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Abstract: Deep learning has been the answer to many machine learning problems during the past
two decades. However, it comes with two significant constraints: dependency on extensive labeled
data and training costs. Transfer learning in deep learning, known as Deep Transfer Learning (DTL),
attempts to reduce such reliance and costs by reusing obtained knowledge from a source data/task in
training on a target data/task. Most applied DTL techniques are network/model-based approaches.
These methods reduce the dependency of deep learning models on extensive training data and
drastically decrease training costs. Moreover, the training cost reduction makes DTL viable on edge
devices with limited resources. Like any new advancement, DTL methods have their own limitations,
and a successful transfer depends on specific adjustments and strategies for different scenarios. This
paper reviews the concept, definition, and taxonomy of deep transfer learning and well-known
methods. It investigates the DTL approaches by reviewing applied DTL techniques in the past five
years and a couple of experimental analyses of DTLs to discover the best practice for using DTL in
different scenarios. Moreover, the limitations of DTLs (catastrophic forgetting dilemma and overly
biased pre-trained models) are discussed, along with possible solutions and research trends.

Keywords: machine learning; deep learning; transfer learning; deep transfer learning; progressive
learning

1. Introduction

In recent years, Deep Learning (DL) has successfully addressed a number of chal-
lenging and interesting applications; in particular, problems that involved non-linearity of
datasets. Recent advancements in deep learning methods deliver various usages and appli-
cations in extremely different areas such as image processing, natural language processing
(NLP), numerical data analysis and predictions, and voice recognition. However, deep
learning comes with restrictions, such as expensive training processes (time and processing)
and the requirement of extensive training data (labeled data) [1].

Since the start of the Machine Learning (ML) era, transfer learning has been a neat
exploration for scientists. Before the rise of deep learning models, transfer learning was
known as domain adaptation and focused on homogeneous data sets and how to relate
such sets to each other because of the nature of ML algorithms [2,3]. Traditional ML models
have less dependency on the dataset size, and usually, their training is less costly than
deep learning models since they have been mostly designed for linear problems. Therefore,
the motivation for using transfer learning in deep learning is higher than ever in the AI
(Artificial Intelligence) and ML fields since it can address the two restraints of extensive
training data and training costs.

Recent transfer learning methods on deep learning aim to reduce the training process
time and cost, and the necessity of extensive training datasets which can be hard to harvest
in some areas such as medical images. Moreover, a pre-trained model for a specific job can
be run on a simple edge device such as a cellphone with limited processing capacity and
limited training time [4]. Moreover, developments in DTL are opening the door to more
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intuitive and sophisticated AI systems since it considers learning a continuous task. A great
example of this idea is Google’s deep mind project and advancements such as progressive
learning [5]. All this is bringing DTL to the forefront of research in artificial intelligence
and machine learning.

This review aims to answer the following research questions: (i) What is DTL, and how
does it differ from semi-supervised, multiview, and multitask learning? (ii) What are dif-
ferent transfer learning methods and their taxonomy? (iii) What are the most applied
DTL methods, and how are they effective? (iv) What is the best practice of DTL model-
based approaches in practice? (v) What are the limitations of DTL and possible solu-
tions/research trends?

In this paper, first, the definition of DTL is reviewed, followed by the taxonomy of DTL.
Then, the selected recent practical studies of DTL are listed, categorized, and summarized.
Moreover, two experimental evaluations of DTL and their conclusions are reviewed. Last
but not least, we discuss the limitations of today’s DTL techniques and possible ways to
tackle them.

2. Deep Learning

Deep learning (DL) or deep neural network (DNN) is a machine learning subcategory,
which can deal with nonlinear datasets. DNNs consist of layers of stacked nodes, with ac-
tivation function and associated weights, (fully/partially) connected and usually trained
(weight adjustments) by back-propagation and optimization algorithms. During the past
two decades, DNNs were developed rapidly and are used in many aspects of our daily
lives today. For instance, Convolutional Neural Network (CNN) layers have improved
deep learning models for visual-related tasks since 2011, and as of today, most DLs use
CNN layers [1]. For more details about machine learning and deep learning, please refer
to [1], since this paper is focused on deep transfer learning, and we assume that the reader
should have a thorough understanding of machine learning and deep learning.

3. Deep Transfer Learning (DTL)

Deep transfer learning is about using the obtained knowledge from another task and
dataset (even one not strongly related to the source task or dataset) to reduce learning
costs. In many ML problems, arranging a large amount of labeled data is impossible,
which is mandatory for most DL models. For instance, at the beginning of the COVID-19
pandemic or even a year into it, providing enough chest X-ray-labeled data for training
a deep learning model was still challenging, while when using deep transfer learning,
the AI succeeded in detecting the disease with a very high accuracy with a limited training
set [6,7]. Another application is applying machine learning on edge devices such as phones
for variant tasks by taking advantage of deep transfer learning to reduce the need for
processing power.

An untrained DL uses a random initializing weight for nodes, and during the ex-
pensive training process, those weights adjust to the most optimized values by applying
an optimization algorithm for a specific task (dataset). Remarkably, Ref. [8] proved that
initializing those weights based on a trained network with even a very distant dataset
improves the training performance compared to the random initialization.

Deep transfer learning differs from semi-supervised learning since, in DTL, the source
and target datasets can have a different distribution and just be related to each other, while
in semi-supervised learning, the source and target data are from the same dataset, only
the target set does not have the labels [2]. DTL is also not the same as Multiview learning,
since Multiview learning uses two or more distinct datasets to improve the quality of one
task, e.g., video datasets can be separated into image and audio datasets [2]. Last but not
least, DTL differs from Multitask learning despite many shared similarities. The most
fundamental difference is that in Multitask learning, the tasks use interconnections to
boost each other, and knowledge transfer happens concurrently between related tasks.
In contrast in DTL, the target domain is the focus, and the knowledge has already been
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obtained for target data from source data, and they do not need to be related or function
simultaneously [2].

4. From Transfer Learning to Deep Transfer Learning, Taxonomy

It is possible to categorize Deep Transfer Learnings (DTLs) in different ways by
various criteria, similar to Transfer Learnings. DTLs can be divided into two categories of
homogeneous and heterogenous based on the homogeneity of source and target data [2].
However, this categorization can be conducted differently because it is subjective and
relative. For example, a dataset of X-ray photos can be considered heterogeneous to a
dataset of tree species photos when the comparison domain is limited to only image data.
In contrast, it can be considered homogeneous to the same tree species photo dataset when
the domain consists of audio and text datasets.

Moreover, DTLs can be categorized into three groups based on label-setting aspects:
(i) transductive, (ii) inductive, and (iii) unsupervised [2]. Briefly, transductive is when only
the source data is labeled; if both source and target data are labeled it is inductive; if none
of the data are labeled, it is unsupervised deep transfer learning [2].

Refs. [2,9] mention and define another categorization of DTLs through the aspect of
applied approaches. They similarly categorized DTLs into four groups of: (i) instance-based,
(ii) feature-based/mapping-based, (iii) parameter-based/model-based, and (iv) relational-
based/adversarial-based approaches. Instance-based transfer learning approaches are
based on using the selected parts of instances (or all) in source data and applying different
weighting strategies to be used with target data. Feature-based approaches map instances
(or some features) from both source and target data into more homogeneous data. Further,
the [2] survey divides the feature-based category into asymmetric and symmetric feature-
based transfer learning subcategories. “Asymmetric approaches transform the source
features to match the target ones. In contrast, symmetric approaches attempt to find a
common latent feature space and then transform both the source and the target features
into a new feature representation” [2]. The model-based (parameter-based) methods are
about using the obtained knowledge in the model (network) with different combinations
of pre-trained layers: freezing some and/or finetuning some and/or adding some fresh
layers. Relational/adversarial-based approaches focus on extracting transferable features
from both source and target data either using the logical relationship or rules learned in
the source domain or by applying methods inspired by generative adversarial networks
(GAN) [2,9]. Figure 1 shows the taxonomy of the above-mentioned categories [2].

Figure 1. Taxonomy of Transfer Learning which is extendable to Deep Transfer Learning as well.

Other than the model-based and adversarial-based approaches, all other categories
have been explored deeply during the last couple of decades for different ML techniques
known as domain adaptation or transfer learning [2,3]. However, most of those techniques
are still applicable to deep transfer learning (DTL) as well. Model-based (parameter-based)
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approaches are the most applied techniques in DTL since they can tackle the domain
adaptation between the source and target data by adjusting the network (model). In other
words, deep transfer learning is mainly focused on model-based approaches. Remarkably,
model-based approaches in deep learning models can even tackle the adaptation of a very
distant source and target data [2,9].

In deep transfer learning (DTL), different techniques are applied for model-based
approaches, although generally, they are combinations of pre-training, freezing, finetuning,
and/or adding a fresh layer(s). A deep learning network (DL model) trained on source data
is called a pre-trained model consisting of pre-trained layers. Freezing and finetuning are
techniques using some or all layers of pre-trained models to train the model on target data.
Freezing some layers means the parameters/weights will not change and are constant val-
ues for frozen layers from a pre-trained model. Finetuning means the parameters/weights
are initialized with the pre-trained values instead of random initialization for the whole
network or some selected layers. Another recent DTL technique is based on freezing a
pre-trained model and adding new layers to that model for training on target data; Google’s
deep mind project introduces this technique in 2016 as Progressive Learning/progressive
neural networks (PNNs) [5,10].

The concept of progressive learning mimics human skill learning, which is adding
a new skill on top of previously learned skills as a foundation to learn a new one. E.g.,
a child learns how to run after learning to crawl and walk and using all the skills obtained
in the process. Similarly, PNNs prevent catastrophic forgetting in DTL versus finetuning
techniques by freezing the whole pre-trained model and learning (adjusting to) the new
task by training the newly added layers on top of the previously trained layers [5,10].

In deep learning models, usually, the earlier layers conduct the feature extraction at a
high level of detail, further layers towards the end extract the information and conceptualize
the given data, and lateral layers conduct the classifications or predictions. For instance,
in the image-related model, the earlier layers of CNN extract the edges, corners, and tiny
patches of a given image. Further layers put those details together to detect objects or
faces, and the lateral layers, usually fully connected layers, conduct the classification [11].
Given this process, the most effective and efficient approach for DTL, to our knowledge, is
to freeze the earlier and middle layers from a related pre-trained model and finetune the
lateral layers for the new task/dataset [12]. Similarly, the new layers are added to the last
part of a pre-trained model in progressive learning.

Nonetheless, some other research in this area use combinational and sophisticated
methods to tackle transfer learning in deep learning such as ensembled networks, weighting
strategies, etc. [2]. However, to our knowledge, the search for recent advancements in DTL
for practical tasks ends up with methods based on mostly the model-based and limited
number of adversarial-based approaches.

5. Review of Recent Advancements in DTL

We limited our selection to the last five years of published studies on deep transfer
learning for various tasks and data types. Table 1 shows the list of selected works from
hundreds of reviewed literature sorted by their DTL approaches. We used the systematic
literature review (SLR) technique [13] for the process of finding and selecting these
thirty-eight publications. The inclusion criteria that we used for our selection process are
as follows: (a) published in the past five years, (b) reproducible (detailed implementation
and models), (c) applied to practical ML problems, and (d) generalizable. We found that
all reviewed studies mostly fall into three categories of model-based approaches and
some into the adversarial-based approach, which are explained in the previous section.
We name these approaches as (i) Finetuning: finetuning a pre-trained model on target
data; (ii) freezing CNN layers: the earlier CNN layers are frozen, and only the lateral
fully connected layers are finetuned; (iii) progressive learning: some or all layers of a
pre-trained model are selected and used frozen, and some fresh layers will be added to
the model to be trained on target data; and (iv) adversarial-based: extracting transferable
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features from both source and target data using adversarial or relational methods, as
shown in Figure 2.

Figure 2. Most common Deep Transfer Learning approaches.

The most common DTL method is using a trained model on a highly related dataset
to target data and finetune it on target data (finetuning). The simplicity of applying this
technique makes it the most popular DTL method in our selection; 21 of 38 selected works
have used this method. This method can improve training on target data in various
ways, such as reducing training costs and tackling the need for an extensive target dataset.
However, it is still prone to catastrophic forgetting. Needless to say, it is a very effective
DTL method for many tasks and datasets in various fields such as medical, mechanics, art,
physics, security, etc. Moreover, it has been applied for both image datasets and tabular
(numerical) datasets as listed in Table 1.

The second popular approach in DTL is freezing CNN layers in a pre-trained model
and finetuning only lateral fully connected layers (Freezing CNN layers). CNN layers
extract features from the given dataset, and the fully connected layers are responsible for
classification, which in this method will be finetuned to the new task for target data.

Table 1. List of selected recent deep transfer learning (DTL) publications.

Ref. Year Title Data
Type

Time
Series Approach CNN Known Models

Used Dataset Field

[14] 2022

UAV swarm-based radar
signal sorting via multi-
source data fusion: A deep
transfer learning framework

Image No Finetuning Yes
Yolo, Faster-
RCNN, and
Cascade-RCNN

Radar image

[15] 2022

Classification of analyz-
able metaphase images us-
ing transfer learning and
fine tuning

Image No Finetuning Yes VGG16, Incep-
tion V3 Medical image

[16] 2021

Multiclassification of En-
doscopic Colonoscopy Im-
ages Based on Deep Trans-
fer Learning

Image no Finetuning yes AlexNet, VGG,
and Res-Net Medical Image

[17] 2021

MCFT-CNN: Malware clas-
sification with fine-tune
convolution neural net-
works using traditional
and transfer learning in In-
ternet of Things

Image No Finetuning yes Res-Net50 Malware classifica-
tion
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Table 1. Cont.

Ref. Year Title Data
Type

Time
Series Approach CNN Known Models

Used Dataset Field

[18] 2021
Facial Emotion Recogni-
tion Using Transfer Learn-
ing in the Deep CNN

Image no Finetuning yes
VGGs, Res-Nets,
Inception-v3,
DenseNet-161

Facial emotion
recognition (FER)

[6] 2020

Automated Deep Transfer
Learning-Based Approach
for Detection of COVID-19
Infection in Chest X-rays

Image no Finetuning yes Inception-
Xception Medical image

[7] 2020

Classification of the COVID-
19 infected patients using
DenseNet201 based deep
transfer learning

Image no Finetuning yes ImageNet,
Dense-Net Medical image

[19] 2019

Enhancing materials prop-
erty prediction by lever-
aging computational and
experimental data using
deep transfer learning

Tabular/
bigdata yes Finetuning no none Quantum

mechanics

[20] 2019

Application of deep trans-
fer learning for automated
brain abnormality classifi-
cation using MR images

Image no Finetuning yes Res-Net Medical image

[21] 2019
An adaptive deep transfer
learning method for bear-
ing fault diagnosis

Tabular/
bigdata Yes Finetuning No LSTM RNN Mechanic

[22] 2019
Online detection for bear-
ing incipient fault based on
deep transfer learning

Image Yes Finetuning Yes VGG-16 Mechanic

[23] 2019
Towards More Accurate
Automatic Sleep Staging
via Deep Transfer Learning

Tabular/
bigdata Yes Finetuning Yes None Medical data

[24] 2019
Deep Transfer Learning for
Multiple Class Novelty De-
tection

Image No Finetuning Yes Alex-Net, VGG-
Net Vision

[25] 2019
A Digital-Twin-Assisted
Fault Diagnosis Using
Deep Transfer Learning

Tabular/
bigdata No Finetuning No None Mechanic

[26] 2019
Learning to Discover Novel
Visual Categories via Deep
Transfer Clustering

Image No Finetuning Yes None Vision

[27] 2018 Deep Transfer Learning for
Person Re-identification Image No Finetuning Yes None Identification/

security

[28] 2018 Deep Transfer Learning for
Art Classification Problems Image No Finetuning Yes None Art

[29] 2018

Classification and unsuper-
vised clustering of LIGO
data with Deep Transfer
Learning

Image No Finetuning Yes None Physics/
Astrophysics
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Table 1. Cont.

Ref. Year Title Data
Type

Time
Series Approach CNN Known Models

Used Dataset Field

[30] 2018

Empirical Study and Im-
provement on Deep Trans-
fer Learning for Human
Activity Recognition

Tabular/
bigdata Yes Finetuning Yes None Human Activity

Recognition

[31] 2018 Automatic ICD-9 coding
via deep transfer learning

Tabular/
bigdata No Finetuning Yes None Medical

[32] 2017

Video-based emotion
recognition in the wild us-
ing deep transfer learning
and score fusion

Video
(audio
and
visual)

Yes Finetuning Yes VGG-Face Human science/
psychology

[33] 2022
Deep transfer learning-
based visual classification
of pressure injuries stages

Image No Freezing
CNN layers Yes

Dense-Net 121,
Inception V3,
MobilNet V2,
Res-Nets, VGG16

Medical image

[34] 2021 Deep Transfer Learning for
WiFi Localization

Tabular/
bigdata No Freezing

CNN layers Yes None WiFi Localization

[35] 2020

Automated invasive ductal
carcinoma detection based
using deep transfer learning
with whole-slide images

Image No Freezing
CNN layers Yes Res-Net, Dense-

Net Medical image

[36] 2019
Deep Transfer Learning for
Signal Detection in Ambient
Backscatter Communications

Tabular/
bigdata No Freezing

CNN layers Yes None Tele-
communication

[37] 2019
Brain tumor classification
using deep CNN features
via transfer learning

Image No Freezing
CNN layers Yes Google-Net Medical image

[38] 2018
Comparison of Deep Trans-
fer Learning Strategies for
Digital Pathology

Image No Freezing
CNN layers Yes None Medical image

[39] 2018

Deep transfer learning for
military object recognition
under small training set
condition

Image No Freezing
CNN layers Yes None Military

[40] 2018
Deep Transfer Learning
for Image-Based Structural
Damage Recognition

Image No Freezing
CNN layers Yes VGG-Net Civil engineering

[41] 2017
Deep Transfer Learning for
Modality Classification of
Medical Images

Image No Freezing
CNN layers Yes VGG-Net, Res-

Net Medical image

[42] 2017
Folding Membrane Pro-
teins by Deep Transfer
Learning

Tabular/
bigdata No Freezing

CNN layers Yes Res-Net Chemistry

[43] 2021

Progressive Transfer Learn-
ing Approach for Identify-
ing the Leaf Type by Opti-
mizing Network Parameters

Image No Progressive
learning Yes Res-Net50 Plant science
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Table 1. Cont.

Ref. Year Title Data
Type

Time
Series Approach CNN Known Models

Used Dataset Field

[44] 2020

An Evaluation of Progres-
sive Neural Networks for
Transfer Learning in Natu-
ral Language Processing

NLP/text No Progressive
learning No None NLP

[45] 2020

Progressive Transfer Learn-
ing and Adversarial Do-
main Adaptation for Cross-
Domain Skin Disease Classi-
fication

Image No Progressive
learning Yes None Medical image

[46] 2017
Progressive Neural Net-
works for Transfer Learning
in Emotion Recognition

Image
and
audio

Yes Progressive
learning No None Para-linguistic

[47] 2020

A deep transfer learning
model with classical data
augmentation and CGAN
to detect COVID-19 from
chest CT radiography digi-
tal images

Image No Adversarial-
based Yes

Alex-Net, VGG-
Net16, VGG-
Net19, Google-
Net, Res-Net50

Medical image

[48] 2019

Diagnosing Rotating Ma-
chines with Weakly Su-
pervised Data Using Deep
Transfer Learning

Tabular/
bigdata Yes Adversarial-

based Yes None Mechanic

[49] 2017
A New Deep Transfer Learn-
ing Based on Sparse Auto-
Encoder for Fault Diagnosis

Tabular/
bigdata Yes

Sparse
Auto-
Encoder

No None Mechanic

Refs. [33–42] are the sample research publications, which have used this method for
different data types such as image and tabular data as listed in Table 1. This technique
is specific to the models consisting of CNN layers; however, it can be extended to other
deep learning models by assuming that the earlier and middle layers are acting similarly to
CNN layers for feature extraction.

Using well-known models such as VGG-Net, Alex-Net, and Res-Net, which have
already been trained on ImageNet datasets [50], is a general approach for both of the
techniques mentioned above, since they are easily accessible, and they are pre-trained
to the highest possible accuracy. It is worth mentioning that such training can take days
of processing time even with clusters of GPUs/TPUs, and the mentioned methods are
skipping the pre-training step by simply downloading a publicly available pre-trained
model. Refs. [43–46] are based on the progressive learning method, also known as pro-
gressive neural networks (PNNs), described earlier. Ref. [44] evaluates the progressive
learning effectiveness for common natural language processing (NLP) tasks: sequence
labeling and text classification. Through the evaluation and comparison of applying PNNs
to various models, datasets, and tasks, they show how PNNs improve DL models’ accuracy
by avoiding the catastrophic forgetting in finetuning techniques. Refs. [43,45,46] use PNNs
for image and audio datasets and similarly finds tangible improvements in comparison
to other DTL techniques. Refs. [47,48] are examples of adversarial-based approaches that
we found in the literature. In [47], they used conditional generative adversarial networks
(CGAN) to expand the limited target data of chest X-ray images for detecting the COVID-19
DTL model. Ref. [48] applies the domain adversarial training to obtain the shared features
between multiple source datasets.

Moreover, we found some tailored DTL methods for specific tasks and datasets such
as [49]. The proposed method in [49], as they describe it, is based on the “three-layer
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sparse auto-encoder to extract the features of raw data, and applies the maximum mean
discrepancy term to minimizing the discrepancy penalty between the features from training
data and target data.” They tailor that method for smart industry fault diagnosis problems
and achieve a 99.82% accuracy which is better than other approaches such as the deep
belief network, sparse filter, deep learning, and support vector machine. Such tailored DTL
approaches are not usually easy to generalize for different tasks or datasets. Nonetheless,
they can open the door to interesting and new techniques in deep transfer learning’s future.

6. Experimental Analyzations of Deep Transfer Learning

In this section, we review two remarkable experimental evaluations of DTL techniques.
The tests’ setup, analysis, and conclusions are noteworthy for applying DTL techniques in
different scenarios.

“What is being transferred in transfer learning?” [51] is a recent experimental study
which uses a series of tests on visual domain and deep learning models and tries to investi-
gate what makes a successful transfer and which part of the network is responsible for that.
To do so, they analyze networks in four different cases: (i) pre-trained network, (ii) random
initialized network, (iii) finetuned network on target domain after pretraining on source
domain, and (iv) trained network from random initialization [51]. Moreover, to characterize
the role of the feature reuse, they use a source (pre-train) domain containing natural images
(IMAGENET), and a few target (downstream) domains with decreasing visual similarities
from natural images: DOMAINNET real, DOMAINNET clipart, CHEXPERT (medical chest
X-rays) and DOMAINNET quickdraw [51].

The study demonstrates that feature reuse plays a key role in deep transfer learning as
a pre-trained model on IMAGENET, and shows the largest performance improvement on
the real domain, which shares similar visual features (natural images) with IMAGENET in
comparison to randomly initialized models. Moreover, they run a series of experiments
by shuffling the image blocks (different block sizes). These experiments prove that feature
reuse plays a very important role in transfer learning, particularly when the target domain
shares visual features with the source domain. However, they realize that feature reuse is
not the only reason for deep transfer learning success, since even for distant targets such
as CHEXPERT and quickdraw, they still observe performance boosts from deep transfer
learning. Additionally, in all cases pre-trained models converge way faster than random
initialized models [51].

Further, they manually analyze common and uncommon mistakes in the training of
randomly initialized versus pre-trained models. They observe that data samples marked
incorrect in the pre-trained model and correct in the randomly initialized model are mostly
ambiguous samples. On the other hand, the majority of the samples that a pre-trained
model marked correct and a randomly initialized model marked incorrect are straight-
forward samples. This means that a pre-trained model has a stronger prior, and it is
harder to adapt to the target domain. Moreover, using the centered kernel alignment to
measure feature similarities, they conclude that the initialization point drastically impacts
feature similarity, and two networks with a high accuracy can have a different feature
space. Moreover, they discover similar results for distance in the parameter space, in which
two random-initialized models are farther from each other compared to two pre-trained
models [51].

In regards to performance barriers and basins in the loss landscape, they have con-
cluded that the network stays in the same basin of the solution when finetuning a pre-
trained network. They reached this conclusion by training pre-trained models from two
random runs as well as training random initialized models twice and comparing. Even
when training a random initialized model two times with the same random values, the
models end up in different basins [51].

Module criticality is an interesting analysis of deep learning models. Usually, in a deep
CNN model, each layer of CNN considers a module, while in some models a component
of the network can be considered as a module. To measure the criticality of a module, it
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is possible to take a trained model and re-initialize each module at once and compare the
amount of model accuracy drop. Adopting this technique, the authors of [51] discovered:
(i) fully connected layers (near to the model output) become critical for the P-T model, and
the (ii) module criticality increases moving from the input side of the model towards the
output, which is consistent with the concept of earlier layers (near the input), extracting
more general features, while lateral layers have features that are more specialized for the
target domain. Ref. [52] is another experimental analysis of transfer learning in visual tasks
with the title of “Factors of Influence for Transfer Learning across Diverse Appearance
Domains and Task Types”. Three factors of influence are investigated in this study: (i) image
domain, the difference in image domain between source and target tasks, (ii) task type,
the difference in task type, and (iii) dataset size, the size of the source, and target training
sets. They perform over 1200 transfer learning experiments on 20 datasets spanning seven
diverse image domains (consumer, driving, aerial, underwater, indoor, synthetic, and
closeups) and four task types (semantic segmentation, object detection, depth estimation,
and keypoint detection) [52].

They use data normalization (e.g., Illumination normalization) and augmentation
techniques to improve the models’ accuracy. They adopt recent high-resolution backbone
HRNetV2, which consists of 69M parameters. This backbone is easily adjustable for
different datasets by simply replacing the head of the backbone. To make a fair comparison,
they pre-trained (to be used for transfer learning) their models from scratch and evaluated
their performance using a top-1 accuracy on the ILSVRC’12 validation set [52].

The transfer learning experiments are mainly divided into two settings of the (i) trans-
fer learning with a small target training set and (ii) with the full target set. The evaluation
of transfer learning models is based on the gain obtained from finetuning from a specific
source model compared to finetuning from ILSVRC’12 image classification with the main
question of “are additional gains possible, by picking a good source?”. Furthermore, they
added a series of experiments for multi-source training to investigate the impact of using
multi-source training for a specific task [52].

Such an exhaustive experimental analysis resulted in following observations: (i) all
experiments proved that transfer learning outperforms training from scratch (random
initialization); (ii) for 85% of target tasks there exists a source task which tops ILSVCR’12
pre-training; (iii) the most transfer gain happens when the source and target tasks are in
the same image domain (within-domain), which is even more important than the source
size; (iv) positive transfer gain is possible when the source image domain includes the
target domain; (v) although multisource models bring good transfer, they are outperformed
by the largest within-domain source; (vi) “for 65% of the targets within the same image
domain as the source, cross-task-type transfer results in positive transfer gains”; (vii) as
naturally expected, the larger datasets positively transfer towards the smaller datasets;
(viii) transfer effects are stronger for a small target training set, which helps the process
of choosing the transfer learning model by testing several models with a small section of
target data [52].

7. Discussion

The Deep Transfer Learning (DTL) research field is thriving because of the motivation
to handle the limitations of Deep Learning (DL) models, which are the dependency on
extensive labeled data and training costs. The main idea is to use the obtained knowledge
from source data in the training process on target data. Another possible impactful outcome
of the DTL research line is to achieve continual learning, which brings the Artificial General
Intelligence [1] a step closer to reality. Continual learning can be achieved simply through
a chain of transfer learning processes, while the end model is still valid on all previous
training sources.

As we reviewed in previous sections, model-based approaches are the most commonly
used approaches in DTL, since deep learning models have the capacity to be adjusted to
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transfer knowledge. However, there are two main constraints in such approaches—the
catastrophic forgetting dilemma and an overly biased pre-trained model.

In the case of finetuning a pre-trained model, there is a high chance of the drastic
changes of weights through the whole model resulting in the catastrophic forgetting
dilemma. Therefore, the obtained knowledge could be partially or even completely wiped
out, resulting in unsuccessful training and no possibility of continual learning. This
constraint limits the success of the finetuning approach to the tightly related source and
target data. Moreover, a very well-known technique to reduce the forgetting effect is to add
a limited number of source samples to the target training data.

Freezing the pre-trained CNN layers technique tries to tackle the catastrophic forget-
ting by freezing the obtained knowledge on earlier layers and finetuning the fully-connected
lateral layers to achieve transfer learning for target data. Given the fact that earlier lay-
ers in DL models extract detailed features and move towards the output, more abstract
knowledge is extracted [11]; freezing the earlier layers limits the ability of the model to
learn any new features from target data, which is known as an overly biased pre-trained
model. Having extensive source data or access to a pre-trained model on a large dataset
is critical for a successful transfer using this technique. In this way, there is a high chance
that the pre-trained model has already learned any possible detailed features, and simply
by finetuning, the lateral layers can perform on target data. However, even tackling the
first obstacle, this solution is still imperiled by the catastrophic forgetting in lateral layers.
This technique is still successful in the case of the related source and target data and tasks
despite the limitations mentioned above.

Progressive learning tries to find a middle ground between catastrophic forgetting
and a biased model by adding a new layer(s) to the end of a frozen pre-trained model. This
technique is successful in the case of a task transfer for the related source and target data.
It cannot deal with the distant source and target data since the earlier layers are frozen
and cannot learn new features; however, the new lateral layer helps the model adjust to a
new task.

A possible solution to address both catastrophic forgetting and an overly biased pre-
trained model in DTL is to increase the learning capacity of a pre-trained model by vertically
expanding it. In another research paper, we propose expanding the model vertically in
training on target data, adding new nodes on frozen pre-trained layers throughout the
model instead of adding a new layer(s) to the end of the model [53]. The vertical expansion
increases the model learning capacity while keeping the previously obtained knowledge
intact. Therefore, not only do we achieve successful transfer learning, our final model is
still valid on the source data, opening the door to deep continual learning [53].

8. Conclusions

This paper reviews the taxonomy of deep transfer learning (DTL) and the definitions of
different approaches. Moreover, we review, list, categorize and analyze over thirty recently
applied DTL research studies. Then, we investigate the methodology and limitations
of the three most common model-based deep transfer learning methods: (i) Finetuning,
(ii) Freezing CNN Layers, and (iii) Progressive Learning. These techniques have proven
their ability and effectiveness for various machine learning problems. The simplicity of
finetuning publicly available pre-trained models on extensive datasets is the reason for it
being the most common transfer learning technique. Moreover, two thorough experimental
studies in DTL are summarized; their discoveries clarify the details of a successful deep
transfer learning approach for different scenarios. Last but not least, the limitations of
current DTLs, catastrophic forgetting dilemma, and overly biased pre-trained models are
discussed, along with possible solutions.
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