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Abstract

:

Piezoelectric actuators find extensive application in delivering precision motion in the micrometer to nanometer range. The advantages of a broader range of motion, rapid response, higher stiffness, and large actuation force from piezoelectric actuators make them suitable for precision positioning applications. However, the inherent nonlinearity in the piezoelectric actuators under dynamic working conditions severely affects the accuracy of the generated motion. The nonlinearity in the piezoelectric actuators arises from hysteresis, creep, and vibration, which affect the performance of the piezoelectric actuator. Thus, there is a need for appropriate modeling and control approaches for piezoelectric actuators, which can model the nonlinearity phenomenon and provide adequate compensation to achieve higher motion accuracy. The present review covers different methods adopted for overcoming the nonlinearity issues in piezoelectric actuators. This review highlights the charge-based and voltage-based control methods that drive the piezoelectric actuators. The survey also includes different modeling approaches for the creep and hysteresis phenomenon of the piezoelectric actuators. In addition, the present review also highlights different control strategies and their applications in various types of piezoelectric actuators. An attempt is also made to compare the piezoelectric actuator’s different modeling and control approaches and highlight prospects.
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1. Introduction


The general requirement of precision motion in manufacturing and other commercial devices has led to extensive research and development in precision engineering. Having emerged as an integrated domain, precision engineering focuses on movement, measurement, and maintaining precision motion with higher accuracy and repeatability [1,2,3]. Piezoelectric actuators have been extensively used over the past few years as a source of precision positioning in a wide range of commercial applications. Piezoelectric actuators offer the advantage of precision motion in a few nanometers range to the tens of micrometer range. Furthermore, the faster response, low voltage actuation, high stiffness/load capacity/force generation smooth, backlash-free motion, non-magnetic actuation, wear resilience, cleanroom compatibility, vacuum, and cryogenic condition, low energy consumption adds to the advantages of the piezoelectric actuators [4,5,6]. Typical application domains of the piezoelectric actuators include precision manufacturing, fluidic applications, medical technology, micro-optics, aviation, defense, automation, robotics, aerospace, and consumer electronics.



Piezoelectric actuators are effectively employed in different applications such as micropumps/microreactors/micromixers [7,8], micromanipulators [9,10], microvalves [11], micro jet dispensers [12,13], atomic force microscopes [14,15], tool feed mechanisms [16,17], vibration isolation systems [18], etc. Piezoelectric actuators suffer from system nonlinearity when operated under dynamic conditions despite many advantages. The inherent hysteresis and creep limit the performance of the piezoelectric actuators under dynamic conditions, leading to nonlinearity in the system. Moreover, a badly damped system leads to undesirable vibrations, which add to the nonlinearity [4,19,20]. The present review aims to bring out different modeling and control approaches employed in recent years to overcome the nonlinearities in piezoelectric actuators. The organization of the review is as follows. Section 2 briefly highlights the different piezoelectric actuators used in commercial applications. Section 3 sheds light on the piezoelectric actuators’ modeling, control, and comprehensive modeling approach. Section 4 illustrates different methods of driving the piezoelectric actuators. Section 5 highlights the various methods, comparisons, and applications of charge-based control of the piezoelectric actuators. Section 6, Section 7 and Section 8 highlight various aspects of voltage-based control, emphasizing different hysteresis models, creep models, control methods, and applications. The review ends with a conclusion and scope for future work in Section 9. Figure 1 shows the organization of the current review.




2. Overview of the Piezoelectric Actuation System


Piezoelectric actuators are a class of electromechanical devices that convert electrical signals to precise, controllable displacement. Typically, piezoelectric actuators are made of a group of smart materials that possess the property of piezoelectricity due to electromechanical coupling, which produces electric charge or mechanical strain based on the input stimulus [21]. When subjected to an external force, the piezoelectric materials produce electric charges corresponding to the direct piezoelectric effect. The application of piezoelectric materials as precision actuators adopts the inverse piezoelectric effect, which develops mechanical strain based on the applied electric potential, which in turn produces precision motion [21,22,23]. The early stage of discovering piezoelectric materials constituted quartz, Rochelle salt, and tourmaline, producing a comparable piezoelectric effect. However, the commercial need for large-range precision motion led to the discovery of synthetic piezoelectric materials such as Lead Zirconium Titanate (PZT) [24], Barium Titanate (BaTiO3) [25], PVDF [26], ZnO [27], etc.



Figure 2 represents the basic configuration of the piezoelectric actuators used in different applications. The basic configuration of piezoelectric actuators is unimorph and bimorph, wherein the single-layer or two-layer piezo materials are bonded onto the metal substrate [28,29]. The unimorph and bimorph actuators are also available in a cantilever configuration, which is more flexible and produces a significant range of motion. However, the cantilever configuration lacks generated force [30,31]. The piezoelectric tube actuators can generate linear or lateral motion and are effectively adopted in many precision motion applications [32,33]. The multi-layered stacked configuration of the piezoelectric actuators can operate in linear or shear mode to produce linear or lateral precision motion. The range of motion developed by the stacked configuration is limited; however, the blocked force generated has an advantage over other types of actuators [5,21,34,35]. The amplified piezo actuators are developed with a flexural-compliant structural member to enhance the deflection of the stacked piezo actuators. Flexural-based amplification enhances the deflection range of the stacked actuators with moderate force [36,37]. Typically, the amplified piezo actuators in elliptical type, rhombus type, bridge type, symmetric five bar type, honeycomb type, Scott–Russell type, and lever type are extensively used in precision positioning applications [21,38,39,40,41].



Further advancement in piezoelectric actuator technology led to the development of stepping-piezoelectric actuators intended to generate a broader range of bi-directional linear and rotary motion. The stepping configuration of the piezoelectric actuators is also known as the piezo motor, which typically involves traditional piezoelectric actuators such as the unimorph/bimorph/multi-layered stacked actuators and the amplified piezo actuators as the primary source of actuation [21,42,43]. Inchworm piezoelectric motors [21,44,45], inertial piezoelectric motors [21,46,47], and ultrasonic piezoelectric motors [21,48,49] have been extensively reported in recent years which are effective in fulfilling the need of large range stepping motion. These piezoelectric motors can produce either linear/rotational motion or both, depending on the design and arrangement of the primary piezoelectric actuation mechanism. Researchers have also developed a series/parallel arrangement of multiple piezoelectric stepping stages to achieve multi-degree freedom linear/rotational motion along different coordinates [50,51]. A detailed review of different configurations of traditional, stepping, and multi-degree freedom piezoelectric actuators are presented in the works of Mohith et al. [21], Jianping Li et al. (2019) [52], Liang Wang et al. (2019) [53], and Shupeng Wang et al. (2019) [54].



The traditional piezoelectric actuators such as unimorph, bimorph, tube, and multi-layered actuators are a primary source of precision actuation in many commercial actuation systems. The constitutive Equations (1) and (2) represent the piezoelectric phenomena occurring in piezoelectric actuators is represented as follows [55] (IEEE Ultrasonics, Ferroelectrics, and Frequency Control Society)


    ε   i   =   e   i j   E     σ   j   +   d   k i     E   k    



(1)






    D   m   =   d   m j     σ   j   +   ϵ   m k   T     E   k    



(2)




where σ and ε correspond to the stress tensor and strain tensor, D and E correspond to the vector representing the electric displacement and the electric field, d represents the piezoelectric material constant, eE the elastic compliance matrix, ϵT represents the dielectric constant, i, j = 1, 2, 3, 4, 5, 6 and m, k = 1, 2, 3 refers to the different directions in the Cartesian coordinates. As observed in Equations (1) and (2), the mechanical strain developed in the piezoelectric materials follows a linear relationship with the applied electric field. However, when the piezoelectric actuators are put into operation under dynamic conditions, there exist system nonlinearities that affect the performance of the piezoelectric actuators. Therefore, there is a need for better modeling and control approaches that can model the inherent system nonlinearities of the piezoelectric actuation systems and minimize the error occurring due to nonlinearity through appropriate compensation models and control strategies.




3. Comprehensive Dynamic System Model and Modeling/Control Issues of the Piezoelectric Actuator


The promising potential of piezoelectric actuators has led to their application across wide ranges of precision manipulation to the extent of the nanometer scale. However, the dynamics of the piezoelectric actuator in specific applications lead to inherent nonlinearity that causes positioning errors. Thus, the development of modeling and control strategies for minimizing the nonlinearity errors in piezoelectric actuators have been given considerable attention. The constitutive relationship of piezoelectric materials (Equations (1) and (2)) does not account for any dynamic nonlinearity in the piezoelectric actuators. The nonlinearity emanates from hysteresis and creep, which significantly degrades the performance of the piezoelectric actuators in dynamic applications. Moreover, a badly damped system with piezoelectric actuation leads to dynamic vibrations, adding to the system’s nonlinearity [55,56].



Figure 3 represents the schematic of nonlinearity occurring in the piezoelectric actuators due to hysteresis, creep, and vibration. Hysteresis in the piezoelectric actuators occurs due to specific extrinsic contributions that induce nonlinearity between the actuation voltage and precision output displacement. The extent of hysteresis error depends on the present value of the input voltage and the previous history, thus developing a memory-based phenomenon. The amplitude and the frequency of the actuation signals majorly affect the extent of hysteresis error occurring under the dynamic operation of the piezoelectric actuators. Thus, the hysteresis in piezoelectric actuators shows either amplitude-dependent or rate-dependent behavior. The model approximating the hysteresis is either rate-dependent or rate-independent [56,57,58,59,60,61,62]. The piezoelectric actuators under dynamic operation experience hysteresis error of about 15%, but with the increase in the driving frequency of the actuation signal, the error can shoot up to almost 35%, thus leading to the error in precision motion [55].



The creep in the piezoelectric actuators occurs due to the effect of applied electric potential on the remnant polarization of the electric dipole. The root cause for creep drift is the realignment of the crystal structure on the application of the electric field. The effect of creep drift significantly occurs at a low speed of operation and leads to a broad range of nonlinearity with the increase in time [55,56]. The combined effect of hysteresis and creep hinders the performance of the piezoelectric actuators in precision positioning applications where higher accuracy and precision are the significant criteria [57,58,59,60,61,62]. Implementing an appropriate modeling approach can model the piezoelectric actuator system behavior under hysteresis and creep, which can provide suitable compensation by adopting proper control approaches to overcome the nonlinearity errors.



The piezoelectric actuators are modeled as a combination of electrical and mechanical systems based on the electromechanical interaction at different stages [63,64,65]. Figure 4 represents the schematic of the electromechanical model of the piezoelectric actuator. Goldfarb et al. [63] developed and implemented the following electromechanical model of the piezoelectric actuator with hysteresis nonlinearity. Adriaens et al. [64] also adopted a similar approach in defining the electromechanical model of the piezoelectric actuator with hysteresis. Gao et al. [63] proposed a linear modeling approach with the electromechanical interaction, which excluded the effect of nonlinearity occurring due to hysteresis.



Mathematically the comprehensive dynamic model of the piezoelectric actuator can be written as shown in Equations (3)–(9)


      A   a m p   V   i     t   =   V   h     t   +   V   C     t   +   R   i   q   t    



(3)






    V   H     t   = h   q    



(4)






  q   t   =   q   c     t   +   q   P     t    



(5)






    V   C     t   =   q   C     t   / C  



(6)






    q   P     t   = T   x   P     t    



(7)






    F   P   = T   V   C     t    



(8)






    m   p       x  ¨    p     t   +   b   p       x  ˙    p     t   +   k   p     x   p     t   =   F   P    



(9)




where Vapplied is the control voltage fed through a linear amplifier of gain Aamp, Ri is the overall resistance of the driving circuit. Vi is the amplified voltage that drives the piezo actuator, q and     q  ˙    are the total charge and current through the circuit, H and T represent the hysteresis and electromechanical piezo coefficient with corresponding voltage drop VH, VT, and C corresponds to the total capacitance of the piezoelectric circuit which stores charge qc. The piezoelectric effect induces a charge of qP across the transformer element T. The conversion of the applied voltage across the piezoelectric element induces force FP with the piezoelectric element of mass mP, stiffness kP, and damping coefficient of bP, resulting in the displacement of xP.




4. Driving and Control Methods of Piezoelectric Actuators


Piezoelectric actuators are subject to inherent nonlinearities due to hysteresis, creep, and vibration. The extent of nonlinearity in the system could be controlled by driving the piezoelectric actuator. Figure 5 represents the control and driving approaches for piezoelectric actuators. Generally, actuators are either voltage-driven or charge-driven [58,60,66]. Both the charge-based and voltage-based control approaches of piezoelectric actuators effectively minimize the nonlinearity occurring in the piezoelectric actuators. However, both methods possess their disadvantages, which limit their applications. The basic principle of charge-based control considers effective control of charge applied to the piezoelectric actuator, thus controlling the internal electric field and resulting displacement. The voltage-based control adopts control of the piezoelectric actuator through appropriate modeling and control algorithms to eliminate the system’s nonlinearities. The following section presents the different methods of charge-based and voltage-based control of the piezoelectric actuators.




5. Charge-Based Control of Piezoelectric Actuators


The charge-driven mode effectively minimizes the dynamic nonlinearities occurring in the piezoelectric actuators due to hysteresis and creep effect. When supplied with an external electric field, the piezoelectric actuator behaves like a capacitor due to its dielectric property. Under dynamic operating conditions, the piezoelectric actuator behaves like a nonlinear capacitor. Thus, the charge across the piezoelectric actuator varies due to the nonlinear variation in capacitance of the piezoelectric actuator, which induces nonlinearity due to hysteresis and creep. The regulation of charge through control of current significantly reduces the nonlinearity due to hysteresis and creep [66].



From Equation (9), the input voltage Vi into the piezo actuator can be represented mathematically in terms of charge q(t) as shown in Equation (10)


    m   p       x  ¨    p     t   +   b   p       x  ˙    p     t   +     k   s    ¯    x   p     t   =   T q   C     t   / C  



(10)




where       k   s    ¯  =   k   s   + (   T   2   / c )  . From Equation (10), it is evident that the charge control of the piezoelectric actuator is independent of the hysteresis effect. Therefore, regulating the actuator capacitance by controlling the input current; therefore, the charge across the actuator results in substantial hysteresis and creep minimization. Thus, the charge input into the piezoelectric actuator gives almost a linear displacement with the minimum error [55,66,67]. The following section highlights the different approaches to charge-based control of the piezo actuators.



5.1. Capacitor Insertion


Under dynamic conditions, the application of time-varying voltage results in capacitance variation across the actuator due to the inherent dielectric properties of the piezoelectric material. This variation in the capacitance leads to variation in charge across the actuator, which induces hysteresis. Inserting a capacitor in series makes the piezoelectric actuator insensitivity to change in charge, limiting the hysteretic nonlinearity.



Figure 6 represents the schematic of the capacitor insertion method for charge-based control of piezoelectric actuators. From Figure 6,


    V   i n   =   q   p       1     C   p     +   1   C         ⇒ q   p   =   V   i n         C × C   p     C +   C   p         ⇒     d q   p     d   C   p     =   V   i n         C   C +   C   p         2    



(11)






     V   p   =   V   i n       C   C +   C   p         ⇒ V =   V   P       C +   C   p     C        ⇒     d q   p     d   C   p     =     C   C +   C   p         V   p    



(12)




where C, Cp corresponds to the capacitance of the inserted capacitor and the piezoelectric actuator with charge q and qp. From Equations (11) and (12), it is evident that the sensitivity decreases by a factor C/(C + Cp), which reduces the hysteresis loop due to the charge regulation across the piezo actuator by inserted capacitor C. Since the applied voltage from the source is divided between the inserted capacitor and the piezo actuator, the actual voltage available for actuation reduces, leading to a reduced range of motion. Thus, the capacitor insertion method requires a higher voltage source for achieving the same range of motion [66,68,69].




5.2. Time Controlled Current Amplification


The charge-based approach with current amplification is typically considered for high-dynamic applications. Figure 7 represents the schematic representation of the current amplification charge-based approach of the piezoelectric actuators. Since the integral of the charge on piezoelectric actuators represents the electric current, a current amplification can effectively be used as a source of charge control. In a real sense, the current amplification adopts a high gain voltage amplifier, which amplifies the input voltage, thus the input current [66]. As observed from Figure 7, the load current IL passes through the piezo actuator and the sensing resistor Rs to the ground.



Therefore, as shown in Equation (13),


    I   L   =     V   s       R   s      



(13)







The control circuit of the current amplification approach involves a voltage amplifier with gain factor ‘k’ with the input voltage Vin, which in turn controls the input current Iin. The implementation of a voltage amplifier with a close loop leads to Vin = VL, as shown in Equation (14)


    I   L   =     V   i n       R   s      



(14)







Thus, with the implementation of a time-controlled current approach, the charge on the piezoelectric actuator can be amplified. A smaller value of the sensing resistor is adopted in the faster response of the actuator, whereas a higher value of the sensing resistor is used for precise positioning [66]. In addition, switching circuits can be implemented with the charge amplifier to control the direction of motion, rate of actuation, and precision motion achieved with the actuator [70,71].




5.3. Capacitor Based Sensing


Most of the charge amplifier used for the piezoelectric actuator adopts a secondary capacitor for sensing. Figure 8 represents the schematic of the charge-driven approach of the piezoelectric actuator with capacitor-based sensing with the sensing capacitor Cs with a high gain (k) feedback loop [72,73].



The grounding of the sensing capacitor Cs leads to the current flow from the source through Cs, as evident from Figure 8a. Therefore, the total charge (qL) across the piezoelectric actuator is represented in Equation (15)


    q   L     s   =   C   s     V   s     s    



(15)







The presence of a high gain feedback loop renders the voltage Vs across the sensing capacitor Cs equal to the input voltage Vin. Therefore, the charge across the load within the frequency bandwidth of the control loop is shown in Equation (16)


    q   L     s   =   C   s     V   i n     s    



(16)







Thus, the charge across the piezoelectric actuator varies as a function of the input voltage if the control loop has ideal characteristics. Equation (16) does not consider the effect of the resistors R1 and R2. However, in actual physical amplifiers, these resistors model the leakage current at input terminals of the voltage amplifier, sensing capacitor, and piezoelectric actuator and the resistance required for managing the voltage drift of the op-amp due to the input bias current. Considering the effect of R1 and R2, the transfer function between the input voltage and the charge across the piezoelectric actuators is represented as shown in Equation (17)


      q   L c     s       V   i n     s     =   C   s     S   1 +   s     R   1     C   P        



(17)







Thus, from Equation (17), it is evident that the capacitor-based sensing circuit, as shown in Figure 8a, contains a low pass filter with a cut-off frequency (ωc) equal to 1/R1Cp. When the system operates below the cut-off frequency, the impedance offered by R1 and R2 is much lower than the impedance of Cs and Cp. Therefore, it is represented as in Equation (18)


    V   p     s   =     R   1       R   2       V   i n     s    



(18)







Thus, at low frequencies, the circuit acts like a voltage amplifier, which does not produce charge-based control of the piezoelectric actuator. Adding additional voltage feedback with a grounded load DC charge amplifier eliminates the low-frequency effect and generates a constant charge-based control [73]. Figure 8b represents the grounded load accurate charge amplifier, which typically consists of a voltage feedback loop. The amplifier sets the voltage drop across the sensing capacitor equal to the input voltage Vin. The transfer function of the amplifier between the charge across the actuator of capacitance Cp and the input voltage is given by Equation (19)


      q   L     s       V   i n     s     =   C   s     S +   1     R   2     C   s       s    



(19)







From Equations (17) and (19)


      q   L c     s       V   i n     s     =     q   L     s       V   i n     s         q   L c     s       q   L   ( s )   =   C   s     S +   1     R   2     C   s       s     s   S +   1     R   1     C   p        



(20)







The low-frequency characteristics of the amplifier will be eliminated if     R   2     C   s   =   R   1     C   p    , thus achieving a constant gain factor of Cs. The frequency corresponding to Vz = Vp renders the amplifier in charge-dominant mode, whereas Vz = 0 in the voltage-dominant mode. The transfer function of Vp to Vz suggests the voltage and charge dominance of the amplifier when Vref = 0, qL = 0. When Vin = 0, the transfer function is represented as in Equation (21)


      V   z     s       V   P     s     =   S   s +   s     R   1     C   P        



(21)







Therefore, the amplifier is charge dominant above the frequency value of 1/R1Cp, which could be achieved by the selection of the larger value of R1 considering the effects of current noise attenuation of the op-amp, bias current based offset voltages, and the differential and common mode leakages of the op-amp [73,74,75]




5.4. Charge Control with Inverting Configuration


The charge controller approach also effectively reduces the hysteresis and creep nonlinearity and is effectively used in open-loop sensorless controlled piezoelectric stages. Two types of approaches, such as the linear charge controller (LCC) and the nonlinear charge controller (NCC), have been reported in the charge controller approach of the piezoelectric actuators [76,77,78,79]. Figure 9 represents the schematic of the charge controller approach of piezoelectric actuators.



The basic form of a linear charge controller without DC feedback consists of inverting op-amp with a capacitor C1 and a piezoelectric actuator of capacitance CP connected across it, as shown in Figure 9a [76,77,79]. With the ideal characteristics of the op-amp and the capacitance of the piezoelectric actuator, the actual charge across the piezoelectric actuator Qactual when supplied with input voltage Vin is represented by the following Equation (22)


    Q   a c t u a l   =   V   i n     C   1   = −   V   o u t     C   P    



(22)







Due to the linear relationship of displacement of the piezoelectric actuator with Qactual, the displacement of the piezoelectric actuator remains linear as long as the input voltage remains linear. A resistive DC feedback path enhances the frequency response of the charge controller and reduces the low-frequency drift. Figure 9b represents the linear charge controller with DC feedback, which consists of resistors R1 and R2 connected across C1 and CP. The following Equation (23) represents the transfer function of the circuit shown in Figure 9b,


  H   s   =     V   a c t u a l     s       V   i n     s     = −     R   2       R   1     ·     R   1     C   1   s + 1     R   2     C   P   s + 1    



(23)







As evident from Equation (23), there is a zero point and pole point at −1/R1C1 and −1/R2CP. The effect of zero and pole point is minimized by setting the gain factor such that R1C1 = R2CP. In actual practice, the frequency of the actuation signal is kept far away from the zero and pole points. Therefore, the relationship between the input voltage Vin and the output voltage Vout is represented as follows in Equation (24),


    V   o u t   = −     C   1       C   P       V   i n    



(24)







The effectiveness of the reduction in nonlinearity with a charge controller can be enhanced by the implementation of a nonlinear charge controller (NCC) represented in Figure 9c [79]. The amplifier with gain K1 is an inverting amplifier with gain −1. The capacitor C1 plays the role of the sensing capacitor, the charge across which equals the charge across the actuator. Therefore, from Figure 9c,


    Q   a c t u a l   =     V   i n   +   V   1       C   1   =     V   0   −   V   1         C   P   + ∆   C   P      



(25)






  Since  V 0  > >    V 1  ,     V   0   =     V   i n   +   V   1         C   1         C   P   + ∆   C   P        



(26)






    V   1   =   K   3   (   V   i n   −   K   2     V   0   )  



(27)







The value of K2 = CP/C1, which is the reciprocal of the voltage gain of the amplifier. From Equations (25)–(27),


    V   1   =     K   3   ∆   C   P         K   3   + 1     C   P   + ∆   C   P       V   i n    



(28)






    V   0   =     C   1       C   P   +   ∆   C   P       K   3     +   1       V   i n    



(29)







From Equations (28) and (29), it is evident that the K3 plays a vital role in controlling the nonlinearity of V0. Tuning the value of K3 can compensate for V0 to minimize the nonlinearity. Accordingly, three regions can be identified for the value of K3, i.e., K3 > 0 where the nonlinear deviation of V0 is reduced, K3 = 0 where the charge controller adopts linear behavior, −1 > K3 > 0 where the nonlinear deviation of V0 is strengthened.




5.5. Digital Charge Control


Figure 10 represents the schematic of the digital charge amplifier adopted for charge-based control of the piezoelectric actuators. The voltage amplifier, analog-to-digital converter (ADC), digital-to-analog converter (DAC), and digital signal processor (DSP) constitute the integral parts of the digital charge amplifier [80,81]. The charge across the piezoelectric actuator qp(t) is the integral of current flowing through given by the Equation (30)


    q   p     t   =  ∫    I   s     t     d t =  ∫      V   s     t       R   T       d t =  ∫      V   s     t       R   s   ‖   R   i n p u t A D C       d t  



(30)




where RT is the total resistance that consists of sensing resistor Rs in parallel with the input resistance RinputADC of the ADC. Thus, the charge across the piezoelectric actuator varies as a function of the voltage across the sensing resistor. The presence of a high-gain feedback loop equates to the actual and the desired charge for driving the actuator.



The transfer function between the output voltage of the amplifier and the voltage across the sensing resistor is represented as follows in Equation (31)


  H   s   =     V   s     s       V   0     s     =     R   T     C   p       R   T     C   p   + 1    



(31)




where Cp is the capacitance of the piezoelectric actuator. The discrete transfer function of Equation (31) is as follows as shown in Equation (32)


  H   z   =     V   s     z       V   0     z     =   z − 1   z −   e     − T     R   T     C   p          



(32)




where Ts is the sampling time,    V   0     z   = k     q   d e s i r e d     z   −     T   s       z − 1     R   T       V   s     z     ,   V   s     z   =     q   a c t u a l     z     R   T     z − 1       T   s      



Therefore, Equation (33)


      q   a c t u a l     z       q   d e s i r e d   ( z )   =       T   s   k     R   T       z −   e         T   s       R   T     C   P         +     T   s   k     R   T        



(33)







The digital charge amplifier results in displacement drift because of the non-ideal characteristics of the ADC. Thus, a current leakage leads to bias voltage Vbias at the input, leading to charge drift. The expression for the measured charge is given by Equation (34)


    q   m e a s u r e d   =   1     R   T      ∫      V   s     t   +   V   b i a s     d t    



(34)







Due to the charge drift, the output voltage     V   0     t   = k     q   d e s i r e d   −   q   b i a s       also drifts leading until it extends to the power supply rails [76,77].




5.6. Comparison and Applications of the Charge-Based Control of the Piezoelectric Actuators


The charged-based driving methods have effectively reduced the inherent nonlinearity of piezoelectric actuators. Several researchers have implemented the charge-based approach in different applications comprising different piezoelectric actuators. Table 1 represents the charge-based driving of piezoelectric actuators implemented by different researchers and their application to reduce nonlinearity.





6. Voltage-Based Control of Piezoelectric Actuators


The limitations of the charge-based driving approach led to the extensive use of voltage-based driving methods for piezoelectric actuators. The voltage-based driving methods proved more comfortable and convenient for the piezoelectric actuators. The voltage-driven mode does not require any calibration or specially designed amplifier and does not affect the range and bandwidth of the piezoelectric actuator. Mathematically, the electromechanical model for voltage-driven piezoelectric actuators can be written from Equations (3)–(9) as follows, represented in Equations (35) and (36),


    C R   i       q  ˙    t   + q   t   − T   x   P     t   = C   A   a m p   (   V   i     t   −   h   q    /    A   a m p     )  



(35)






    m   p       x  ¨    p     t   +   b   p       x  ˙    p     t   +     k   s    ¯    x   p     t   = T     C   A   a m p       V   i     t   −   h   q    /    A   a m p       −   C R   i       q  ˙    t        



(36)




where,          k   s    ¯  =   k   s   +   T   2     ( 1 / c ) − 1    .



As observed in Equation (33), the inherent nonlinearity due to hysteresis is evident with voltage-driven piezoelectric actuators. Appropriate hysteresis modeling and control approaches can help reduce the nonlinearity of voltage-driven piezoelectric actuators [55,84]. The following sections highlight some hysteresis modeling approaches adopted for piezoelectric actuators.



6.1. Hysteresis Modeling of Piezoelectric Actuator


Over the past few years, many mathematical models have been developed and adopted to describe piezoelectric actuators’ hysteresis behavior. There are diverse classifications of hysteresis models for piezoelectric actuators, as represented in Figure 11. The hysteresis model for piezoelectric actuators can be classified at three different levels. One such level of classification contains phenomenological hysteresis models and physics-based hysteresis models. Physics-based models for hysteresis of the piezoelectric actuators are developed based on the first principles of the physics effect [55]. The phenomenological models are developed based on the empirical relationship of the phenomena of hysteresis occurrence in the piezoelectric actuators, consistent with the theoretical base [85,86,87].



Further, the hysteresis models are either rate-dependent or rate-independent, which describes the dependence of hysteresis behavior on the rate of change in input signal [80,81]. The third classification level is based on the mathematical formulations of the hysteresis models, which involve operator and differential equation-based models. The differential equation-based models are typically represented in differential equation form, whereas the operator-based models contain weighted hysteresis operators [55,88,89].



6.1.1. Jiles–Atherton Hysteresis Model and Domain Wall Hysteresis Model


The Jiles–Atherton model is one of the popularly known physical-based models for hysteresis modeling. The Jiles–Atherton model was proposed for modeling the hysteresis behavior of ferromagnetic material, which was adopted later than the piezoelectric materials [90,91,92]. Another physical-based modeling approach is domain wall modeling, which is derived based on the Jiles–Atherton model by Smith and Ounaies [92]. The hysteresis operator can be represented according to Jiles–Atherton shown in Equation (37) [90,91]


  h   E     t   = c   h   a n     t   +   1 − c     h   i r r     t    



(37)







The model consists of a superposition of the anhysteric part han and the hysteric part, which is irreversible hirr. The internal variables han (t), hirr(t), and input variable E(t) are functions of time. The model follows the assumption of isotropic material with polarization in any direction. The anhysteric part is defined in terms of electric field E(t) and saturation part hS as follows, represented by Equation (38)


    h   a n     t   =   h   s       c o t h     ( E   t   + α   h   i r r     t   )   c       −     a   ( E   t   + α   h   i r r     t          



(38)







The hysteresis model through domain wall dynamics with irreversible hirr is presented in Equation (39)


    d   h   i r r     d t     t   =   d E   d t     t       δ  ~      h   a n     t   −   h   i r r     t       k δ − α (   h   a n     t   −   h   i r r     t   )    



(39)




where δ = sign (dE/dt) signifies the change in the direction of the electric field. Another operator     δ  ~    prevents an increase in hysteresis operator h when the electric field changes its direction. The operator     δ  ~    is defined as Equation (40),


    δ  ~  =       1 , f o r     d E < 0 , h <   h   a n       o r     d E < 0 , h >   h   a n           0 , e l s e        



(40)







The Jiles–Atherton and the Domain wall model involves parameters such as c, a, α, and k, which must be identified through appropriate parameter identification techniques for the particular material. Solving the above set of algebraic and differential equations over a specific time interval can represent the hysteresis of the piezoelectric actuator with respect to the applied electric field. Even though the identification of only five model parameters (c, a, α, k, and Hs) adds to the advantage of the simplicity of the model, the disability to follow the minor loops in the hysteresis results in the major drawback of the Jiles–Atherton and Domain Wall Hysteresis Models [92,93].




6.1.2. Duhem Model


The Duhem model is one of the differential equation-based models implemented for describing the hysteresis behavior of the ferromagnetic materials which was subjected to the magnetic field of H(t) and the magnetic flux of B(t) defined as in Equation (41) [94]


    B  ˙    t   = α     B ( t )  ˙    ·   β   H   t     − B   t     + γ H   t    



(41)







Equation (41) consists of parameters α, β, γ, which control the shape of the hysteresis loop. Further, for a system with single input (voltage) v(t) and single-output (displacement) x(t), the generalized Duhem model is expressed as in Equation (42)


     x  ˙    t   = f   y   t   , v   t   ,   v  ˙    t     , y   0   =   y   0   , t ≥ 0 ,    x ( t ) = h   y   t   , v   t       



(42)







Based on the above equation, the generalized Duhem model for a piezoelectric actuator with the linear component of X(t), input voltage of v(t), and hysteresis component of h(t) be expressed as follows in Equation (43) [95,96]


   X   t   = Y   t   − h   t      X   t   = k · v ( t )      h  ˙    t   = α   v  ˙    t   − β     v  ˙  ( t )   h   t   + γ     v  ˙  ( t )   v   t     



(43)







The model contains parameters k, α, β, and γ, which have to be identified through appropriate parameter identification methods. Duhem model of hysteresis is rate-dependent, which helps in modeling the rate-dependent hysteresis characteristics of the piezoelectric actuator at a high frequency of actuation.




6.1.3. Bouc–Wen Model


The Bouc–Wen model hysteresis model was derived based on the Duhem model, largely used for modeling the nonlinear hysteresis behavior of the piezoelectric actuators. R. Bouc and Yi-Kwei Wen developed the Bouc–Wen model, which involves the superposition of linear component Y(t) and hysteresis component h(t). The conventional Bouc–Wen model is represented as follows in Equations (44) and (45) [97,98]


  x   t   = Y   t   + h   t   = k · v   t   + h ( t )  



(44)






    h  ˙    t   = α   v  ˙    t   − β   v  ˙    t       h   t       n   − γ     v  ˙  ( t )       h   t       n − 1   h ( t )  



(45)







For a piezoelectric actuator, usually the value of n is taken as one. Thus, it is represented by Equation (46).


    h  ˙    t   = α   v  ˙    t   − β   v  ˙    t     h   t     − γ     v  ˙  ( t )   h ( t )  



(46)







The shape of the hysteresis loop depends on the estimated values of the model parameters α, β, and γ. The Bouc–Wen model has the advantage of more straightforward implementation to represent a large class of hysteresis. Furthermore, the differential and inverse form of the Bouc–Wen model is more comfortable to implement in the control system for nonlinearity compensation [98,99].




6.1.4. Backlash Type Model


The mathematical representation (Equation (47)) of the backlash model is as follows [100,101]


    d x   d t   = α     d v   d t       c v − x   +   B   1     d v   d t    



(47)




where α, c, and B1 are the constants such that c > B1. The solution for Equation (47) is presented as


  x   t   = c v   t   + d ( v   t   )  



(48)






  d   v   t     =     x   0   − c   v   0       e   − α   v −   v   0     s g n (   v )  ˙    +   e   − α v s g n (   v  ˙  )     ∫    v   0     v        B   1   − c       e   α ζ v s g n (   v  ˙  )   d ζ  



(49)







The backlash model represents the nonlinear hysteresis as a linear function of the input signal with some disturbances (Equations (48) and (49)). With the implementation of the backlash-type model, the conventional control approach can be adopted for compensating the hysteresis error without the inverse model [55].




6.1.5. Preisach Model


The Preisach model for hysteresis of piezoelectric materials is an extension of the model developed to interpret ferromagnetic materials. The Preisach model adopts an operator-based approach for defining the hysteresis behavior between the input and the output through the relay operator, as represented in Figure 12. The representation of the classical Preisach model with weighting operator μ(α,β) with two parameters α, β and hysteresis operator of       γ  ^    α β   [ v   t   ]   is as follows in Equation (50) [102,103]


  H   t   =   ∬  α ≥ β    μ ( α , β )     γ  ^    α β     v   t     d α d β    



(50)







The hysteresis effect through the Preisach model can be considered as integrating the hysteresis operator, which is represented in plane Figure 12. When the input voltage to the piezoelectric actuator increases from v(t0) to v(tx), the line L(t) moves horizontally from αmin to α v(tx). The value of the hysteresis operator       γ  ^    α β     v   t       varies between 1 and 0 for the integral region below to the above of L(t), leading to   H   t   =   ∬    P   +      μ ( α , β ) d α d β    . Further, the line L(t) drops vertically down when the input to the piezo actuator decreases from v(tx) to v(ty), leading to the variation of the value of       γ  ^    α β     v   t       between 1 (left of L(t)) and 0 (right of L(t)). Thus, a memory-based effect is produced when H(t) equals the integral of the weighing function in the P+ region [55,104,105]. Due to the general structure of the Preisach model, a wide range of hysteresis could be modeled for different actuators. The major limitation exists due to the lack of understanding of the physical significance of the model. Moreover, obtaining the inverse of the model is quite difficult; thus, it requires numerical methods for obtaining the inverse of the model [104,105].




6.1.6. Prandtl–Ishlinskii (PI) Model


The Prandtl–Ishlinskii is an operator-based model derived from the Preisach model, effectively used to characterize the hysteresis behavior of the piezoelectric actuators through play or stop operator with a density function. The geometric representation of the continuous rate-independent hysteresis operator has been presented in Figure 13 [106,107].



The play or stop operators are characterized by threshold parameter r and the input to the piezoelectric actuator v. The play hysteresis operator t0 = 0, t0 < t1 < ⋯ < tN = tE with an input v(t) ϵ Cm[t0,tE] with Cm being a space piecewise monotone continuous function and v(t) which is monotonous in interval [ti,ti+1] can be represented as Equation (51) [106,107,108,109].


     F   r     v     0   =   f   r     v   0   , 0   = w   0        F   r     v     t   =   f   r     v   t   ,   F   r     v       t   i          F o r     t   i   ≤ t ≤   t   i + 1     a n d   0 ≤ i ≤ N − 1      f   r     v , w   = m a x   v − r , m i n ( v + r , w )     



(51)







Based on the above play operator the Fr[v(t)], the relationship between the input v and output x of the actuator is represented by the PI model as follows Equation (52)


  x   t   = q v   t   +   ∫  0   R    p   r     F   r     v     t   d r    



(52)




where q is a positive constant, p(r) is a density function with p(r) ≥ 0 identified through the experimental data. The control and characterization of the rate-independent hysteresis could be effectively achieved through the PI model with few play operators.




6.1.7. Krasnoselskii–Pokrovskii Model


Krasnoselskii–Pokrovskii (K–P) model is hypothesized and improvised from the Preisach model [110]. The K–P model incorporates an improved play operator called the K–P kernel represented as kP[v,ζ(ρ)](t) (Figure 14), which replaces the traditional play operator of the Preisach model [106,107].



The K–P model is represented mathematically as follows in Equation (53),


  x   t   =   ∫    T   0        k   P     v , ζ   ρ       t   μ ( ρ )   d ρ  



(53)




where v(t) and x(t) represent the input and output of the K–P model, μ(ρ) is the weight factor of the Krasnoselskii–Pokrovskii operator with the Preisach plane points of ρ = (ρ1,ρ2)   ∈   T0 such that     T   0   =       ρ   1   ,   ρ   2     ∈     R   2       T   m i n   ≤   ρ   1   ≤   ρ   2   ≤   T   m a x       Tmax, Tmin are the maximum and minimum values on the Preisach plane, respectively. Since the K–P model is an improvised form of the Preisach model, the Preisach plane can be extended for determining the output of the K–P model with an operator K–P kernel defined as follows in Equation (54)


    k   P   [ v , ζ ( ρ ) ] =           m   a x   ρ ∈   T   0       ζ   ρ   , r   v −   ρ   2       ,     v  ˙  < 0                   m   i n   ρ ∈   T   0       ζ   ρ   , r   v −   ρ   1       ,     v  ˙  < 0        



(54)




where r(v) represents the ridge function defined as shown in Equation (55)


  r   v   =       − 1 ,   v ≤ 0       − 1 +   2 v   a   ,       + 1 , a ≤ v     0 < v < a ,    



(55)







The slope of the ridge function depends on the value of a. The K–P kernel incorporates two ridge functions with parameters ρ1 and ρ2, such that     ρ   1   ≤   ρ   2    . When the input v(t) is applied, the response of the K–P kernel follows either a horizontal line between r(v − ρ2) and r(v − ρ1) or follows one of the curves of the ridge function as shown in Figure 14 [111]. The complications associated with the Preisach model are very much evident in the K–P model due to the similarity with the Preisach model.




6.1.8. Maxwell–Slip Model


The Maxwell–Slip model is a quasi-static model intended to relate the nonlinearity between the force and displacement of the spring system. Later on, the same approach was extended to model the nonlinearity hysteresis of the piezoelectric actuators [112,113]. The Maxwell–Slip model considers the analogy of the massless friction element and the massless spring, as represented in Figure 15.



Mathematically, the Maxwell–Slip model with the input displacement of x, output force of F, and spring constant of K as follows as shown in Equation (56) [106,107],


    F   i   =         k   i     x −   x   b i         k   x −   x   b i       <   f   i           f   i   s g n (   x )  ˙      x   b i   = x −     f   i       k   i     s g n (   x  ˙  )        



(56)




where μ represents the coefficient of friction between the sliding element such that the frictional force f = μN. For an accurate representation of the hysteresis behavior, numbers of friction elements are taken in parallel, with xi being the initial position of the ith slider [112,113,114,115]. Though the Maxwell model of hysteresis is simple to understand and implement, the rate-independent nature of the model cannot represent hysteresis behavior at high frequency





6.2. Applications and Comparison of the Hysteresis Model


A large number of hysteresis models are proposed to minimize nonlinearity errors in piezoelectric actuators for precision applications. Several researchers have contributed significantly to developing and optimizing the hysteresis model for piezoelectric actuators through an appropriate mathematical approach. Table 2 and Table 3 represents the applications of different hysteresis models for modeling the hysteresis behavior of the piezoelectric actuators upto the year 2020 and onwards respectively.



The rate-independent models are best suited for modeling the hysteresis behavior of the piezoelectric actuators operating at a low-frequency range. With the increase in the actuation frequency to a higher level, the implementation of rate-dependent models can describe the hysteretic behavior effectively. The differential-based models are easy to implement due to a more straightforward approach to solving the differential equations and methods to identify the model parameters. Implementing operator-based models is challenging due to the complexity associated with finding the solution and model parameters. There have been continuous efforts in improvisation of the existing hysteresis model, such as the modified P-I model [134,135] and the modified Preisach model [136,137] for better compensation of dynamic nonlinearity. Furthermore, the neural network-based models [138,139], fuzzy logic models [140,141], and support vector machine-based models [142,143] have also proved to help model the hysteretic characteristics of the piezoelectric actuators.





 





Table 3. Application of the hysteresis models in the piezo actuation technology reported after 2020.






Table 3. Application of the hysteresis models in the piezo actuation technology reported after 2020.













	Author
	Year
	Ref. No.
	Type of

Actuator
	Hysteresis

Model
	Observation





	C. Zhou
	2021
	[144]
	Piezo Stack
	Modified Prandtl–Ishlinskii
	
	
Modified Prandtl–Ishlinskii with the dead-zone operators (MPI) hysteresis model to describe the asymmetric hysteresis



	
RMSE for modeling the piezoelectric actuator hysteresis is around 0.76%.








	X. Shan
	2021
	[145]
	Pizeo Stack
	Prandtl–Ishlinskii
	
	
Dynamic hysteresis nonlinear model and its inverse model based quasi-static model and linear transfer function



	
Frequency increased from 0.5 Hz to 50 Hz, the average fitting error of the static hysteresis model from 0.027 to 0.187, and for the dynamic hysteresis model from 0.044 to 0.052.








	K. Ahmed
	2021
	[146]
	Piezoelectric nano-stage
	Duhem
	
	
Modeling and parameter identification of the Duhem model and parameter optimization modified particle swarm optimization (MPSO) technique



	
The maximum displacement error between the model and experimental data is 0.063 µm








	C. Zhou
	2022
	[147]
	Piezo Stack
	Prandtl–Ishlinskii
	
	
Asymmetric Hysteresis modeling through Classical, Modified, and dual-operators-based model



	
Maximum error 38.56 µm, 9.73 µm and 4.15 µm with Classical, Modified and Dual-operators-based model








	W. Wang
	2022
	[148]
	Piezoelectric Positioning Stage
	Prandtl–Ishlinskii
	
	
Multi-slope Prandtl–Ishlinskii (MPI) based hysteresis modeling and compensation for two-dimensional piezoelectric positioning stage



	
More than 99.6% of the fitting coefficient under the driving voltage of 20 V~120 V, and the average absolute error is 0.1192.



	
The average absolute displacement error of the piezoelectric actuator is 0.1192 µm, as well as the mean square error is 0.2949 µm.








	A. G. Baziyad
	2023
	[149]
	Piezoelectric-driven nanopositioning Stage
	Preisach
	
	
Improvised Preisach model using least-squares support vector machines (LSSVMs) to deal with the rate-dependent properties



	
The achieved results with the suggested control strategy show that both hysteresis modeling accuracy and tracking performance are significantly improved with average root-mean-square error (RMSE) values of 0.0107 µm and 0.0212 µm








	J. Lu
	2023
	[150]
	Fast piezo-driven scanner
	Bouc–Wen
	
	
Weighted polynomial modified Bouc–Wen (WPMBW) model with a linear dynamic model to describe counter-clockwise, asymmetric, and rate-dependent hysteresis loops



	
Maximum percentage modeling error is about 2.17%, 5.03%, 9.56%,15.01%, and root-mean-square error 0.0113, 0.0295, 0.0592, 0.0983 at 5 Hz, 10 Hz, 15 Hz, and 20 Hz, respectively













Based on the understanding of the above-described modeling approaches, implementing a particular model majorly depends on rate-dependent or rate-independent behavior. Besides factors such as ease of obtaining the inverse model of the hysteresis model, ease of identification of the model parameters, compatibility and ease of the hysteresis model, and suitable controller occupy significant importance. Table 4 describes, in brief, the comparison of the different hysteresis modeling models.





7. Modeling of Creep Behavior of the Piezoelectric Actuators


The application of a piezoelectric actuator for precision motion requires positioning accuracy and retaining the specific position without any fluctuation. Under the dynamic application of piezoelectric actuators, there is difficulty in maintaining a particular position due to the inherent effect of the creep phenomenon. Creep in the piezoelectric actuator is a time-dependent phenomenon resulting in the slow drift of the output displacement when there is a sudden change in the input voltage [151,152]. The root cause for the creep in the piezoelectric actuators occurs due to the interaction between the applied electric field and the retained polarization. The application of voltage across the piezoelectric materials results in specific orientations of the crystal structure. When there is a change in the applied voltage, the interaction of polarization retained in the materials continues, resulting in a drift termed a creep. Thus, the extent of creep in piezoelectric materials varies as a function of time and the applied voltage. Further, the rate of creep nonlinearity decreases logarithmically with respect to time [153,154,155].



The mathematical modeling approaches for the creep phenomenon in the piezoelectric actuators are either linear or nonlinear [156]. The linear modeling approach adopts a linear time-invariant dynamic viscoelastic model consisting of springs and dampers connected in series, as shown in Figure 16 [157]. The mathematical formulation of the low-frequency response of the viscoelastic creep model represented in Figure 16 is expressed as follows in Equation (57)


    x   s     V   s     =   G   x   =   1     k   0     +   ∑  i = 1     N   c x        1     C   i   s +   k   i        



(57)




where V(s) represents the input voltage, x(s) represents the output displacement, k0 represents stiffness corresponding to elastic deflection, Ncx represents the order of the model, i.e., the number of spring (Ki) and damper (Ci) elements. The standard deviation and the maximum error corresponding to the model with the measure output xi, predicted output of the model       x   i    ¯    is described by Equation (57) is represented as shown in Equation (58) [158]


    σ   c   =    1   N − 1     ∑  i = 1   N          x   i   −     x   i    ¯      2       



(58)






    E   m a x   =   m a x   i       x   i   −     x   i    ¯     



(59)







Reasonable accuracy in modeling the creep behavior of the piezoelectric actuators is possible to achieve with the linear model of the third-order model, i.e., N = 3. Moreover, the linear creep model has the flexibility of up-gradation to include the high-frequency system dynamics through which the controller can be designed for compensation of nonlinearity [158,159].



The second approach to modeling the creep phenomenon in piezoelectric actuators is a logarithmic approach, which follows the logarithmic response of the piezoelectric actuators over time [155]. Mathematically, the nonlinear model can be represented as in Equation (60)


  x   t   =   x   0     1 + γ   l o g   10       t     t   0          



(60)




where x(t) defines the displacement of the piezoelectric actuator upon application of electric potential at time t, x0 corresponds to the displacement of the piezoelectric actuator after the application of electric potential at time t0, γ corresponds to a factor that determines the rate of logarithmic creep response [160,161]. Though the logarithmic-based models effectively describe the creep behavior of the piezoelectric actuators, the dependence of x0 and γ on the selection of time factor t0 adds to the complexity of the model. Moreover, the logarithmic model is valid for a specific domain of 0 > t > ∞, the output displacement x(t) becomes unbounded as the value of t becomes too large or too small, i.e., as t → 0 or t → ∞ [55,159,160,161,162].



The linear and the nonlinear creep models for piezoelectric actuators are just the phenomenological descriptions of the creep phenomenon. Therefore, these models provide a brief insight into the creep phenomenon and do not holistically describe the creep phenomenon of the piezoelectric actuator. Other than the lumped model parameter, the piezoelectric actuators can also be modeled as distributed parameter elements with a memory effect. Considering this fact, a fractional-order approach can be adapted to model the creep phenomenon of the distributed parameter model of the piezoelectric actuators. The fractional-order model of order 0 to 1 can adequately define the drift, which can model the creep phenomenon of piezoelectric actuators [133,159].



When the piezoelectric actuators are excited through step input voltage, the early part of the response from the actuators exists for a few milliseconds with resonance, followed by creep, which can be represented as follows in Equation (61) [159].


      lim   s → 0    ⁡  G   s   =   b     s   α        



(61)







Since the effect of resonance response of the actuator occurs for a very short duration, i.e., in the order of milliseconds of time tc, its effect can be ignored for most applications. Therefore, as shown in Equation (62),


      lim   s → 0    ⁡  G   s   =   b     s   α                 t ≥   t   c    



(62)







The response of the piezo actuator after time tc with a step input of V(s) = 1/s can be represented by Equation (63),


        t       t ≥   t   c     =   L   − 1     G   s   V   s     =   b   t   α     α Γ ( α )    



(63)




where Γ(α) corresponds to the gamma function. Therefore, the mathematical representation of the response of the piezoelectric actuator after the time tc based on power law is as follows as shown in Equation (64),


    l o g x   ( t )     t ≥   t   c     = α l o g t + l o g   b   α Γ ( α )    



(64)







Equation (64) represents a creep model of the piezoelectric actuators through the fractional-order approach, also termed the double logarithm creep model. This particular model is useful in predicting the creep behavior of the piezoelectric actuators, which matches well with the experimental data. However, the complexity of the double logarithmic model, when compared with the nonlinear logarithmic model, limits its applications. Moreover, the model applies to time-domain t ≥ tc and does not consider the effect of time-domain t ≤ tc [55,159].




8. Control Approaches for Piezoelectric Actuator


Precision manipulation through the piezoelectric actuators significantly requires higher accuracy and resolution from the range of micrometers to the nanometers range with a stable response. Such a high level of accuracy and stability is possible if the piezoelectric actuation systems are immune to nonlinear errors occurring under dynamic conditions. The undesirable effects of hysteresis in piezoelectric actuators raise significant concern due to its contribution to possible positioning errors and system inaccuracies. Thus, there is a need to design and develop appropriate control approaches to address and compensate for the undesirable effects of inherent system nonlinearity and to control the actuators to have precise positioning with minimum errors. As mentioned earlier, charge-based control of the piezoelectric actuators can significantly reduce hysteresis errors, but specialized hardware and software requirement limits such an approach. Therefore, voltage-driven mode with Feedforward control, Feedback control, and Feedforward–feedback control approaches are predominantly used to control the piezoelectric actuators [68,163].



8.1. Feedforward Control of Piezoelectric Actuators


The feedforward control is the most straightforward and most commonly reported control approach for the precision positioning application of the piezoelectric actuators. The feedforward control is an open-loop approach with an integrated controller that compensates and eliminates the hysteresis nonlinearity error. The critical factor that governs the performance of such a control approach involves the identification of the appropriate hysteresis model and the development of the controller based on the selected hysteresis model [55,163,164].



Figure 17 represents the schematic block diagram of the feedforward control approach of the piezoelectric actuators. One of the approaches towards controller development of feedforward control is associated with obtaining the inverse of the hysteresis model selected. The desired displacement range is input to the feedforward controller embedded with the inverse hysteresis model. The controller output delivers a voltage that drives the piezoelectric actuator to compensate for the hysteresis. Such an approach is effective with operator-based models such as the Preisach model and the Prandtl–Ishlinskii models, whose inverse models are obtained through appropriate numerical methods and are implemented with the feedforward controller to compensate the nonlinearity errors [165,166,167]. The second approach involves implementing the adopted hysteresis model in the feedforward compensator without any inverse approach. Such an approach predominantly incorporates differential equation-based models such as the Bouc–Wen, Duhem, and Backlash Type models in the feedforward compensator [168,169].



The third approach exploits the direct hysteresis inverse compensation technique since the inversion of hysteresis nonlinearity by nature represents the hysteresis loop. The direction of orientation of the hysteresis loop of the piezoelectric actuators depicts the difference between inverse hysteresis and real hysteresis. The readily available inverse hysteresis model can be effectively utilized to characterize the inverse hysteresis effect instead of modeling the real hysteresis nonlinearity, thus eliminating the complex mathematical approach for obtaining the inverse of the identified hysteresis model [170,171]. Such an approach of using the direct inverse model with the inverse Prandtl–Ishlinskii model has been reported in [172,173].




8.2. Feedback Control of Piezoelectric Actuators


Feedback control of the piezoelectric actuators is a closed-loop control approach that monitors the real-time information of the output displacement and eliminates the nonlinearity error to have linear output. Figure 18 represents the schematic block diagram of the feedback control of the piezoelectric actuator. The feedback controller designs for piezoelectric actuators are categorized based on the utilization of the hysteresis model. One of the design approaches for feedback control does not consider any predefined hysteresis models and considers the hysteresis error as a nonlinear disturbance, which is eliminated according to the error generated between the desired and the actual displacement fed into the controller [174]. The second approach involves selecting and integrating an appropriate hysteresis model in the controller design, which can accurately depict the hysteresis behavior of the piezoelectric actuator [175].



As a feedback controller, the PID controller (proportional integral derivative controller) is suitable for piezoelectric actuators and is utilized extensively in commercial control applications in the form of integral controllers, proportional–integral controllers, and proportional integral derivative controllers [176,177]. Since the feedback control without hysteresis model considers hysteresis nonlinearity as disturbances, modified PID controllers such as adaptive PID controllers [178], Self-tuning PID controllers [179], disturbance observer-based PID controllers [180] and nonlinear PID controllers with extended state observer [181] have been proposed for performance enhancement. Moreover, modern feedback control approaches such as Neural Network control [182], H∞ control [183], and sliding mode control [184] have also been proposed and effectively adopted in feedback control of the piezoelectric actuators. The following sections highlight some feedback control approaches adopted in piezoelectric actuators.



8.2.1. Classical PID Controller


The proportional integral derivative (PID) controller is one of the easiest and most convenient control approaches adapted to precision positioning through piezoelectric actuators. The PID controllers effectively suppress the nonlinearity errors occurring in the piezoelectric actuator due to inherent hysteresis and creep by providing high-gain feedback at low frequencies [185]. Figure 19 represents the schematic representation of the generalized PID controller for a piezoelectric actuator.



The mathematical representation of the PID controller can be expressed as represented in Equation (65)


  v   t   =   K   p   e   t   +   K   i     ∫  0   t    e   t   d t   +   K   d     d e   t     t    



(65)




where v(t) represents the input signal to the piezoelectric actuator with an error e(t) = xd(t) − xa(t), xd(t) and xa(t) corresponds to the desired displacement, and the actual displacement from the piezoelectric actuator, Kp, Ki, Kd corresponds to gain factors of proportional, integral and derivative controllers [186,187,188]. The main factors of the controller have to be tuned to achieve effective control of the actuator. Ziegler–Nichols (Z–N) method, Haalman and λ Tuning method, Pole placement method, Graphic tuning methods, M-constrained integral gain optimization (MIGO) tuning methods, Approximate-constrained integral gain, optimization (AMIGO) and Kappa–Tau tuning method, Internal model principle (IMC) etc. are some of the strategies adopted in tuning the gain factors of the PID controller [185,186,187,188].




8.2.2. Self-Tuning Fuzzy PID Controller


A self-tuning fuzzy PID controller is another helpful approach to overcoming the nonlinearity in piezoelectric actuators due to continuous variation in the system parameters. The main factors of the PID controller are self-tuned according to the change in the parameters to achieve a stable response [179,189]. Figure 20 represents the schematic block diaphragm of the self-tuning fuzzy PID controller.



The control algorithm for the self-tuning fuzzy PID control in a discrete manner is represented as shown in Equation (66)


  V   t   =   K   P   e ( t )   e   t   +   1     T   i       ∑  0   t    T e   i   +   T   d     e   t   − e ( t − 1 )   T        



(66)




where, Kp is the gain factor of the proportional control, and T, Td, and Ti are sampling time, derivative time, and integral time intervals. During the control action, the PID controller evaluated the error e and change in error ec. The region of error and error change are [−xe, +xe] and [−xde, +xde], and the corresponding control change is [−yv, +yv]. The fuzzy subset of e, ec, Kp, Ki, and Kd are designated with {NB, NM, NS, O, PS, PM, PB}. The effectiveness of self-tuning fuzzy PID controllers depends on the set control rules, with each rule having two causes and three consequences. For example, if e and ec correspond to NB, then Kp, Ki, Kd correspond to PB, NB, and NS, respectively [179,189,190,191,192]. Thus, there exist 49 sets of control rules according to which the gain factors will be tuned with modification factors qp, qi, and qd, as follows represented by Equation (67);


     K   P   =   K   P   ′ +   e ,   e   c     ∗   q   p        K   i   =   K   i   ′ +   e ,   e   c     ∗   q   i        K   d   =   K   d   ′ +   e ,   e   c     ∗   q   d     



(67)







The control rules of the self-tuning PID controller are tabulated, processed, and tuned automatically through an online approach [192].




8.2.3. Fractional Order Fuzzy PID Controller


Typically, the FOFPID controller is a generalization of the PID controller, and the non-integer nature of the order of derivative µ and integral λ leads to the better dynamic performance of the system [193]. The transfer function G(s) and the output v(t) of the FOFPIF controller are represented as shown in Equations (68) and (69),


  G   s   =   K   p   +   K   i     s   − λ   +   K   d     s   µ    



(68)






  v   t   =   K   p   e ( t ) +   K   i     D   − λ   e ( t ) +   K   d     D   µ   e ( t )  



(69)




where Kp, Ki, Kd are the gains of the proportional, integral, and derivative gains and λ, µ > 0. Figure 21 represents the schematic of a fractional-order Fuzzy PID (FOFPID) controller. The parameters of the controller, such as Kde, Ke, α, β, and μ, are determined through the dynamic parameter estimation algorithms. A set of fuzzy rules are defined for the controller with the fuzz values NL (Negative Large), NM (Negative Medium), NS (Negative Small), ZO (Zero), PS (Positive Small), PM (Positive Medium), PL (Positive Large), respectively. For optimal performance, the controller parameters Kde, Ke, α, β, λ, and μ are to be determined and optimized according to the fuzzy control rules defined [193,194,195,196].




8.2.4. Disturbance Observer-Based PID Controller


The schematic representation of the disturbance observer-based PID controller for the piezoelectric actuator is represented in Figure 22. The disturbance observer-based controls find extensive application in motion control applications. The disturbance observer determines the error in the displacement of the piezoelectric device based on the reference input and the output displacement [180,197,198,199,200].



The control value of the disturbance observer is the position value of the piezoelectric actuator. The concept of disturbance observer is based on the following formulations in Equations (70) and (71),


     G   e   =   G   e n   + ∆   G   e        G   r   =   G   r m   + ∆   G   r        x   d i s   =   x   l   + ∆   G   e   x − ∆   G   r     x   r e f     



(70)






    x   d i s   =   G   r n     x   r e f   −   G   e n   x  



(71)




where Gr, Ge corresponds to the coefficient transfer ratio between the desired displacement, the actual displacement, and the coefficient of transfer ratio between the actual displacement and the measured displacement from the sensor, respectively. Grn and Gen represent the optimal value of the disturbance observer parameter with corresponding errors ΔGr and ΔGe, respectively; xl represents error displacements of the piezoelectric actuator with disturbance. Thus, according to the disturbance fed, the gain factors of the PID controller are tuned as expressed in Equation (65), where Kp, Ki, Kd are the gains of the proportional, integral, and derivative gains, and xp, xi, xd are the corresponding control values [198].


     x   p   =   K   p     x   d i s         x   i   =     K   i     x   d i s     s         x   d   =     K   d     x   d i s s     ( s t + 1 )     



(72)






    x   d i s   =   x   p   +   x   i   +   x   d    



(73)








8.2.5. H∞ Controller


The H∞ control approach is adopted in the piezoelectric actuators to ensure stabilized motion under dynamic operating conditions [183,200,201,202,203]. The control of the piezoelectric actuator with H∞ can be represented in generalized form as shown in Figure 23a, with Xa representing the measured output of the piezoelectric actuator P(s), which produces an error signal e, controlled through a controller K(s) with a control signal u and input signal x consisting of command signal with noise and interference signal from the sensor [204]. The H∞ approach aims at determining the controller parameters such that the ratio between the error and the external signal w is minimized [205,206]. Based on the H∞ rule, the expression for the transfer function matrix between x and e is represented in (74) [207],


       E ( s )     Y ( s )      = P   s        X ( s )     U ( s )      =        P   e x   ( s )     P   e u   ( s )       P     x   a   x   ( s )     P     x   a   u   ( s )           X ( s )     U ( s )       



(74)







The linear fraction transformation of the transfer function between x and e is as follows in (75)


  E   s   =   F   l     P   s   , K   s     W ( s )    F   l     P   s   , K ( s )   =   P   e w     s   +   P   e u     s   K ( s )     I −   P   y u     s   K   s       − 1     P   y w   ( s )  



(75)







Figure 23b represents the schematic of control of the piezoelectric actuator under the closed-loop H∞ control method with weighting filters. The effectiveness of the H∞ controller in the stabilization of the response of the piezoelectric actuator is based on Equation (76), where the factor γ is updated iteratively to maintain the condition.


  ‖     F l  ( P   s   , K   s   )  ‖  ∞  < γ  



(76)







Therefore, based on the configuration of the H∞ controller, the transfer matrix and the condition to be satisfied by the controller K(s) be represented as follows


       ε     u      =      K   S G     K S   K S G           r     b      ; S =   1     1 + K G     ⇒      K   S G     K S   K S G      < γ  



(77)




where S corresponds to the factor of sensitivity, which equals the transfer function between the desired displacement Xd and the error e. To satisfy the above condition, the H∞ is assigned weighting filters (Wi), as represented in Figure 23b, based on the frequency domain of the plant [206]. Thus, the transfer matrix of the H∞ controller with the weighting filters can be represented as


         e   1         e   2        =        W   1   S     W   1   S G   W   3         W   2   K S     W   2   k S G   W   3             r     d       



(78)







Based on the frequency domain of the system, the expression for the weighting filter parameters with a close loop bandwidth of ω0 is expressed as in Equation (79)


    W   i   =     s   M   +   ω   0     s + A   ω   0      



(79)




where, A, M correspond to minimum steady-state error and high-frequency amplification gain, respectively. The performance of the H∞ greatly depends on the selection of weighting filter parameters [206]. The selection of weighing filter parameters depends on factors such as frequency bandwidth, stability margin, and the extent of steady-state error acceptable under the dynamic operation of the piezoelectric actuator [204,205,206,207].




8.2.6. Sliding Mode Control


Sliding mode control is a nonlinear control approach characterized by a discontinuous feedback control structure that triggers a change in the positioning trajectory of the system and ensures the system can reach and maintain a specific position/surface through a state space called the sliding surface. The feedback approach adopted in the sliding mode control is not continuous; instead, it adopts a switching function, which switches from one continuous structure to another based on the current position of the actuator [208,209,210,211]. Figure 24 represents the block diagram of the sliding mode control approach for the piezoelectric actuator.



Mathematically, the control law under sliding mode control can be expressed as in Equation (80) [208]


  u = y + T   λ e +     x   d    ˙    +   u   d    



(80)




where λ represents the feedback gain of the controller, which has to be tuned to reduce the error e between the desired displacement xd and the current position x, ud represents the compensation component for disturbance and uncertainty in the system, which has to be determined by the estimator of the sliding mode controller.


  e =   x   d   − x ⇒   e  ˙  =     x   d    ˙  −   x  ˙  =     x   d    ˙  +   x   T   −   u   T   − Ø   t    



(81)







The switching function S for the controller with switching action Ψ and state variable z is represented as in Equation (82)


   S = z − e    w h e r e     z = − λ e −  ˙      1   T     u   d   + ψ   w i t h   Z   0   = e ( 0 )   



(82)




where,


  ψ = − η s i g n   S   ,   s i g n   S   =      1   i f   S < 0     1   i f   S > 0        s u c h   t h a t   η >   Ø ( t )    



(83)







Considering a sliding system S = 0 with Lyapunov candidate V = 0.5 S2, the sliding condition is valid for     V  ˙    < 0 if S ≠ 0 where     V  ˙  = S     z  ˙  −   e  ˙    = S [   − η s i g n   S   + Ø   t     ]  . Since Z(0) = e(0), S = 0 for t = 0. Thus,     S = 0   f o r   t ≥ 0  ˙   , this indicates the existence of sliding mode at all times. With S = 0, the equivalent value of uncertainties and disturbances   Ψ e q   corresponds to input with the average measured value through the first-order linear filter and switching action [208,209].


     Ψ   e q   = − Ø   a n d     u   d   = T   Ψ   e q     w i t h   τ     Ψ   a v    ˙  +   Ψ   a v   = Ψ   



(84)







To allow the disturbances and plant dynamics to pass through the filter, the time constant τ is chosen to be as small as possible (τ ≈ 1/λ). Thus, the error dynamics of the sliding mode control can be represented as Equation (85) [209]


    e  ˙  + λ e = −   Ψ   e q   − Ø = 0  



(85)









8.3. Feedforward–Feedback Control of Piezoelectric Actuators


Though feedforward and feedback control approaches are advantageous, the experimental approach has established the model uncertainty associated with the simple feedforward control and the limited bandwidth with the pure feedback control. Therefore, the concept of feedforward–feedback control emerged, which follows an integrated approach that utilizes the advantages features of both feedforward and feedback control and is typically used for high-speed and high-precision operations of the piezoelectric actuators [212,213]. Figure 25 represents the block diagram of the feedforward–feedback control of the piezoelectric actuator.



The feedforward control usually adopts an inverse hysteresis compensator through the Preisach model, the Prandtl–Ishlinskii model, and the Bouc–Wen model, which compensates the inherent hysteresis nonlinearity of the system [214,215,216]. The feedback control looks after the model uncertainty associated with the piezoelectric actuator and eliminates the residual errors due to inaccuracy in modeling the hysteresis behavior. Commonly, the feedback control adopts PID-based controllers [217,218,219]; moreover, adaptive-based control [220], H∞ control [221,222], and slide mode control [223] are effectively employed in feedforward–feedback control to have better performance.




8.4. Applications of Control Strategies in Piezoelectric Actuators


Over the past few years, several control methods have been proposed and physically implemented to eliminate the nonlinearity in the piezoelectric actuator under dynamic applications. The feedforward control has the advantage of ease of implementation among different control approaches due to the simple structure [171,172]. The feedforward control is based on the inverse hysteresis model, which describes the hysteresis behavior of the piezoelectric actuators. Thus, the Feedforward approach is effective in the elimination of hysteresis nonlinearity by providing appropriate compensation. However, positioning accuracy with feedforward control depends solely on the accuracy of the hysteresis model selected due to the open-loop characteristics [172,173]. Moreover, the Feedforward control approach cannot reject the effect of dynamic disturbances. However, the feedforward approach can be effectively implemented in micro/nanopositioning due to the insignificant effect of load and negligible mass of the object to be positioned.



The feedback closed-loop control approach offers the advantage of real-time control of the piezoelectric actuator displacement with the capability of handling modeling uncertainties and nonlinearities. However, the hysteresis nonlinearities severely affect the system’s stability with feedback control. Furthermore, feedback control is effective only in the low-frequency range with a limited travel range. The system complexity of closed-loop, coupled with the low gain margin, limits the application of the feedback controllers for high-frequency operations. The PID control approach is most widely used due to its simple structure and robust performance compared to other closed-loop feedback approaches. An optimized PID controller greatly enhances the tracking performance of the piezoelectric actuator under dynamic conditions [185,186,187,188]. However, the PID controllers require continuous monitoring due to the variation of controller parameters when external disturbances lead to system instability. A self-tuning fuzzy PID controller effectively manages the variation of controller parameters through a self-tuning algorithm in the presence of disturbances. The self-tuning fuzzy PID controller can adjust the controller parameter according to external disturbances. It adopts an online approach of adjusting the scaling factor of the input and output of the derivative and integral coefficients of the fuzzy PID controller, respectively [189,190,191,192].



The robustness of the PID controller has been enhanced through the implementation of fractional calculus. The performance of the fractional-order fuzzy PID (FOFPID) controller has proved to be better in terms of performance when compared with the conventional PID controller. The performance of the FOFPID controller depends on the order of the integral and derivative operators of the PID, fuzzy rules, the scaling factor of the input and the output, and controller parameters. The controller parameters need to be selected based on the dynamics of the piezoelectric actuators through a suitable optimization technique [193,194,195,196]. The disturbance observer-based fuzzy logic PID controller eliminates the external disturbances and uncertainties effectively to provide stable control of the piezoelectric actuator.



The hysteresis nonlinearity can be treated as a disturbance with the observer-based PID controller, eliminating the need to model the hysteresis behavior of the piezoelectric actuator. The controller parameters are optimized with appropriate tuning methods to reduce the nonlinearity existing in piezoelectric actuators [197,198,199]. Apart from the PID controller, many works on control of the piezoelectric actuator have reported the effectiveness of the H∞ control approach. H∞ control ensures robustness and excellent performance with a high rate of disturbances rejection and guaranteed stability of the piezoelectric actuator under dynamic operating conditions [205,206,207]. The sliding mode of control also ensures a robust control of the piezoelectric actuator and effectively eliminates undesirable dynamic nonlinearity. The significant advantage of sliding mode control is the insensitivity to plant parameter variation and external disturbances. The complexity of the feedback design is simplified with sliding mode control due to the decoupling of the overall motion of the piezoelectric actuator system into partial components of a lower dimension [209,210,211]. The combined approach of feedback and feedforward control significantly improves the performance when compared with feedforward and feedback control separately. Feedforward–feedback control effectively enhances the bandwidth, ensures improved precision motion, and eliminates noise, positioning errors, and disturbances [221,223]. However, the enhanced performance is achieved at the cost of increased complexity in the control architecture due to the feedforward and feedback control approach [55,224]. Table 5 highlights the application of different control methods in the position control of piezoelectric actuators.





9. Concluding Remarks and Future Prospects


The piezoelectric actuators find extensive application in precision positioning and manipulation applications. Despite many advantageous features, the inherent system nonlinearity due to hysteresis creep and vibration degrades the performance of the piezoelectric actuators under dynamic conditions. This review aims to present different modeling and control approaches of piezoelectric actuators adopted to eliminate the inherent system nonlinearity of piezoelectric actuators. The survey included a descriptive narration of comprehensive dynamic modeling approaches and different methods of driving the piezoelectric actuators. The charge-based driving modes, such as capacitor insertion, time-controlled current amplification, capacitor-based sensing, and charge control with inverting configuration, effectively minimize hysteresis and creep. However, such approaches have the disadvantages of voltage drop and drift effects. Implementing digital charge control with suitable filters overcomes the problem of voltage drift. Despite the advantage of nonlinearity elimination in piezoelectric actuators through charge-based driving methods, the requirement of the unique controller design for specific actuators and the cost involved limits its widespread application.



A voltage-based driving method is a generalized approach for different piezoelectric actuators. However, the effectiveness of the voltage-based control method depends on the appropriate modeling of nonlinearities and control strategies adopted. Several models are proposed for modeling the hysteresis nonlinearity of the piezoelectric actuators. The rate-independent hysteresis models help model the hysteresis nonlinearity in low-frequency range applications. The rate-dependent models describe the hysteresis phenomenon in the higher range of the actuation frequency. The differential equation-based models are relatively easier to implement when compared with operator-based models. Further, the logarithmic approach defines the creep behavior of the piezoelectric actuator compared with the linear approach.



The positioning accuracy of the piezoelectric actuators depends on the control approach adopted under dynamic conditions. The feedforward control offers a simple solution for position control of the piezoelectric actuators with suitable compensation to overcome nonlinearity with a stable response. The high sensitivity to external disturbances and uncertainties limits the application of feedforward control. The feedback control approach can address external disturbances and system uncertainties and provide closed-loop, real-time control of the piezoelectric actuator. However, feedback control has the disadvantages of stability issues and low-frequency bandwidth. The cascaded feedforward–feedback controllers take the advantageous feature of both feedforward and feedback controllers and ensure stability and elimination of nonlinearity errors to a greater extent.



Based on the detailed survey of the piezoelectric actuators, the authors observed the following research suggestions.



	
Development and enhancement of unique charge-based control method applicable to all types of piezoelectric actuators



	
Development of realistic rate-dependent hysteresis models and inverse constructions to model the hysteresis behavior of the piezoelectric actuator at a very high-frequency range.



	
Implementation of rate-dependent hysteresis models for multi-degree freedom actuators involving multiple piezoelectric actuators



	
Development of an active vibration isolation approach to overcome the issues of dynamic vibration.



	
Design, develop, and implement a novel control strategy to better control multi-degree freedom piezoelectric actuators and eliminate system nonlinearities to minimize errors.
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Figure 1. Organization of the review. 
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Figure 2. Basic configurations of the piezoelectric actuators. 
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Figure 3. Schematic representation of the nonlinearity in the piezoelectric actuators due to (a) hysteresis, (b) creep, and (c) Vibration. 
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Figure 4. Schematic representation of the electromechanical model of the piezoelectric actuator. 
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Figure 5. Driving and control approaches for the piezoelectric actuators. 
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Figure 6. Schematic of the charge-driven piezoelectric actuator with the capacitor insertion. 
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Figure 7. Charge-driven piezoelectric actuator with time-controlled current amplification. 
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Figure 8. Schematic of the charge-driven piezoelectric actuator with the capacitor-based sensing (a) Generic charge amplifier (b) Grounded load DC accurate charge amplifier. 
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Figure 9. Schematic of (a) linear charge controller without DC feedback, (b) linear charge controller with DC feedback, and (c) nonlinear charge controller. 
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Figure 10. Schematic of the charge-driven piezoelectric actuator with the digital charge control. 
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Figure 11. Classification of hysteresis model of the piezoelectric actuators. 
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Figure 12. Mapping of Hysteresis in the α-β plane for the Preisach model. 






Figure 12. Mapping of Hysteresis in the α-β plane for the Preisach model.



[image: Technologies 11 00155 g012]







[image: Technologies 11 00155 g013] 





Figure 13. Geometric representation of (a) Play Operator (b) Stop Operator. 
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Figure 14. Schematic of the Krasnoselskii–Pokrovskii kernel. 
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Figure 15. Schematic representation of the Maxwell–Slip Hysteresis model. 
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Figure 16. Viscoelastic creep model of the piezoelectric actuators. 
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Figure 17. Block diaphragm of the Feedforward control of the piezoelectric actuator. 
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Figure 18. Block diaphragm of the feedback control of the piezoelectric actuator. 
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Figure 19. General representation of the proportional integral derivative (PID) controller. 
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Figure 20. Schematic of the self-tuning fuzzy PID controller. 
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Figure 21. Schematic of the fractional order fuzzy PID controller. 
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Figure 22. Schematic of the disturbance observer-based PID Controller. 
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Figure 23. (a) Schematic of the piezoelectric actuator as a generalized plant (b) Schematic of control of the piezoelectric actuator under closed loop H∞ control method with weighting filters. 
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Figure 24. Schematic representation of the sliding mode controller of the piezoelectric actuator. 
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Figure 25. Block diaphragm of the feedforward–feedback control of the piezoelectric actuator. 
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Table 1. Application of charge-based control of the piezoelectric actuators reported in recent years.
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	Author
	Year
	Ref.

No.
	Type of

Actuator
	Method of

Charge Control
	Voltage

(V)
	Frequency

(Hz)
	Range of

Motion

(μm)
	Approximate %

Reduction

in

Hysteresis
	Approximate

%

Reduction

in

Creep





	J. Minase
	2010
	[68]
	Piezo Stack
	Capacitor Insertion
	100
	10
	2.25
	99.59
	99.87



	Y. T. Ma
	2011
	[69]
	Piezo Stack
	Capacitor Insertion
	5
	5
	5
	94.36
	77.00



	A. J. Fleming
	2005
	[73]
	Piezo Tube
	Capacitor based sensing
	±6
	10
	±3.00
	89.00
	----



	A. J. Fleming
	2010
	[74]
	Piezo Stack
	Capacitor based sensing
	150
	100
	7.8
	95.35
	----



	Shannon A.
	2015
	[75]
	Bimorph
	Capacitor based sensing
	−50 to +200
	15
	±1250
	92.00
	----



	C. Yang
	2017
	[77]
	Piezo Stack
	Nonlinear Charge Controller
	100
	2
	6.50–7.00
	88.00
	----



	T. Jin
	2019
	[79]
	Piezo Stack
	Linear Charge Controller
	4.5
	2
	2.50–3.00
	71.33
	----



	T. Jin
	2019
	[79]
	Piezo Stack
	Nonlinear Charge Controller
	4.5
	2
	2.50–3.00
	91.29
	----



	M. Bazghaleh
	2014
	[81]
	Piezo Stack
	Digital Charge Amplification
	40
	10
	11.54
	91.00
	----



	J. Zhong
	2021
	[82]
	Piezo Stack
	Digital ChargeConrol
	120
	1–1000
	±2.00
	99
	



	Chen Yang
	2022
	[83]
	Piezo Stack
	Nonlinear Charge Controller
	50
	10–400
	3.3
	97
	










 





Table 2. Application of the hysteresis models in the piezo actuation technology reported upto the year 2020.
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	Author
	Year
	Ref. No.
	Type of

Actuator
	Hysteresis

Model
	Observation





	T. Hegewald
	2008
	[116]
	Piezo Stack
	Jiles–Atherton
	
	
The rate-independent hysteresis model is considered



	
Parameters estimated through the least squares algorithm



	
No consideration of the rate-dependent hysteresis behavior








	L. Deng
	2008
	[117]
	Piezo Positioning Stage
	Backlash
	
	
Modified model to include rate-dependent hysteresis with diagonal recurrent neural network (DRNN)



	
Model parameters and weights are estimated through the Levenberg–Marquardt (L–M) algorithm








	M. Zhou
	2013
	[118]
	Piezo Stack
	Duhem
	
	
The rate-independent hysteresis phenomenon is considered



	
Model parameters and weights are estimated through a gradient correction algorithm



	
Model accuracy of 0.11%








	Y. Liu
	2013
	[119]
	Piezo Positioning Stage
	Maxwell–Slip
	
	
The rate-independent hysteresis behavior is considered



	
Model parameters are identified through the piecewise linear fit of the experimental hysteresis curve, normalized root-mean-square



	
An error of the model is about 0.43% to 2.28%








	T.-G. Zsurzsan
	2015
	[120]
	Piezo Motor
	Preisach
	
	
The rate-independent hysteresis behavior is considered



	
Amplitude-dependent behavior was considered with the 50 reversal cycles



	
Model accuracy of 95.8% was achieved








	J. Gan
	2016
	[121]
	Preloaded Piezo

Stack
	Prandtl–Ishlinskii
	
	
The rate-dependent for frequencies 1 Hz to 100 Hz and the rate-independent behavior are considered



	
Model parameters are estimated through the self-adaptive particle swarm optimization








	G. Wang
	2017
	[122]
	Amplified Piezo

Stack
	Duhem
	
	
The rate-dependent hysteresis model is considered



	
Model implementation and parameters identified through the Neural Network approach








	Y. Qin
	2017
	[123]
	Compliant Piezo

Stage
	Prandtl–Ishlinskii
	
	
The rate-dependent hysteresis model is considered



	
Model parameters are estimated through the curve fitting with respect to experimental data



	
The maximum error observed is about 8.25% of the measured displacement








	J. Gan
	2018
	[124]
	Compliant Piezo

Stage
	Bouc–Wen
	
	
Considered enhanced model to include the rate-dependent behavior in the range of 1 Hz–150 Hz



	
Parameters identification through the particle swarm optimization



	
Reduction in modeling error by 75%








	Y. Luo
	2018
	[125]
	Piezo

Stack
	Preisach
	
	
The hysteresis model considered the rate-independent and amplitude-dependent behavior



	
Maximum error of 5.24% is obtained with respect to experimental data








	Z. Li
	2018
	[126]
	Piezo Positioning Stage
	Krasnoselskii–Pokrovskii
	
	
The rate-independent, amplitude-dependent hysteresis behavior is considered



	
The maximum model error achieved is about 1.30% to 2.11%








	D. Gan
	2019
	[127]
	Compliant Piezo

Stage
	Duhem
	
	
The modified model is considered to include the rate-dependent behavior of the actuator



	
Parameter estimation is through the nonlinear least squares method



	
Rate Dependent behavior is considered in the range of 30 Hz to 50 Hz with an optimization ratio of 12.05% and 14.04%








	J. Gan
	2019
	[128]
	Compliant Piezo

Stage
	Bouc–Wen
	
	
The rate-dependent hysteresis is considered in the frequency range of 5 Hz to 110 Hz



	
Parameters are estimated through the least squares algorithm



	
Reduction in modeling error by about 19.07%, 7.34% at 5 Hz,110 Hz respectively








	Y. Chen
	2019
	[129]
	Piezo Stack
	Preisach
	
	
Implementation of hysteresis model with neural network approach



	
Model parameter identification through the standard neural network training algorithm








	Y. Li
	2019
	[130]
	Piezo Stack
	Prandtl–Ishlinskii
	
	
The rate-dependent hysteresis behavior in the frequency range of 1 Hz to 80 Hz is considered



	
Model parameters are estimated through the Particle Swarm Optimization algorithm



	
Maximum relative error varied between 5.07% to 12.13%








	W. Pan
	2019
	[131]
	Piezo Positioning Stage
	Krasnoselskii–Pokrovskii
	
	
The rate-dependent hysteresis behavior is considered in the frequency range of 1 Hz to 100 Hz



	
Parameter estimation through the interior point algorithm and bat search optimization algorithm



	
The range of maximum error rate achieved is 0.92% to 2.51% for 1 Hz to 100 Hz








	D. Liu
	2020
	[132]
	Piezo Bimorph
	Bouc–Wen
	
	
The rate-dependent hysteresis is considered in the frequency range of 5 Hz to 25 Hz



	
Model parameter estimation through the region the based mixed-species swarm optimization








	L. Liu
	2020
	[133]
	Amplified Piezo Stack
	Bouc–Wen
	
	
The rate-dependent hysteresis behavior is considered



	
Model parameter estimation through the least square algorithm
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Hysteresis Model

	
Jiles–Atherton

	
Domain Wall

	
Duhem

	
Bouc–Wen

	
Backlash Type

	
Preisach

	
Prandtl–Ishlinskii

	
Krasnoselskii–Pokrovskii

	
Maxwell–Slip




	
Parameter






	
Inverse Model

	
Easy

	
Easy

	
Difficult

	
Easy

	
Easy

	
Difficult

	
Easy

	
Difficult

	
Difficult




	
Rate-Independent

	
Yes

	
Yes

	
No

	
No

	
No

	
Yes

	
Yes

	
Yes

	
Yes




	
Rate-Dependent

	
No

	
No

	
Yes

	
Yes

	
Yes

	
No

	
No

	
No

	
No




	
Parameter Identification

	
Easy

	
Easy

	
Difficult

	
Easy

	
Easy

	
Difficult

	
Easy

	
Easy

	
Easy
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	Author
	Year
	Ref.

No.
	Control

Method
	Type

of

Actuator
	Sensor

Used in Control
	Observation





	W. T. Ang
	2007
	[164]
	Feedforward
	Piezo

Stack
	N/A
	
	
Minimization of the error due to the dynamic interaction of the hysteresis and vibration for high-frequency tracking control of the piezo stack actuator



	
Adopted the rate-dependent inverse PI hysteresis model



	
Reduction in the maximum tracking RMS error and the maximum error by 81.7% and 74.4%, respectively in the frequency band of 1 Hz–19 Hz








	K. K. Leang
	2009
	[166]
	Feedforward
	Piezo

Tube
	N/A
	
	
The inversion-based feedforward control to compensate hysteresis, vibration, and creep in the piezo tube actuator is considered for the Atomic Force Microscope



	
Adopted the inverse Preisach hysteresis model



	
A maximum difference of displacement is about 2% of the ±30 μm range








	G. Y. Gu
	2012
	[171]
	Feedforward
	Piezo

Stack
	N/A
	
	
A Real-time Feedforward controller with inverse hysteresis compensation is considered



	
Modified PI model with Identification of model parameters through the effective informed adaptive particle swarm optimization (EIA-PSO) algorithm



	
Maximum tracking error is about 12% which is further reduced to 1% with the feedforward control with an overall reduction of 90%.








	D. Wang
	2015
	[173]
	Feedforward
	Piezo

Tube
	N/A
	
	
Feedforward controller based on the direct inverse asymmetric PI hysteresis model (DISPI) is considered



	
Estimation of model parameters through the least square fit algorithm



	
Reduction in the mean RMS error by about 75% through the DIAPI-based Feedforward control








	N. U. Rahman
	2012
	[187]
	Feedback

Classical

PID
	Piezo

Cantilever
	Piezo Strain Sensor
	
	
The classical PID controller is considered for active vibration control of the piezoelectric beam



	
Effective vibration suppression and doubling of damping factor when compared with the open loop response



	
Sustained natural frequency of the beam, reduced value of modal vibration amplitude








	B. Ding
	2016
	[188]
	Feedback

Classical

PID
	Piezo

Stack
	Capacitive Sensor
	
	
A self-tuning PID controller to track the trajectory of the piezoelectric actuator with hysteresis



	
System dynamic model through the Bouc–Wen model



	
Estimation of the model parameters and tuning of the controller through the particle swarm optimization method



	
A good match between the desired and the experimental displacement of the actuator








	S. Bing
	2008
	[191]
	Feedback

Self-Tuning

Fuzzy PID
	Piezo

Positioning

Stage
	Laser Vibrometer
	
	
Quick and precise control of tilt and piton movement in the precision fast positioning system (PFPM)



	
Enhancement of the frequency response up to 1.4 kHz to 1.45 kHz with the elimination of overshoot



	
Enhancement of the static and the dynamic response








	Dongjie Li
	2017
	[192]
	Feedback

Self-Tuning

Fuzzy PID
	Piezo

Positioning

Stage
	-
	
	
Dynamic tracking control of multi-degree freedom piezo positioning stage



	
Dynamic model description through the Bouc–Wen Model



	
Minimization of the overshoot with the enhancement of transient response



	
Precise tracking of the actuator trajectory








	I. R. Birs
	2017
	[196]
	Feedback

Fractional Order Fuzzy PID
	Piezo

Cantilever
	Piezo Strain Sensor
	
	
Vibration attenuation of the aircraft wing through the piezo patches



	
Controller tuning is carried out under the variable frequency depending on the magnitude and phase of the closed loop transfer function leading to attenuation of the resonant peak



	
Significant reduction in the vibration amplitude when compared with the passive case where the control algorithm remains off








	J. Yi
	2009
	[197]
	Feedback

Disturbance Observer PID
	Piezo

Cantilever
	Fiber Optic Sensor
	
	
Disturbance observed PID controller for minimization of hysteresis error in the piezo cantilever



	
Elimination of phase lag in the tip displacement corresponding to the reference displacement with DOB PID controller



	
The convergence of the output displacement without any oscillations



	
The observed steady-state error is about 80 nm.








	N. Chuang
	2010
	[202]
	Feedback

H Infinity
	Piezo

Stack
	Differential Probe
	
	
Minimization of hysteresis error in the piezo stack actuator through the H∞ controller



	
Effective elimination of the tracking error after the implementation of H∞ controller



	
Almost perfect match between the reference displacement and the output displacement from the actuator








	S. Xiao
	2014
	[203]
	Feedback

H Infinity
	Piezo

Stack
	Capacitive Sensor
	
	
Tracking control and hysteresis compensation of the stack actuator



	
Modeling of rate-dependent hysteresis through the Bouc–Wen model



	
Reduction in the RMS error and the maximum error from 9.3656 µm and 11.8839 µm to 3.0701 µm and 5.8218 µm respectively at 100 Hz








	M. Brahim
	2018
	[206]
	Feedback

H Infinity
	Rotary

Piezo

Motor
	Torque Sensor
	
	
H∞ controller proved to be effective in rejection of the sensor noise and the system oscillations when compared with the conventional PI controller



	
High precision motion without overshoot, and steady-state accuracy of 0.009° for an overall range of 90°








	S. Huang
	2009
	[209]
	Feedback

Sliding

Mode
	Piezo

Stack
	LVDT
	
	
To achieve optimal tracking performance of the piezo stack actuator under the influence of uncertain hysteresis dynamics



	
Better tracking accuracy with the sinusoidal and the saw-toothed trajectory



	
Minimized tracking error of 0.5 μm with the feedback sliding controller when compared with tracking error of 1.5 μm achieved with the classical PID controller








	M. Wehr
	2019
	[210]
	Feedforward

Sliding

Mode
	Piezo

Stack
	N/A
	
	
SMC was designed with the state observer to compensate for the uncertainties in the piezoelectric stack actuator in a cold rolling mill for the adjustment of the roll gap



	
Achieved fast trajectory without any phase delay with elimination dynamic disturbances



	
Mean tracking error of 5.38 μm and 8.48 μm at low force and high force receptively








	Z. Yu
	2020
	[211]
	Feedback

Sliding

Mode
	Piezo

Positioning

Stage
	Laser Sensor
	
	
Compensation of the hysteresis dynamics in the piezo positioning stage



	
Description of the hysteresis through the Modified Prandtl–Ishlinskii (MPI) model



	
Parameter estimation through the particle swarm optimization



	
Reduction in the linearity error from 10% to 1% and the tracking error reduction by 90%








	H. Y. Chen
	2018
	[216]
	Feedforward-

Feedback
	Piezo

Stack
	Load Cell
	
	
Hysteresis Compensation of the piezo stack actuator



	
Combination of Feedforward inverse hysteresis compensation with the Prandtl–Ishlinskii and Feedback control with the PID controller



	
Significant reduction in the hysteresis and tracking error



	
Root-mean-square error in the tracking performance is 0.0162 µm, 0.0243 µm, and 0.0292 µm at 1 Hz, 3 Hz and 5 Hz respectively








	A. Saleem
	2019
	[218]
	Feedforward-

Feedback
	Amplified

Piezo

Stack
	Laser Sensor
	
	
Adaptive self-learning Feedforward–feedback controller for tracking the amplified piezo actuator



	
Description of the hysteretic behavior through the Bouc–Wen and ARMA models,



	
Parameter model estimation through the recursive least square



	
Maximum error tracking error is about 0.4 μm 0.5 μm, and 0.5 μm at 10 Hz, 30 Hz, and 50 Hz respectively








	I. Ahmad
	2016
	[222]
	Feedforward-

Feedback
	Piezo

Positioning

Stage
	N/A
	
	
Minimization of error due to the dynamic interaction of hysteresis and vibration for high-frequency tracking control of the piezo stack,



	
Adopted rate-dependent inverse PI hysteresis model



	
Reduction in maximum the tracking RMS error and maximum error by 81.7% and 74.4%, respectively in the band of 1 Hz to 19 Hz








	C. Napole
	2021
	[225]
	Feedforward

With ANN
	Piezo Stack
	N/A
	
	
Elimination of nonlinearity through artificial neural network (ANN) Feedforward close-loop compensator utilizing Quasi continuous sliding mode control (QCSMC)



	
QCSM with ANN has superior performance compared to classical PID controllers.



	
The difference in Integral of absolute error between QCSMC and PID is about 53.07%, 81.5% 33.6%, 46.5%, 79.7%, and 38.5% with Triangular, Sine, and Variable amplitude signals.



	
The difference in root-mean-square error between QCSMC and PID is 46.5%, 79.7%, and 38.5% with Triangular, Sine, and Variable amplitude signals.








	S. Yu
	2021
	[226]
	Feedback

Sliding-Mode Control
	Piezo Positioning Platform
	-
	
	
Bouc–Wen model and linear time-invariant system to model static and rate-dependent hysteresis coupled with extended state observer–based fractional order sliding-mode (ESO- FOSMC) control to eliminate higher order un-modelled dynamics and inverse compensation errors



	
The positions error with extended state observer–based fractional order sliding-mode control is between 0.2992 µm to 0.9060 µm for a frequency range of 10 to 50 Hz








	D. Li
	2021
	[227]
	Feedback

Fuzzy Controller
	Piezo Stack
	Laser Sensor
	
	
A feedback controller based on fuzzy logic for the elimination of chatter in the milling tool



	
Comb filtering pre-process the vibration displacements of the tool holder which eliminates spindle rotation frequency and its harmonic components



	
The approach reduced the mean square value of the control voltage to 6.5% (2.3%) of that without comb filtering








	S. Yu
	2022
	[228]
	Feedforward Control With

Composite Proportional–Integral Sliding Mode Control
	Piezo Stack
	Laser Sensor
	
	
High-precision motion control of the cell puncture mechanism driven by a piezoelectric stack through Hysteresis modeling and compensation



	
A feedforward (FF) control and proportional–integral sliding mode feedback (PIFB) control based on the Bouc–Wen inverse model to position the cell puncture mechanism



	
The maximum error and RMS error with the FF+PIFB control approach is about 0.0272 µm, 0.0235 µm, 0.0229 µm and 0.08 µm, 0.12 µm, 0.36 µm for sinusoidal signal, sinusoidal signal with variable frequency and amplitude and triangular signal respectively.








	B. Shi
	2022
	[229]
	Feedforward

/Feedback
	Amplified

Piezo

Stack
	Capacitive Sensor
	
	
The feedforward controller is built to compensate for the hysteresis characteristics with a rate-dependent P–I inverse hysteresis model with the relevant parameters and a feedback controller with an adaptive control algorithm to reduce the influence of external disturbance.



	
The settling time of the combined controller is 53 ms with a square wave, which is reduced by 75% when compared with the rate-dependent hysteresis model and proportional–integral–derivative controller.



	
The tracking error of 3.66% and 3.88% is achieved with the trajectory at 5 Hz and 20 Hz.








	Y. Xiong
	2022
	[230]
	Feedforward Control
	Piezo Positioning Platform
	N/A
	
	
A recurrent neural network (RNN) is used in Feedforward control to control accuracy, reduce the training time, and online model updating



	
With RNN compensation, the maximum displacement error of the piezoelectric actuator is reduced to 0.465 µm at the operating frequency of 10 Hz.








	L. Cheng
	2023
	[231]
	Feedback

Sliding Mode
	Piezo

Stack
	Strain Gauge Sensor
	
	
A finite-time sliding-mode controller (SMC) is proposed in combination with the disturbance observer (DOB) and a radial basis function (RBF) neural network (NN) (RBF-NN).



	
RBF-NN replaces the hysteresis model of the dynamic system, and a finite-time adaptive DOB estimates the disturbances of the system



	
With the proposed control method, the AAE of the actuator under sine and triangular trajectories is about 0.0063 µm, 0.0067 µm, 0.0257 µm, 0.0268 µm and 0.0132 µm, 0.0141 µm, 0.0142 µm, 0.0261 µm at 1 Hz, 50 Hz, 100 Hz, and 200 Hz respectively.








	C. Napole
	2023
	[232]
	Feedforward

/Feedback

With Fuzzy Logic
	Piezo

Stack
	Wheatstone Bridge
	
	
Feedback–feedforward algorithms, based on fuzzy logic in combination with neural networks, aimed at reducing the tracking error and improving the actuation signal of piezoelectric actuators



	
The fuzzy schemes displayed an improvement over the PID of around 60% at tracking operations



	
The rot mean square of the fuzzy logic control with neural network is about 0.016 µm to 0.0129 µm which was less than the conventional PID controller with 0.0202 µm.





















	
	
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.











© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).








Check ACS Ref Order





Check Foot Note Order





Check CrossRef













media/file56.jpg
Desired
Dispacement
P

Pleaselectric Actuator

Feedbac pecdtorwara | ¥ L iysteresis Dymamic
Contoller Conealer Model Model )
! iplcement
0

eedback signal





media/file8.jpg
Electr. Piezo N!g_c_hi i I






media/file52.png
\ 4

\ 4

Piezo Actuator

P(s)

Controller
K(s)

(a)

"-Xa

A 4





media/file48.jpg
Desired x Actual

Displacement Displacement
xal) P Piezoelectric Actuator X(t)
—_— —
Controller Gr 1/Ge
Gy > Gen=1 Sensor
- e/ )
s/(st+1) Xais
I (1/Grmy=1






media/file27.png
Hysteresis Models for Piezoelectric Actuators l

x

Physics Based
Hysteresis Models

\
—

Duhem Backlash-Like Bouc-Wen Preisach Kranose’sKii- Prandtl-Ishlinskii Jiles-Atherton Domain Maxwell
Model Model Model Model Pokrovskii Model Model Model Wall Model Model






media/file43.png
Desired :
Displacement :

xa(®) /7 O\

PID Controller

Proportional
> Kp(e)
Integral

A\

A

\ 4

Ki(Je)

Derivate

Ka(

y

Piezoelectric
Actuator

Actual

Displacement

Xa(t)

I Sensor

l
|

!





media/file18.png
Amplifier

R1
Actuator |L__ é
Cp | :.
______ -
Sensing _ |
R: Capacitor= T
Cs
=L

(a)

Piezo —I— -'---qf.';'

K

-
..

*
-
-
**
-





media/file21.jpg





media/file12.jpg
Vin

Resistor

Inserted
Capacitor C

:I Piezo Actuator
(Capacitance Cp)

T






media/file14.jpg
Voltage Amplifier

{>_ I

[] PiezoActuator
Vs

Sensing Resistor
R,






media/file35.png
1(w1,K1)

Maxwell Slip F
Element1 O\ \\V\\'—>

Fz2(w2,kz2)

Maxwell Slip
Element 2 — N

Fn(Wn,Ku)

Maxwell Slip : 4'
Elementn - VVV VYV






media/file20.jpg
Piezo Actuator C,

]

(a)

VOut





media/file53.png
Desired m — Actual
Displacement Displacement
Xd(t) Xa(t

U =|| K(s) l' L. i

(b)





media/file5.png
" Electrode Layer 1 Piezo Layer  Substrate' Insulation

Piezo Unimorph Actuator Piezo Bimorph Actuator

~ Piezo Unimorph Cantilever Type Actuator : Piezo Bimorph Cantilever Type Actuator

_Piezo Tube Actuator ; :Multi-Layer Actuator ;






media/file19.png
Sensing ‘

Capacitor

Cs l

|

Piezo A

c_tI_tor
TQI.C

2L

(b)





media/file45.png
PID Controller

: Proportional
Desired : > Kole) Actual
Displacement Integral : Displacement
xa() /o O\ Piezoelectric Xa(t)
N= | | Ki(Je) Actuator
1 Derivate
: d
: > Kd(d—f
Sensor






media/file54.jpg
oim

~i-






nav.xhtml


  technologies-11-00155


  
    		
      technologies-11-00155
    


  




  





media/file11.png
Control of Piezoelectric Actuator

=>  Charge Based Control

!

[ Capacitor Based ]

Sensing

— Voltage Based Control

Y

\ 4

Feedback
Control






media/file41.png
Desired
Displacement
Xa(t)

+

—0—

A

Feedback
Controller

Piezoelectric Actuator

Hysteresis

Model

Dynamic
Model

Feedback Signal

Actual
Displacement
Xa(t)





media/file37.png
Ki K> Ka
§ Ko X(9
AN —~ - ——
/| _ B v(t)
/ | | |

I I |

) 9 C1 Cz Cs -

Elastic Deflection Creep Model





media/file46.jpg
Desired
Displacement

Actual
Displacement
VO [ piezoetectric et}
‘Actuator






media/file10.jpg
Control o iezoelctrie Actuator

Charge Based Control.

__ k=
Sensing.

Voltage Based Control  ————

Feedback
Control





media/file40.jpg
Desired
Displacement
)

Piezoelectric Actuator

Feedbadk Hysteresis Dynamic
Controller Model Model “ctual
Displacement
()

Feedback Signal





media/file16.jpg
Amplifier

Sensing
Capacitor
Cs

-

Rz

(a)





media/file3.png
Organization of the Review

| Section 2: Overview of the Piezoelectric Actuator |

!

| Section 3: Modelling and Control Approach |

l l

Section 4: Driving Piezoelectric Actuators | | Section 8: Control Approaches
Section 5: Charge-Based Section 6: Voltage-Based 8.1 Feedforward 8.2 Feedback Control 8.3 Feedforward-
Control of Piezoelectric Control of Piezoelectric Section 7: Creep Control + Classical PID Feedback Control
Actuators Actuators Modelling + Controller
¢ CapacitorInsertion | +  Fractional Order
¢ Time Controlled Current Fuzzy PID
Amplification 6.1. Hysteresis Modelling Controller
+  Capacitorbased sensing of Piezoelectric Actuator s Disturbance
¢+ Charge Control with ¢ Jiles-Atherton Observerbased PID
Inverting Configuration Hysteresis Model and Controller
+  Digital Charge Control Domain Wall Hysteresis +  Heo Controller
Model +  Sliding Mode
+  Duhem model Control

+  Bouc-WenModel

+  Backlash Type Model

+  Preisach Model

¢ Prandtl-Ishlinskii (PI)
Model

Section 9: Concluding Remarks and Future Prospects






media/file55.png
+
4

1+71s

- | @

e ——
R

T

| -
L

D Y,






media/file25.png
Desired
Charge

Integrator

1 4 Voltage

Amplifier

_|_Vo(t)ls(t)
Piezo

ADC






media/file17.jpg
ensing
Capacitor,

Que






media/file26.jpg





media/file51.jpg
Desired H Actual
Displacement H isplacement
Xa(t) 5 X(t)

(b)





media/file57.png
Desired
Displacement
Xa(t)

+

—0O—

A

Feedback
Controller

Piezoelectric Actuator

.| Feedforward

Controller

Hysteresis
Model

»

Dynamic
Model

Actual
Displacement
Xa(t)

Feedback Signal





media/file34.jpg
Maxwell Slip
Element 1

Maxwell Sip
Element2

Maxwell Sip
Elementn

Fa(wake)

R






media/file13.png
Resistor

AVAVAY

Inserted
Capacitor C

Plezo Actuator
[Capa(:ltance Cp)






media/file31.png
w(t)

b%

>

b

(a)

/

e
R

(b)

v(Y)





media/file39.png
Piezoelectric Actuator

Desired
Displacement
X4(t)

v

Feedforward
Controller

Hysteresis
Model

A 4

Dynamic Model

Actual
Displacement
Xa(t)





media/file9.png





media/file42.jpg
Desired
Displacement
Xa(t)

PID Controller

Proportional

> Ky(e)

Integral

v

> Ki(fe)

Piezoelectric
Actuator

Actual
Displacement
Xa(t)

Derivate

> Ki(%)

Sensor






media/file22.png
Piezo Actuator Cp

VOut

(a)





media/file23.png
R,
A VAVAY e
Piezo Actuator

— . —

VOut
——=
(b)
Rz
— AN\ —

Piezo Actuator

! | iﬁl—

VOut





media/file50.jpg
Piezo Actuator

P(s)

Controller
u K(s) Xa

(@





media/file36.jpg
Ki K K

X
Ko
7 g
—
) [ o,

Elastic Deflection Cre