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Abstract: An automatic least square support vector regression (LSSVR) optimization method that
uses mixed kernel chaotic particle swarm optimization (CPSO) to handle regression issues has been
provided. The LSSVR model is composed of three components. The position of the particles (solution)
in a chaotic sequence with good randomness and ergodicity of the initial characteristics is taken
into consideration in the first section. The binary particle swarm optimization (PSO) used to choose
potential input characteristic combinations makes up the second section. The final step involves
using a chaotic search to narrow down the set of potential input characteristics before combining the
PSO-optimized parameters to create CP-LSSVR. The CP-LSSVR is used to forecast the impressive
datasets testing targets obtained from the UCI dataset for purposes of illustration and evaluation.
The results suggest CP-LSSVR has a good predictive capability discussed in this paper and can build
a projected model utilizing a limited number of characteristics.

Keywords: mixed kernel; particle swarm optimization; support vector regression (SVR); least
squares SVR

1. Introduction

In addition to using the sample distributions that are provided, traditional statistical
methods also base their estimation of the parameter’s value on the assumption that samples
are infinite. The application of some outstanding statistics methods for the real-world
issue is severely constrained. The major popular approach for nonlinear modeling, the
artificial neural network (ANN), overcomes the limitations of conventional approaches
for parameter estimation and may be built entirely from historical input-output data.
The empirical risk minimization (ERM) principle-based ANN, however, there are several
significant drawbacks, including the need for more training data, a lack of a consistent
theoretical mathematical framework, the failure to find the fractional answers, overtraining,
and dimension fatal event.

Support vector machine (SVM), a cutting-edge, potent machine learning technique
created within the body of statistical learning theory (SLT), carries out the structural risk
minimization (SRM) principle rather than the equivalent risk minimization (ERM) principle,
giving it excellent generalization abilities in the case of small samples. SVM can effectively
minimize modeling complexity, establish network structure automatically, and dimension
disaster-free without local minima. Support vector regression (SVR) that had been proven
its outstanding strength in many areas such as identification of patterns, regression analysis,
forecasting in time-series, and optimization in numerous systems is expanded for resolving
non-linear regression analysis.

A novel technique recently presented is termed the least squares SVR (LSSVR) [1],
which uses equality constraints similar to that of a traditional artificial neural network
(ANN). As the problem’s solution can be discovered using linearization, it is substantially
simplified. It can be used to create a classification and prediction model, as seen in [2,3].
Yet, the right LSSVR meta parameter configuration determines how well LSSVR models
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perform. As a result, only “professional” users with a solid understanding of the SVR
approach can handle the LSSVR program.

The proper three LSSVR settings determine the quality of LSSVR models. Secondly, in
big-size cases, the LSSVR function is quite slow since a quadratic programming (QP) issue
needs to be solved. Second, several crucial parameters that endure and impair LSSVR’s
recapitulation capabilities, are not optimal in the LSSVR modeling. Finally, a predictive
LSSVR model also has a hard time choosing some crucial properties. Furthermore, when
the model interpretability is crucial, the issue could become more difficult to solve. How to
choose these variables to guarantee outstanding recapitulation expression is a fundamental
challenge in utilizing LSSVR for nonlinear systems. Evolutionary algorithms (EAs), partic-
ularly genetic algorithms (GAs), are the most popular method for determining parameters
and characteristics, and they have already been used to choose characteristics and optimize
parameters for the LSSVR model [4,5]. While particle swarm optimization (PSO), which is
inspired by the swarm action from creatures, is extremely simple for installation as well as
has fewer parameters for the tune, GA is challenging and is short of computational power.
The simulation findings demonstrate that GA and PSO readily trap into local optimal
solution, despite the fact that PSO can effectively employ in handling optimal problems of
more dimensional [6–11].

Thus, this study must address the following three problems:

1. Initialization of the parameters: This is due to the possibility that it is unaware of the
location of the global minimum at which the prior optimization problem was resolved.

2. Characteristic extract or the characteristic evolution component can typically accom-
plish the decrease in data dimensionality. Often, this has been accomplished using
characteristic extract methods like principal component analysis (PCA). The PCA is
ineffective for this study’s objectives since it also wants to produce highly precise
predictive models, not just reduce the dimensionality of the data. Nevertheless, the
PCA doesn’t take into account the link for variables of input and variables of reply
throughout the data reduction process, making it challenging to create a model that
is extremely precise. Furthermore, if the input variables’ dimensionality is really
high, it might be challenging to interpret the main components that are produced
by the PCA. On the other hand, for data sets with high dimensionality, the PSO has
been shown to perform better than other methods [11]. A simplified LSSVR model
with improved generalization can be created by selecting more information for any
data set provided when employing the fewest characteristics possible throughout the
characteristic evolution phase.

3. Another PSO is employed in the parameter evolution component to optimize the
LSSVR’s parameters. Generally, LSSVR generalization ability is governed by the type
of kernel, parameters’ kernel, and parameter’s upper bound. Every form of the kernel
has benefits and drawbacks, hence a mixed kernel makes sense [12–14]. Additionally,
computational time and complexity in the training of the algorithm equals the total
execution generations multiplied by the number of total solutions and multiplied by
the time complexity of the update for each solution.

In this study, the chaotic particle swarm optimization (CPSO) approach has been used
to tackle optimization issues. This novel PSO is based on chaos investigating, the logical
model, and the tent model [15,16]. The advantage and innovation of the new regression
method CP-LSSVR presented in this work is demonstrated as follows:

1. The CP-LSSVR is used to initialize the parameters for the parameters initialization
issue of LSSVR applications.

2. A binary PSO is utilized for feature selection in the input data to improve the model’s
interpretability for the issue of requiring LSSVR to preprocess the input characteristics
if the dimensions of input space or input characteristics are quite vast.

3. A third PSO is applied to optimize its parameters to boost the LSSVR’s capacity
for normalization.
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SVR, LSSVR, kernel function, Particle Swarm Optimization (PSO) algorithm, and
chaotic sequences are all described in Section 2. In Section 3, the CP-LSSVR learning
paradigm is thoroughly explained. Benchmark datasets, comparative methods, and the
reported experimental results are described in Section 4. Conclusion and additional research
have been analyzed in Section 5.

2. SVR and LSSVR

By applying a nonlinear function (m > d) to transfer an input of d-dimensionality onto
an m-dimensional characteristic space, SVM regression (SVR) creates a linear model in the
characteristic space. The process is depicted in Figure 1.
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Figure 1. Example of the nonlinear transformation used to get from the input space to the characteris-
tic space (d = 2; m = 3), where colors represent different characteristic and symbol φ(·) signifies a
sequence of nonlinear transformations.

Let’s assume a training data set {xk, yk}N
k=1, where xk ∈ Rn as well as yk ∈ R for

k = 1, . . . , N and represent characteristics’ input space and objective value, respectively.
N denotes the training data’s size. In order to translate the input data to an advanced
dimensional characteristic space, the SVR must identify a nonlinear map from input space
to output space. Then, Equation (1) shows the linear regression using the following estimate
function [17]:

l(x) = aφ(x) + e (1)

where a is the coefficients, φ(x) signifies a sequence of nonlinear transformations that
translates the input space into the characteristic space, and e means a real number. To
reduce the risk is the goal is shown in Equation (2) [1]:

min
a,e,Eu

k ,El
k

F(a, e, Eu
k El

k) =
||a||2/

2 + C
N
∑

k=1
(Eu

k + El
k)

s.t yk − (aφ(xk)) + e ≤ σ + El
k

(aφ(xk)) + e− yk ≤ σ + Eu
k

Eu
k , El

k ≥ 0 k = 1, . . . , N

(2)

The characteristic map φ vector has transferred the dataset of k-sample’s vector to a
advanced-dimensional space, and Eu

k is training error of upper bound and El
k presents

training error of lower bound for the σ-insensitive tube.

|y− (aφ(x) + e)| ≤ σ (3)

The dual formulations solution may be sparse due to the σ-insensitive loss model
that also precludes the complete training set from fulfilling the boundary requirements. A
balance achieved between the flatness of F and its accurateness in catching the training

data is determined by the item ||a||
2/
2 , which is known as the normalization item, and C,

which presents the normalization constant.
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Equation (3) suggests that the tube σ contains the majority of the data αk. An error
El

k or El
k has been typically tried to reduce in the objective function if αk is outside

the tube. This is depicted in Figure 2. By minimizing the normalization term ||a||
2/
2 as

well as the training error C
N
∑

k=1
(Eu

k + El
k), SVR prevents the training data to be underfitted

and overfitted.
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The Karush-Kuhn-Tucker methods [18] require introduction of Lagrange multipliers
γk, γ∗k , and the SVR approach aggregates to solving the convex quadratic model given in
Equation (4)

min
γ,γ∗

1
2

N
∑

k,s=1
(γk − γ∗k )(γs − γ∗s )K(xk, xs) + σ

N
∑

k=1
(γk + γ∗k )−

N
∑

k=1
y(γk − γ∗k )

s.t
N
∑

k=1
(γk − γ∗k ) = 0

0 ≤ γk, γ∗k ≤ C

(4)

SVMs are superior to other regression techniques because they solve the quadratic
programming (QP) problem without hitting the local minima that depend on the statistical
learning theory and the structural risk minimization concept [18]. The non-linear SVR
function in this work is LSSVR. LSSVR employed was selected as the estimation approach
due to its superior normalization power and ability to produce an almost global answer in
a reasonable amount of training time [19]. The optimization problem’s basic formulation of
an LSSVR regression model in characteristic space is Equation (5) [19]:

min
a,e,π

F(a, e, π) = ||a||
2/
2 +

C
N
∑

k=1
π2

k

/
2

s.t yk − (aT ·φ(xk) + e) = πk k = 1, 2 . . . , N

(5)

Due to the weighting vector’s extremely high dimension, the calculation of Equation (5)
is very challenging. This issue can be resolved by computing the model through a La-
grangian stated in Equation (6) in a dual space as opposed to the primal space.

L(a, e, π, γ) = F(a, e, π)− C
N

∑
k=1

γk{aT ·φ(xk) + e + πk − yk} (6)

where γk is the support vector that belongs to the real number, often known as the Lagrange
multiplier. In light of this, Equation (7) lists the prerequisites for optimality.
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∂L
∂a = 0⇒ a =

N
∑

k=1
γkφ(xk)

∂L
∂e = 0⇒ −

N
∑

k=1
γk = 0

∂L
∂πk

= 0⇒ γk = Cπk
∂L
∂γk

= 0⇒ aTφ(xk) + e + πk − yk = 0
k= 1, . . . , N

(7)

After removing π and a, the answer is obtained as Equation (8).[
0 1T

1 Ω + τ−1 I

][
e
γ

]
=

[
0
y

]
(8)

where y = (y1, . . . , yn)
T , I = (1, . . . 1)T , γ = (γ1, . . . , γn)

T , Ωks = (φ(xk))
Tφ(xs) for k,s = 1,

. . . , N. There is a mapping and an expression that may be written as
k(x, y) = ∑

k
φk(x)Tφk(y) based on Mercer’s condition. Hence, the kernel k(., .) is con-

structed such that Equation (9).

k(xk, xs) = φ(xk)
Tφ(xs) (9)

where φ represents the formula that simulates the real non-linear mapping formula and xk
as well as xs denoted as both goals for the data set.

In Equation (10), the outcome LS-SVR model for function estimation is found.

l(x) =
N

∑
k=1

γk·υ(xk, xs) + e (10)

where xk and e are the answers to Equation (10).
Complex non-linear data can be mapped using kernels into an advanced-dimensional

characteristic space that linear modeling is feasible. Due to the difficulty in determining
the mapping model and the overall lack of prior knowledge, the characteristic space is
completely created by calling a common kernel model. A kernel model (K) works on two
input vectors as shown in Equation (9).

To build a linear function in the characteristic space, one does not need to be aware of
the actual underlying feature map when using a kernel function. In literature, a number of
kernel functions are frequently utilized.

The width of the tube, the mapping function, and the error cost C are the three
parameters in this study that define the LSSVR quality. The nonlinear mapping is performed
by the Mercer kernel’s approximate characteristic map. Equations (11)–(13) show the
common kernel functions in machine learning theories [20].

Linear kernel:
κ(xk, xs) = xT

k ·xs (11)

Kernel of a polynomial:

κ(xk, xs) = (xT
k ·xs + h)

g
(12)

Gaussian (RBF) kernel:

κ(xk, xs) = exp(−‖xk − xs‖2

2σ2 ) (13)

The parameters xk and xs are vectors in the input space; g signifies the polynomial’s
level and T presents the item of intercept constant in Equation (12) and σ2 indicates the
Gaussian kernel’s width in Equation (13).
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The polynomial kernel (a global kernel), among the three standard kernels, stated
earlier, exhibits stronger extrapolation capabilities at lower orders of levels but needs
higher orders of levels for effective inserted values. The RBF kernel, a local kernel, excels in
inserted values but falls short in extrapolating across longer distances.

It is difficult to declare which kernel is the greatest across the board, though, because
each has pros and cons. According to the studies [13,21], combining or hybridizing var-
ious kernel functions can enhance SVM’s generalization capabilities. In this paper, the
LSSVR model using a mixed kernel is trained. The three kernels mentioned above are
combined to form the mixed kernel. It is possible to write the convex combination kernel
by Equation (14).

κ = λ1κlinear + λ2κpoly + λ3κrb f
where λ1 + λ2 + λ3 = 1, 0 ≤ λ1, λ2, λ3 ≤ 1

(14)

Since all kernel functions in the proposed mixed kernel fulfill Mercer’s theory, a convex
combination of them fulfills the theory, too.

3. LSSVR Based on Chaotic Particle Swarm Optimization (CPSO) Algorithm

The suggested automatic LSSVR learning paradigm is further detailed in this section.
The automatic LSSVR learning paradigm is first introduced in its common structure. Then,
every step of the chaotic map and PSO-based LSSVR parameter initialization, characteristic
selection, and parameter optimization is discussed.

3.1. Automatic LSSVR Learning Paradigm

Several practical studies have shown that the LSSVM is a successful learning technique
for regression issues [21–23]. For LSSVR applications, there are still three key issues.

1. Parameters initialization.
2. It is required for LSSVR to preprocess the input characteristics if the dimensions of in-

put space or input characteristics are quite vast, in order to improve the interpretability
of the LSSVR-based forecasting model.

3. This work adopts a mixed kernel model to get beyond the effect of kernel types
because LSSVR normalization ability is frequently governed via (a) kernel type. The
next two things, however, heavily rely on the researchers’ artistic ability. (b) kernel
parameters: convex combination coefficients (λ1, λ2, λ3), and kernel parameters (g, σ).
C is the upper bound parameter.

Software algorithms are employed to solve these three issues. A chaotic map is used to
initialize the parameters for the first issue. In order to improve the model’s interpretability
for the second issue, a binary PSO is utilized for feature selection in the input data. To boost
the LSSVR’s capacity for normalization, a third PSO is applied to optimize its parameters.
The automatic LSSVR learning paradigm, shown in Figure 3, is developed based on the
three techniques.

It is simple to see that the automatic LSSVR learning paradigm has three basic compo-
nents that address the aforementioned three major issues.

Use the chaotic map in the first section to defeat the PSO algorithm’s initialization’s
randomly produced solutions.

The binary PSO searches a subset of characteristic variable subsets in the exponential
space in the second section before sending that subset of characteristics to an LSSVR model.
From each subgroup, the LSSVR extracts forecasting data and gains knowledge of the
schemes. A trained LSSVR is tested on a holdout data set that was not utilized for training
after learning the schemes in the data, and it then sends the calculation rule as a fitness
function for PSO. The PSO biases its search direction according to fitness values to maximize
the assessment aim. It is important to note that LSSVM just adopts the chosen characteristic
variables during the training and evaluation processes.
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The six unknown parameters (λ1, λ2, λ3, g, σ, C) are optimized in the third section
using PSO. Sections 3.2–3.4 define in full the contents of each section.

To combine the two elements of evolution is feasible. It is possible to simultaneously
optimize the characteristic evolution and the parameter evolution. It means the parameter
optimization technique can be carried out prior to the characteristic selection procedure in
the autonomous LSSVR learning paradigm. Large input characteristic dimensions are not
recommended in reality due to the excessive computational workload. In this regard, it
makes it more logical to undertake characteristic selection before parameter evolution.

3.2. Chaotic Sequences-Based Parameters Initialization

It might not know the position of the global minimum before an optimization problem
is solved [13]. The PSO-generated solutions, however, use a random mechanism in the
beginning stages, making it simple to reach the local optimal. This paper makes an effort to
use chaotic sequences to tackle this issue.

Step 0. Generated by Logistic map chaotic sequence by Equation (15), following:

L(k + 1) = n·L(k)·(1− L(k)), L(k) ∈ [0, 1]; n ∈ [3.56, 4] (15)

Step 1. For the m particles in the D-dimensional space, the first generates a random initial
value m:

L1(1), L2(1), . . . , Lm(1)

Step 2. Chaotic sequence to the initial value of m-Equation (15). At that point, m will be the
trajectory after Z iterations.
Step 3. Substituting the chaotic trajectory of the article from m in the selected Z iteration
value into the Equation (16). One can compute xυ,k

xυ,k = Lυ(k)(maxk −mink)υ/m + mink, υ = 1, 2, . . . , m; k = 1, 2, . . . , Z (16)

where xυ,k denotes the position of the υ particles in the k-dimensional space. Lυ(k) is for the
first υ particles in the randomly generated initial value of Equation (15) after k multiplying
the value by the number of iterations.
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Using Equation (16) calculated for all xυ,k components m row column Z Matrix as
following Equation (17): 

x1,1 x1,2 · · · x1,Z
x2,1 x2,2 x2,Z

...
. . .

xm,1 xm,2 · · · xm,Z

 (17)

where each row vector represents the initial position of a particle.

3.3. PSO-Based Input Features Evolution

The level of potential input variables might be rather big for many practical issues.
It’s possible that some of these input variables are redundant. A significant input variables’
level will also raise LSSVR’s size, necessitating more training data and longer training
periods to achieve a respectable level of normalization [22,23]. As a result, characteristic
selection should be used to reduce input characteristics. Typically, the procedure of selecting
a subset of the original characteristics by eliminating any duplicate or poorly-informed
characteristics is referred to as characteristic selection [24].

The second challenge in the addressed automatic LSSVR learning paradigm
is to choose crucial features for LSSVR learning. Two things are the major goals of
characteristic selection:

1. To eliminate some less-important characteristics for decreasing the input characteris-
tics’ size and enhance forecasting capability.

2. Additionally, it is to pinpoint several crucial characteristics that influence model
performance, hence bringing down model complexity.

PSO, the most prevalent kind of software algorithm to date, has developed into a
significant stochastic optimization technique, in contrast to most conventional optimization
algorithms, because it frequently finds the optimal optimum. In this study, the input
characteristic subset for LSSVR modeling is extracted using PSO.

The required particle number is initially set using the principles of particle swarm
optimization, and the starting coding alphabetic string for every particle has been then
generated at random. In this work, every particle is coded to mimic a chromosome using
a common method; every particle is converted to a binary alphabetic string
S = A1, A2, . . . , Am, m = 1, 2, . . . , N, where bit value {1} presents a characteristic that
has been chosen and bit value {0} denotes a characteristic that has not been chosen.

When utilizing particle swarm optimization to examine a 10-dimensional data set
(m = 10), for instance, any characteristics’ level can be chosen fewer than m, i.e., it can
randomly select six characteristics, as shown in the accompanying Figure 4.
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Figure 4. Choosing characteristics using PSO.

The six characteristics in each data set serve as a representation of the data dimension
and have been assessed via LSSVR while calculating the fitness score. Adaptive value serves
as a foundation for every particle renewal. The best adaptive value within a group of p-best
is g-best, while the best fitness value for every particle renewal is p-best. After obtaining
p-best and g-best, it may monitor the characteristics of p-best and g-best particles in terms
of their location and speed. The binary version of PSO is utilized in this investigation [25].
Each particle’s location is specified as a binary string that corresponds to a characteristic
selection scenario [26].
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The fitness function is the last evaluation criterion and is used to assess each string’s
quality. The following Equation (18) can be used to build the fitness function for the PSO
variable selection.

Fi =
1

fi + mic
(18)

where “mic” is a decimal that is used to avoid the denominator being zero, fi representing
the ith solution’s objective.

In this case, the relevancy of the input variables and the response variable is modeled
using the LSSVR, as you may have noticed. The LSSVR models are then trained using
training data, tested using holdout data, and the suggested model is assessed using the
reduction LSSVR-error quadratic sum of the solution.

The aforementioned formulae determine how often each particle is updated. The PSO
procedure’s pseudo code is shown below Algorithm 1.

Algorithm 1: PSO—Based Input Features Evolution

Goal: Reducing (1-hit ratio)
Input: training data set.
Output: The PSO-LSSVR’s characteristics set.
BEGIN
Establish the population
While (number of generations, or the halting requirement is not fulfilled)
For i = 1 (particles’ number)
When one’s fitness level Xk exceeds another’s p-best,
next update p-bestk = Xk
For υ belongs to neighborhood of Xk

If fitness Xυ is higher than fitness of g-best,
Next update g-best = Xυ

then υ

Every dimension g
Vk,g(h + 1) = aVk,g(h) + τ1c1(Pk,g − xk,g(h)) + τ2c2(Pj,g − xk,g(h))
S(Vk,g(h + 1)) = 1

1+π
−Vk,g (h+1)

when rand() < S(Vk,g(h + 1))
then Xk,g(h + 1) = 1
else Xk,g(h + 1) = 0

Next g
Next k
Next generation till the ending criteria
END

The function in Equation (19) determines the characteristic following renewal.

S(Vk,g(h + 1)) =
1

1 + π−Vk,g(h+1)
(19)

If S(Vk,g(h + 1)) is greater than a disorder number generated at random and falling
within the range of (0, 1), then its position value Am (m = 1, 2, . . . , N) denotes this charac-
teristic has been chosen as a claimed characteristic for the next renewal as {1} otherwise,
denotes this characteristic has not been chosen as a claimed characteristic for the next
renewal as {0}.

3.4. PSO-Based Parameters Optimization

The current GA algorithm has some speed and accuracy restrictions for the conver-
gence of high-dimensional problems, in addition to being complex in terms of selection,
crossover, and mutation. The PSO algorithm, in contrast, is a parallel global search based
on population strategy, the idea of which is straightforward and simple to implement. It
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also has a faster convergence speed, is able to handle high-dimensional problems while
still having some advantages, and is a population-based stochastic optimization technique.

Theoretical benefits of the PSO algorithm, which was used in this study to perform a
solution search for the six parameters of LSSVR.

Up until the termination condition is met, the process is repeated. The undetermined
parameter, containing controlled parameters and Lagrange multipliers, constitutes the ob-
jects of evolution after the up-construction of the LSSVR model with adjustment [13,19,21].
This is due to the selection of these parameters significantly based on the theories of re-
searchers. The parameters in this study are set up in common and appropriate ranges
(g : [0, 6], σ2 : (0, 1] and C : (0, 20]) to reduce computing costs.

As a result, a vector is described as a common notation of the parameters employed in
the PSO-LSSVR training procedure as shown in Equation (20):

Ψ = (λ1, λ2, λ3, g, σ, C, γk, e) (20)

It can now reformulate using the forecasting parameter constraints and the following
model Equation (21).

min F(Ψ) = ||a||
2/
2 +

C
N
∑

k=1
π2

k

/
2

s.t yk − (aT ·φ(xk) + e) = πk k = 1, . . . N
λ1 + λ2 + λ3 = 1
λ1, λ2, λ3 ≥ 0
1 ≤ n ≤ #attributions, n ∈ N+
0 ≤ g ≤ 6, 0 ≤ σ ≤ 1, 0 ≤ C ≤ 20

(21)

The automatic LSSVR learning paradigm with a mixed kernel, the best input charac-
teristics, and the optimized parameters are created by the aforementioned evolutionary
processes. Six outstanding datasets from the UCI dataset can be used as testing targets
in Section 4 for the developed automatic LSSVR learning paradigm as an example and
evaluation tool.

4. Experiment Findings

The benchmark datasets and similar approaches are initially introduced in this section.
Then, it shows how to identify the essential features that influence the outcomes of the
prediction and describe the optimization procedure. Lastly, it evaluates the effectiveness of
the suggested automatic LSSVR in comparison to a few other predicting models.

4.1. Benchmark Datasets and Compared Approaches

It tested six datasets referred to the UCI Machine Learning Repository [27] to confirm
the robustness of our method, as shown in Table 1 and in more detail in Table 2.

Individual CP-LSSVR models with polynomial, RBF, and tangent kernels, collectively
referred to as CP-LSSVRlinear, CP-LSSVRpoly, and CP-LSSVRRBF, were trained using the
PSO algorithm (PSO-LSSVR) for further comparison. The data used for training and testing
was for the six datasets is listed in Table 1. For example, among the total observations of
Boston Housing Data is 506, 304 data are used for training data and the remaining 202 data
are used for testing data.
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Table 1. Data sets from the UCI.

No. Data Sets Observations Training
(100%) Testing Attributions

1 Boston Housing Data 506 304 202 13
2 Auto-Mpg 398 239 159 8
3 machine CPU 209 125 84 6
4 Servo 167 100 67 4
5 Concrete Compressive Strength 1030 618 412 8
6 Auto Price 159 95 64 14

Table 2. Detail data sets from the UCI.

Attribution Boston
Housing Data Auto-Mpg Machine

CPU Servo Concrete
Compressive Strength Auto Price

1 CRIM cylinders MYCT motor Cement normalized-losses

2 ZN displacement MMIN screw Blast Furnace Slag wheel-base

3 INDUS horsepower MMAX pgain Fly Ash length

4 CHAS weight CACH vgain Water width

5 NOX acceleration CHMIN Superplasticizer height

6 RM model year CHMAX Coarse Aggregate curb-weight

7 AGE origin Fine Aggregate engine-size

8 DIS car name Age bore

9 RAD stroke

10 TAX compression-ratio

11 PTRATIO horsepower

12 B peak-rpm

13 LSTAT city-mpg

14 highway-mpg

15 price

4.2. Characteristic Selection Using PSO

This study conducted six benchmarks to approve the PSO-based characteristic selec-
tion algorithm’s resilience.

To create a characteristic selection to avoid overlapping, the training data is randomly
picked. As the training data’s size may be smaller than the test data or it might be too small
to be regarded as typical training data, it reasoned that CP-LSSVR training with less than
50% training data is insufficient.

Three steps were included in each experiment.

Step 1: Use the initial value that the chaotic map process created in step 1 (for instance, the
dataset Auto-Mpg Figure 5).
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Step 2: Assess the fitness function.
Step 3: Before MCN.set w = 0.9− 0.5·j/M CN, j = iteration, choose the number of input
characteristics using Binary PSO.
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Step 4: Selected training data k% (k = 50, 60, . . . , 100) are used to train the LSSVR with PSO.
Step 5: The trained LSSVR was tested for a set size.

Also, an AMD Turion (tm) 642 Mobile Technology TL-64 computer running at 2.2 GHz
with 3 GB of memory was used to construct the PSO algorithm in the C++ programming
language. The ideal values for these parameters are established in Table 3 following a
test approach.

Table 3. The best values of these parameters.

No. Data Sets Number of
Particles Iteration c1 c2 w0 u

1 BostonHousing Data 50 200 2 2 0.9 4
2 Auto-Mpg 50 200 2 2 0.9 4
3 machine CPU 50 200 2 2 0.9 4
4 Servo 50 200 2 2 0.9 4
5 Concrete Compressive Strength 50 200 2 2 0.9 4
6 Auto Price 50 200 2 2 0.9 4

Tables 4–9 display the chosen characteristics. It should be noted that the major charac-
teristics chosen indicate the best characteristic sets for all tests and were chosen through six
separate experiments using various data sets created via data partition approach.

Table 4. Selected features for Boston Housing Data.

Training (%) Selected Feature ID #Features

50 1, 2, 4, 5, 8, 9, 11, 12 8
60 1, 2, 4, 6, 8, 13 6
70 1, 2, 3, 9, 11 5
80 1, 2, 4, 8, 9 5
90 1, 2, 4, 6, 9, 11 6

100 1, 2, 4, 8, 9, 11 6

Average 6.0000

Table 5. Selected features for Auto-Mpg.

Training (%) Selected Feature ID #Features

50 1, 2, 3, 4, 5, 8 6
60 1, 3, 4, 6, 8 5
70 1, 4, 7, 8 4
80 2, 3, 4, 6 4
90 1, 2, 4, 5, 7 5

100 1, 4, 6, 8 4

Average 4.6667

Table 6. Selected features for MACHINE CPU.

Training (%) Selected Feature ID #Features

50 1, 2, 3, 5, 6 5
60 1, 2, 4, 6 4
70 2, 3, 4, 6 4
80 1, 2, 4 3
90 1, 3, 4, 6 4

100 1, 2, 3, 4 4

Average 4.0000
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Table 7. Selected features for Servo.

Training (%) Selected Feature ID #Features

50 1, 2, 3, 4 4
60 1, 2, 3 3
70 1, 2, 3, 4 4
80 1, 2, 3, 4 4
90 1, 2, 3, 4 4

100 1, 2, 3, 4 4

Average 3.8333

Table 8. Selected features for Concrete Compressive Strength.

Training (%) Selected Feature ID #Features

50 2, 3, 4, 5, 6, 8 6
60 1, 2, 3, 6, 7, 8 6
70 1, 2, 3, 7 4
80 1, 2, 4, 7 4
90 1, 2, 4, 6, 7 5

100 1, 2, 4, 7 4

Average 4.8333

Table 9. Selected features for Auto Price.

Training (%) Selected Feature ID #Features

50 1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14 11
60 2, 3, 4, 6, 7, 9, 10, 12, 13 9
70 1, 3, 4, 510, 12, 13 7
80 1, 2, 4, 5, 7, 10, 12, 13 8
90 1, 2, 4, 5, 7, 10, 12, 13 8

100 1, 2, 4, 5, 10, 12, 13 7

Average 8.3333

4.3. PSO-Based Parameter Optimization for CP-LSSVR

The mixed kernel’s use in this paper also results in more unknown parameters. As a
result, the chaotic initialization strategies are used, and the uncertain parameters comprise
one feature election number, six controlled parameters, and N Lagrange multipliers.

Before providing the experimental findings, the evaluation criteria are specified for
assessing the effects of the suggested algorithms. Present m is the quantity of the testing
samples, ŷi denotes the forecast value of ŷ, and y = ∑

i
yi/m is the mean of y1, . . . , ym without

losing generality. Then, for algorithm evaluation, the following criteria are employed.

SSE: Sum squared error of testing, SSE =
m
∑

i=1
(yi − ŷi)

2. SSE stands for fitting accuracy;

the lower the SSE, the more accurately the estimate fits the data. If noises have been
employed as testing samples, a low SSE likely indicates that the regressor is overfitted.

SST: SST =
m
∑

i=1
(yi − y)2 stands for the sum squared deviation of testing samples and

represents the underlying variation of the testing samples, which often includes noise- and
input-related volatility.

SSR: The sum squared deviation that the estimator can account for is referred to as

SSR, SSR =
m
∑

i=1
(ŷi − y)2. The SSR reveals the regressor’s capacity for explanation. SSR

gathers more statistical data from test samples as it grows in size.
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SSE/SST: Also known as the ratio of the sum squared error to the sum squared

deviation of testing samples, SSE/SST =
m
∑

i=1
(yi − ŷi)

2/
m
∑

i=1
(yi − y)2. SSR/SSE is the ratio

of the real sum squared deviation of testing samples to the interpretable sum squared

deviation, SSR/SST =
m
∑

i=1
(ŷi − y)2/

m
∑

i=1
(yi − y)2 as defined. Little SSE/SST typically

presents a strong compact between estimates and true data, and getting smaller SSE/SST
typically requires raising SSR/SST [28,29].

The extraordinarily low value of SSE/SST is actually a bad thing because it suggests
that the regressor is definitely overfitted. Due to this, an effective estimate should balance
SSR/SST and SSE/SST.

The big Lagrange multiplier samples won’t be shown here, but the forecast de-
cision outcomes in Table 10 might be used to demonstrate the effectiveness of ideal
Lagrange multipliers.

Table 10. Optimal Solution of Different Parameters and Prediction Performance.

Training (100%)
Weights of Mixed Kernel Kernel Parameters Upper Bound

lada_1 lada_2 lada_3 d sigma C

Boston Housing Data 0.2140 0.3711 0.4148 2.8264 0.4331 3.0288
Auto-Mpg 0.2970 0.3417 0.3613 2.8863 0.3420 2.2992
machine CPU 0.1661 0.2654 0.5684 2.5853 0.4018 3.4588
Servo 0.3223 0.2743 0.4034 2.6001 0.5901 2.4512
Concrete Compressive Strength 0.2827 0.3197 0.3976 2.7553 0.6408 3.2270
Auto Price 0.3466 0.3828 0.2705 2.3582 0.3772 2.4982

The performance of the predictions is explained in detail. Secondly, it can be seen
from the kernel mixed coefficients that the scales for three kernels are chosen with data
characters for all test instances, even when several partition training data tests favor one
or two kernels. Then, the kernel parameters have values that can be adjusted for various
data sets. The upper bound parameter C reacts to how difficult it is to forecast data. By
way of illustration, the big value C results in a narrow margin due to the high likelihood
of misclassification. In conclusion, the PSO-based feature selection method used in the
growing CP-LSSVR learning paradigm is quite reliable.

4.4. Comparisons and Discussion

Every similar regression model mentioned in the previous section is calculated using
the training data in accordance with the experiment design. An empirical analysis depends
on the testing data was then conducted after the model estimation selection procedure.

At this point, SSE/SST and SSR/SST were used to gauge how well the models pre-
dicted the future. Table 11 presents the results the comparable best results are marked in
bold for each dataset.

The results are displayed in Table 11 and discussed as follows.
Initially, it is possible to see the differences between the models. For instance, the

SSE/SST and SSR/SST for the CP-LSSVR for “Boston Housing Data” are 1.0437 and
0.1563, respectively.

1. The proposed CP-LSSVR performs best among the comparable methodologies for
Servo in SSR/SST = 1.7869,

2. SVR performs best among the comparable methodologies for Boston Housing Data in
both SSE/SST = 0.1274 and SSR/SST = 0.9032, Servo in SSE/SST = 0.1315, Concrete
Compressive Strength in SSR/SST = 0.9425, Auto Price in SSE/SST = 0.1278.

3. LSSVR performs best among the comparable methodologies for Auto-Mpg in both
SSE/SST = 0.1064 and SSR/SST = 0.9897, machine CPU in both SSE/SST = 0.1017 and
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SSR/SST = 0.9877, Concrete Compressive Strength in SSE/SST = 0.1226, Auto Price in
SSR/SST = 0.9952.

Table 11. Prediction Performance Percentages.

Data Sets Regressor SSE/SST SSR/SST

Boston Housing Data

SVR 0.1274 0.9032
LSSVR 0.1293 0.8964

PSO-LSSVR 0.9091 0.1720
CP-LSSVR 0.9900 0.1484
CP-LSSVR 1.0000 0.1276
CP-LSSVR 1.0030 0.1302
CP-LSSVR 1.0437 0.1563

Auto-Mpg

SVR 0.1134 0.9873
LSSVR 0.1064 0.9897

PSO-LSSVR 0.9941 0.4608
CP-LSSVR 0.9560 0.5095
CP-LSSVR 1.0409 0.4609
CP-LSSVR 1.0071 0.4688
CP-LSSVR 1.0010 0.4884

machine CPU

SVR 0.1048 0.9813
LSSVR 0.1017 0.9877

PSO-LSSVR 0.9585 0.0064
CP-LSSVR 0.9652 0.0103
CP-LSSVR 0.9552 0.0104
CP-LSSVR 0.9700 0.0055
CP-LSSVR 0.9547 0.0058

Servo

SVR 0.1315 0.9774
LSSVR 0.1331 0.9756

PSO-LSSVR 0.9713 1.7185
CP-LSSVR 1.0034 1.7251
CP-LSSVR 1.0044 1.7869
CP-LSSVR 1.0043 1.6734
CP-LSSVR 1.0234 1.7577

Concrete
Compressive Strength

SVR 0.1237 0.9425
LSSVR 0.1226 0.9338

PSO-LSSVR 0.9395 0.2030
CP-LSSVR 0.9604 0.1944
CP-LSSVR 0.9802 0.1836
CP-LSSVR 0.9700 0.1942
CP-LSSVR 0.9692 0.1936

Auto Price

SVR 0.1278 0.9821
LSSVR 0.1288 0.9952

PSO-LSSVR 0.9913 0.1858
CP-LSSVR 0.9843 0.1803
CP-LSSVR 0.9950 0.1982
CP-LSSVR 1.0515 0.1639
CP-LSSVR 1.0562 0.1862

The findings suggest that for mining and investigating prediction data, the proposed
CP-LSSVR learning paradigm significantly outperforms the SVR model for the Servo
dataset in SSR/SST. However, the SVR and LSSVR significantly outperform the com-
pared methods including the proposed CP-LSSVR for the six datasets in both SSE/SST
and SSR/SST.

Second, it, according to a mixed kernel model among the four CP-LSSVRs with various
kernel functions, shows its expected performance in comparison to the other three single
kernel models. It is primarily due to the mixed kernel’s ability to absorb advantages and
outweighs the negatives in each individual kernel function, as each has pros and cons of its
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own. Moreover, the chaotic PSO-based input characteristic selection method significantly
lowers the function input variable, improving the function’s capacity to be understood
and effective. This is the main factor behind how the PSO-LSSVR performs less well than
individual CP-LSSVR models.

Last but not least, the suggested CP-LSSVR learning paradigm exhibits comparative
advantages over standalone CP-LSSVR models and contemporary techniques reported in
the literature.

1. The CP-LSSVR has an SVR feature that can get beyond some of the BP-neural net-
work’s drawbacks, like overfitting and local minima.

2. Because it employs a mixed kernel, the CP-LSSVR offers better generalization ca-
pabilities for prediction. Intriguingly, Table 10 data that favors a higher percent-
age of particular kernels also revealed an outperforming result in Table 11 for that
specific CP-LSSVR.

3. The chaotic PSO parameter optimization method can help improve the normalization
effect. Fourth, the character development in the CP-LSSVR can quickly identify impor-
tant factors that influence model performance, improving the LSSVR’s interpretability.

5. Conclusions

This paper provides a least square support vector regression (LSSVR) algorithm that is
automatically optimized using CPSO with a mixed kernel to address data forecasting issues.
The CP-LSSVR model is composed of three components. In the first step, parameters were
initialized using a chaotic map. In the second and third steps, PSO was adopted to choose
the input characteristic combinations and optimize the LSSVR’s parameters. Finally, the
CP-LSSVR was used to forecast the six outstanding datasets that were acquired from the
UCI dataset.

The CP-LSSVR model has two distinctly strong points. One is that the lesser number of
features employed makes it easier to create an understandable forecasting model. Another
is that all of its model parameters have been optimized, making it possible to construct the
best forecasting model. It demonstrates the proposed CP-LSSVR model’s ability to not only
minimize forecasting error but also choose the most affordable model with the most crucial
characteristics through a series of experiments. They approve the suggested approach can
be utilized as a workable substitute for projected data mining and exploration.

However, it is important to keep in mind that the suggested CP-LSSVR learning
paradigm might one day be enhanced in ways like ensemble learning and ensemble
evolution with LSSVR. Additionally, this suggested approach can be used to solve practice
issues in addition to regression problems, and it may even employ novel algorithms that
enhance computation speed and solution quality. For instance, a number of other studies
have attempted to offer effective strategies for parameter selection [30–51], and our method
would benefit from incorporating these methods. Future research will examine these
crucial concerns.

In future works, the other statistical figures of merits (like R2, RMSE, or MSE . . . )
can be incorporated. Additionally, the regression results in a plot (prediction vs. true) can
be shown in future studies. Additionally, results can be provided considering different
holdout % and holdout validation approaches [52]. More examples will be also considered
to be included to further verify CP-LSSVR with more datasets in future work.
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