and our system).
Our theoretical analysis indicates that Bessel processes, generalizing fBM, are likely to
emerge here.

(5) Some perspectives. As was quoted in the Introduction, we are decades away from
general purpose AI (USA National Science & Technology Council). However, one can
hope that some “prototypes”, can be designed faster than this. Even limited “deep
learning” we (mostly) use in our experiments described in Section 3, provided efficient
“human-like” behavior of our trading system. It was entirely focused on investing,
but designing this kind of MRT for various tasks (with uniform and sufficiently fast
machine learning) seems quite doable. It will require (i) further developing the
mathematical model of MRT we suggested, (ii) finding its roots in the biology of the
brain and psychology, (iii) improving the learning and risk-taking algorithms and
making them really universal, (iv) experiments, and more experiments.
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