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Abstract: This article addresses the problem of automating a multi-arm pick-and-place robotic system.
The objective is to optimize the execution time of a task simultaneously performed by multiple
robots, sharing the same workspace, and determining the order of operations to be performed. Due
to its ability to address decision-making problems of all kinds, the system is modeled under the
mathematical framework of the Markov Decision Process (MDP). In this particular work, the model is
adjusted to a deterministic, single-agent, and fully observable system, which allows for its comparison
with other resolution methods such as graph search algorithms and Planning Domain Definition
Language (PDDL). The proposed approach provides three advantages: it plans the trajectory to
perform the task in minimum time; it considers how to avoid collisions between robots; and it
automatically generates the robot code for any robot manufacturer and any initial objects’ positions
in the workspace. The result meets the objectives and is a fast and robust system that can be safely
employed in a production line.

Keywords: pick-and-place operations; robotic sequence order optimization; dual-arm collision
avoidance; Markov Decision Process; PDDL in robotic manipulation

1. Introduction

Production lines increasingly require short and customized manufacturing batches
tailored to customer demand, which affects the configuration of the factories and their level
of automation [1]. Factory systems must become more flexible and adaptable [2,3]. On
the other hand, robots are transitioning from being rigid, pre-programmed, and almost
“blind” to being collaborative, easy to reprogram and equipped with a large number of
sensors. Consequently, this new generation of robots is increasingly being used in assembly,
disassembly, or packaging lines of small factories or reduced batches. By operating in a
shared workspace with human operators, production systems can further increase efficiency
and minimize the workspace area. However, this creates a problem in terms of collision
control. Figure 1 shows a group of robots sharing the same workspace and performing a
common pick-and-place task. In this case, the group of robots needs to place pieces of the
same color in their corresponding trays without colliding with each other and completing
the task as efficiently as possible.

Typically, robot trajectories are programmed to ensure there is no collision between the
robot and a static environment. Since robots are often used for repetitive tasks, it is sufficient
to plan collision-free trajectories only once. If certain parts of the production process are
modified, it becomes necessary to re-plan collision-free trajectories and reprogram all
manipulators. In cases where the environment is unpredictable, such as when multiple
robots are present, operators modify the workspace, or there are changes in the production
process conditions (e.g., the repositioning of production elements), modular approaches are
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required where each robot can react to changes in real time. The ability to optimally adapt
to flexible manufacturing needs, would be an advantage in new production processes.
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desired location. This type of task involves more than just trajectory planning; it requires 

high-level task planning, which becomes even more complex when a task must be com-
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Figure 1. Pick-and-place scenario with four collaborative ABB IRB 14,050 robots.

Object manipulation involves not only performing tasks while avoiding collisions
between robots and the environment but also doing so in the shortest possible time. Figure 2
depicts a representation of a production process where a series of pick-and-place operations
need to be performed in a non-predefined order. This means that a certain number of
pieces (e.g., kitting operation [4]) must be manipulated in any order, while considering the
establishment of a pick-and-place operation sequence that minimizes the operation time.
In this sense, a set of robotic arms, as shown in Figure 2a, or a dual-arm robot and a human
operator, as shown in Figure 2b, could be considered. This last case is particularly relevant
because the system needs to be adapted to the “disappearance” of pieces grabbed by the
operator, which entails an instantaneous change from one state to another, requiring the
recalculation of the optimal solution.
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collaborative robot and a human operator sharing the workspace.

A particular case, as shown in Figure 3, is when a specific robot (e.g., left robot) requires
the collaboration of another (e.g., right robot) to reach a piece and place it in the desired
location. This type of task involves more than just trajectory planning; it requires high-level
task planning, which becomes even more complex when a task must be completed in the
shortest possible time.

This research introduces a new approach for effectively and efficiently solving pick-
and-place tasks by using machine learning algorithms and smart architectural design. It
becomes more significant in collaborative scenarios with multiple pieces and multiple
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robots sharing a common workspace. It plays an automation role, eliminating the require-
ment for a human to manually create the trajectories for the robots, and placing emphasis on
task time minimization. This study shows this approach applied to a scenario comprising
multiple pieces, ranging from 2 to 10, and a pair of robots, specifically a collaborative robot
with two arms.
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This article is organized as follows. Section 2 provides a brief analysis of the current
state-of-the-art in pick-and-place algorithms. Section 3 describes the proposed approach,
formulated as a discretization of the robot’s workspace. The actions that the robot can
perform to solve the problem and collision avoidance system are presented. Section 4
focuses on solving the problem, addressed as a Markov Decision Process (MDP) and as
a planning problem using Planning Domain Definition Language (PDDL). The study’s
results are presented in Section 5, where, in addition to demonstrating the algorithm’s
performance, the results obtained in a visual environment are shown. Simulations provide
an intuitive evaluation of the outcome. Finally, Section 6 presents the conclusions and
proposes future work in this field.

2. Related Work

In recent years, there has been an increasing emphasis on developing algorithms to
optimize the pick-and-place task, with a particular focus on minimizing operation time.
This challenge has been addressed in different applications, such as shoe production [5],
PCB assembly [6], and the pick-and-place of individual nanowires in Scanning Electron
Microscopy (SEM) [7]. Previous research has addressed different subproblems related to
pick-and-place optimization, including placement sequencing and feeder allocation [8],
among others. Minimizing operation time has been extensively explored in the field
using metaheuristic algorithms. Given the complexities associated with these problems,
heuristic and metaheuristic algorithms are widely employed to solve them. Examples of
such algorithms include Particle Swarm Optimization (PSO) [9], the Genetic Algorithm
(GA) [10], and Ant Colony Optimization (ACO) [11]. These methods employ stochastic
search techniques that emulate biological or natural evolution and natural selection. One
advantage of these methods is that they often provide solutions that are close to optimal in
most cases [12].

Several studies have employed mathematical algorithms in industrial pick-and-place
processes. In [13], an ACO algorithm was proposed, which outperformed the Exhaustive
Enumeration Method (EEM), although the study did not specifically address multi-objective
pick-and-place processes. GA and ACO algorithms presented better solutions in terms
of execution time in pick-and-place problem-solving for PCB assembly, compared to PSO
and SFLA algorithms due to their optimized structures [8]. The Hybrid Iterated Local
Search (IHLS) algorithm combines local search and integer programming to drastically
reduce computing time for large-scale processes compared to other heuristics. In [12], a
novel metaheuristic algorithm called Best Uniformity Algorithm (BUA) was developed.
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It generates random solutions within a search space to find the optimal pick-and-place
sequence. The BUA algorithm achieved remarkable results in less time when compared
to the GA algorithm, although for smaller problem sizes. Its implementation focused
on a sequential pick-and-place process involving a single head moving one object at a
time. A similar approach was presented in [5], where a Decision Tree Algorithm optimized
the pick-and-place sequence using a two-armed robot to place shoe components into a
mold. The Decision Tree Algorithm was employed to recognize patterns and calculate the
best real-time optimized sequence. The results indicated that implementing the algorithm
improves performance compared to random planning.

While [14] shares a similar objective, it diverges in terms of approach. This work
focuses on collision-free path planning using priority arbitration based on the distance to
the goal. However, unlike the referenced work, it does not incorporate prior planning of
the operation order to minimize the task execution time. This aspect has been successfully
addressed in the algorithm proposed in this article.

3. Approach to This Research
3.1. Materials

The setup used in this research comprises multiple pieces, ranging from 2 to 10, and
it is operated by one of the most widespread collaborative bimanual robots, the ABB
YuMi IRB 14000. The YuMi robot is designed for small-piece manipulation tasks and can
cooperate with humans in the same environment without the need for a protection cell, as
shown in Figure 2b. It is a redundant robot, featuring 7 degrees of freedom (DOF) per arm
and it is equipped with a gripper, used to manipulate the pieces.

The overall goal of the task is to carry a certain number of pieces to their designated
location. Specifically, for that study, the destination of the pieces has been predetermined
and the source location is provided in real time when the task is about to start. That
information might be provided by a device such as the Intel D415 Stereo Depth Camera,
but for this study that is emulated by arbitrarily generating those positions on each run.
All the experiments in this study have been done using RobotStudio®.

3.2. Design of the System Architecture

The task under study requires considering several factors: which piece to assign to
each robot, what order should the pieces be taken in, how to avoid collision between
robots, which trajectory should follow a robot, and, in the end, how to minimize the overall
task time. This study approaches this project from the perspective of a decision-making
problem and the purpose is to devise a solution that can be implemented in real-world
processes in the industry. When adopting a decision-making approach, it is essential to
define the set of actions that can be taken within the system and understand the concept of
the current state of the system. YuMi is a high-precision bi-manual robot featuring 14-DOF.
A strategy based on direct control of the arm’s joint configuration would be impractical
from the perspective of a solution designed for real-world processes, due to the explosion
on the combinatory. An over-discretized, low-resolution joints scenario would lack enough
precision to undertake the task and would still be impractical; a hypothetical scenario
with low 10 degrees resolution, would lead to an average joint bin size of 20 values and a
combinatory exceeding a quadrillion combinations.

The approach presented in this study is based on the Cartesian coordinates of the
robot. The robots’ workspace, defined by their area of influence, has been discretized as
a 3D constellation of points, henceforth grid, used as waypoints to guide the trajectory
of the robots. The resolution of this grid is configurable, although, for this work, a grid
of ten columns, five rows, and three heights has been defined, resulting in a total of one
hundred and fifty possible waypoints, each separated by 100 mm. Following the strategy
of Cartesian coordinates and based on the real-world applicability requirement, the pro-
posed architecture consists of a dual-layer structure. At a high level, the decision-making
controller manages all the high-level concepts previously mentioned, such as trajectory
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generation, pieces assignment, etc. At a low level, the manufacturer’s software and hard-
ware layers are responsible for the robots’ transitions, ensuring precision and robustness.
This layering division enables the solution to be scaled to other robot models. Another
key aspect of the design concerns the robot’s movements. The robot is allowed to move
towards any of its neighboring waypoints in the 3D grid. This decision facilitates the robot
arms’ synchronization and reduces the complexity of the problem. This synchronization
happens at each time-step, where all robots point to their next waypoint target. Regarding
the complexity, the number of waypoints to choose from is reduced to 27, which includes
the option of staying at the current location if that is the best option. This is a significant
improvement over the possibility of moving to any of the 150-grid waypoints. Based on
that, robot trajectories have been represented as an ordered set of waypoints in the grid. At
a low level, the manufacturer layer will execute a continuous and smooth trajectory guided
by these waypoints (see Figure 4 for more information).
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This architecture models the system as a set of robots and pieces, all defined as 3D
points within the workspace. This, by itself, is not enough to account for some factors, such
as the fact that robot bodies are not single points in the workspace, causing the problem
of collisions, robots have a limited area of influence, gripper grasp operation details, and
robot joints have angular range limitations, causing discontinuities in the movement if a
joint limit is violated. To address these gaps, some additional design measures have been
adopted. A prior analysis was carried out to collect information about the area of influence
of each robot within the grid, the potential collision between robots for all grid location
combinations, and the preferred robot joint configuration (see Section 3.3.5) for each arm
and every grid location. All this information is stored in a database that the controller
has access to. So, in essence, this architecture represents the robots as 3D points in the
workspace, but accounting for their body presence and range of actuation by means of the
database information. The last key factor of the design is the strategy followed to execute
any robot trajectory. This architecture is, by nature, Cartesian-coordinates-based (transition
from point A to point B), dealing with gripper 3D locations, but the actions taken by the
controller are joint-based (transition from joint configuration Q1 to joint configuration Q2).
The purpose is to gain direct control over the robots’ joint configuration, instead of leaving
that decision to the robot criteria (there are multiple valid joint configurations that satisfy the
criteria for being in point B). This helps to ensure a natural posture avoiding discontinuities
or undesired movements during transitions between neighboring waypoints.

3.3. Design of the System Model

The system’s model represents the real-world problem by ignoring the irrelevant de-
tails and only keeping the essential ones for the solution. Based on the system’s architecture,
which has established the fundamentals of how the system works, it is essential to keep
track of the location of robots, the assignment and status of the pieces, and the source and
destination location of the pieces. Other relevant inputs, such as collision information or
robot location viability, are derived from the fundamental features or internal variables that
determine the system model. Specifically, this information is stored in a database that the
model has access to.
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3.3.1. State-Space

The state of the model is the representation of the current situation. For this study, it
has been designed to be fully observable, therefore it captures all the relevant information
that the controller needs in order to make a decision, as shown next:

state = f
(
robotPosi, robotStatusi, piecesStatusj, initPiecesPosj, endPiecesPosj

)
robotPosi= 3D location o f the roboti gripper, ∀i = 0 . . . N
robotStatusi = Indication of the piece, if any, carried out by the roboti, ∀i = 0 . . . N
piecesStatusj = Indication whether the piecej has been processed, ∀j = 0 . . . K
initPiecesPosj = Source 3Dlocationofthepiecej, ∀j = 0 . . . K
endPiecesPosj= Target 3Dlocationofthepiecej, ∀j = 0 . . . K

N = Number of robots
K = Number of pieces

Similarly, it has been designed to be discrete and single agent. The state is defined
at the system level, not at the individual robot level, and captures, at the same time, the
information of all the elements in the system. Following the defined dual-layer system
architecture, the model sits on the high-level layer, where the robots transition from the
current waypoint to the next one. Even though the final solution achieves smooth and
continuous movements, thanks to the dual-layer design, the model is made up of a set of
discrete variables.

The state-space is a concept that captures all the feasible configurations of the system.
In this case, the state-space is finite, since all internal model variables are discrete, and its
size evolves according to the equation shown in Equation (1).

Num states = (G + K·P)N ·(K + 1)N ·NK (1)

where G is the 3D grid size, K is the number of pieces, N is the number of robots, and P is
the number of steps for pick or drop.

For this work, the number of robots is 2, the number of pieces ranges from 2 to 10,
and the grid size is 150 (10 × 5 × 3). The K·P term comes as a result of applying a special
treatment technique for the pick-and-place operations. The technique decouples the area of
movement of the robots, used to reach and transport the pieces, from the pick-and-place
operations themselves. The source and destination locations of the pieces are on an inferior
plane of the volume filled by the grid. This technique prevents the need to enlarge the
grid to accommodate the pieces on it. P refers to the number of time-steps required for the
vertical moves during pick and place operations.

3.3.2. Action-Space

The system architecture defines the robot navigation as a sequence of transitions
between neighboring waypoints in the grid. The number of neighboring waypoints is
always 26 in a 3D grid, except for the boundary, as shown in Figure 5. Additionally, in a
multi-robot setup, there is the option to stay in the same position. This might be the most
effective way to evade a collision, or only because there is nothing else to process for that
robot. Pick-up and drop-down operations are handled in different ways. Since the source
and destination location of the pieces sit on a working table, on an inferior plane to the grid,
this action cannot be executed by the regular intra-grid navigation moves. By design, those
operations must be carried out by the robot in the lower plane of the grid and in the same
XY coordinates as the source or destination location of the piece. These operations involve
pure vertical moves and gripper open or close actions. In order to ensure a successful
operation, the configuration of the robot places the gripper pointing towards the piece and
the pieces have been defined as cubic blocks, just as it was done in [15].

The total number of available actions per robot is:

Num robot actions =
(

Nnavigate + Nstay + Npick + Ndrop

)
= 26 + 1 + 1 + 1 = 29
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At a system level, an action is defined as the aggregate of all actions performed by the
robots. Since the action taken by a robot is independent from the action taken by the others,
the total number of available system actions exponentially increases with the number of
robots. In this case, for two robots it is:

Num system actions = Num robot actionsN = 292 = 841
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Navigation Nodes:
The computational complexity of the problem is related to the size of both state and action

spaces. For the state-space, experiments with a different number of pieces were conducted.
For the action-space, experiments with different sets of supported system actions have been
conducted as well. To capture this idea, three additional incremental action modes have been
specified, each containing a subset of the possible navigation actions:
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1. Mode 1: Only orthogonal actions are allowed (North, South, East, West), as shown in
Figure 5a, on the inferior plane of the grid.

2. Mode 2: This Mode adds diagonal actions (e.g., SouthWest, NorthEast, etc.), as
depicted in Figure 5b, on the inferior plane of the grid.

3. Mode 3: This Mode adds Up and Down actions, as shown in Figure 5c. They enable
robots to navigate the whole 3D grid.

4. Mode 4: This Mode considers all neighboring waypoint directions. It is the most
flexible one, considering combinations of three orthogonal movements, as shown in
Figure 5d (e.g., SouthWestUp, NorthEastDown, etc.).

As the robot increases its mobility with more degrees of freedom, combining move-
ments along different axes, the number of time-steps required to complete the task might
be reduced, at the expense of an increase in computation. That trade-off is evaluated in
performed tests.

3.3.3. Reward-Space

The cost is a feedback indication, received by the controller when executing an action,
and it is exclusively dependent on the current state of the system and the action taken on it.
The controller makes use of it to plan a solution in the long term. This term is also known
as reward in the Reinforcement Learning domain. By design, there are only two kinds of
feedback, a general one to penalize any action and another one to indicate the success of
the task. Specific values depend on the type of algorithm applied to solve the problem.

3.3.4. Integration with the Controller

Conceptually, the task involves multiple robots collaborating to transport a certain
number of pieces in the least amount of time. For each piece, a robot must navigate to
its location, pick it up, transport it to the designated location and drop it down. Robot
navigation or piece transportation entails the gripper following a trajectory from point A
to point B, which, according to defined system architecture, is formulated as a sequence
of transitions between neighboring waypoints. The proposed system model operates at
this abstraction level and takes advantage of robot capabilities to execute these transitions
(from point A to point B).

The task starts at t0 with the system model at state st0. The source and destination
location of the pieces is not shown in the state representation because their values stay
invariant during the whole task:

st0 = ( robotPos0 . . . robotPosN−1, robotStatus0 . . . robotStatusN−1, pieceStatus0 . . . pieceStatusN−1)
robotPosi = arbitraryposition, ∀i = 0 . . . N

robotStatusi = CARRYING NO PIECE, ∀i = 0 . . . N
piecesStatusj = PIECE NOT PROCESSED, ∀j = 0 . . . K

An action at0 is taken and the system state evolves to st1 according to the system model
behaviour. The pseudo-code simulating model behavior is shown in Algorithm 1. That
process is repeated until the state stM becomes a goal state. There might be multiple goal
states in the state-space. In this case, a goal state is defined by:

pieceStatusi = PIECE PROCESSED, ∀i = 0 . . . K

Regarding the collision check on the pseudo-code, it is worth noting that it is carried
out both before and after taking the action. Since the grid is small enough, it is assumed
there is no collision during this transition if there is not either before or after, except for the
case when robots exchange location. That assumption was tested in RobotStudio® as well.
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Algorithm 1: Pseudo-code to emulate system model behavior.

1: // State is a tuple containing all internal Model variables
2: // Action is a tuple containing the actions taken by each robot
3: ModelBehaviour(state, action)
4: Check valid action in this state
5: if action is not valid then
6: return state, HIGH_PENALTY
7: end if
8: Compute expected next_state based on current state and action
9: Check grid boundaries for each robot
10: Check collision between robots
11: for I from 1 to N do
12: Check accessibility of robot i to its new location
13: if any check fails then
14: # state is unchanged
15: reward = HIGH_PENALTY
16: else
17: state = next_state
18: reward = SMALL_PENALTY
19: end if
20: end for
21: return state, reward

3.3.5. Database

The database contains key information used to obtain the robot joint configuration,
detect collision between robots, and locations not reachable by any robot. All this
information is not encoded in the state-space because it is dependent on other internal
variables of the state-space, specifically the robot location. The collision detection and
accessibility of the robots to a specific location are critical inputs for the controller in
order to make a good decision.

A preliminary study of collisions and accessibility was performed using RobotStudio®.
Collision validation is based on the combination of all robots’ locations in the grid. Its size
exponentially grows with the number of robots, (X·Y·Z)N, where X, Y, Z corresponds to the size
of all three axes of the grid, and N to the number of robots. The output is a Boolean indication
of collision for each test. For this study, (X·Y·Z)N = (10·5·3)2 = 22,500 tests. Accessibility
validation is individually carried out per robot, and it is based on the robot location and its
area of influence. Its size is equal to the size of the grid, so (X·Y·Z) = 150 tests. The output is a
Boolean indication of a feasible location. All this information is stored in a database (DB) that
the controller has access to.

Figure 6 graphically depicts some examples of collision indication for some arbitrary
configurations stored in the DB.
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The pseudo-code shown in Algorithm 2 has been used to collect the DB information,
including the collision indication minimum distance between robots, and the accessibility
and joint configuration (

⇀
q ) per robot. This distance can be optionally used as a safety

measure, forcing collision indication when it is lower than an established threshold. Its
calculation involves obtaining the minimum distance between all links of one arm (α) and
all links of the other arm (β), and keeping within the minimum among them, as indicated
in Equations (2) and (3).

δij =
∥∥λiα − λjβ

∥∥ (2)

δmin =
(
δij
)

(3)

where δij is the distance between links i and j, iα is the i link of the α arm, iβ is the i link of
the β arm, and δmin is the minimum value of all δij calculated for a specific configuration.

Another key piece of information stored in the database is the joint configuration to be
used by any robot based on the grid location. This association between grid location and joint
configuration is unique. The selection of appropriate joint configurations is based on certain
criteria. All the configurations meeting these criteria are called feasible configurations and all
are equally eligible. Finally, one configuration among all feasible ones is stored in the database.
The criteria used in this study consider the following factors: the robot gripper is always
pointing towards the worktable, the arm’s elbow is correctly positioned to avoid collisions
with the objects in the working area, singularities (reaching an angular limit) during operation
must not occur, ensuring a smooth transition between adjacent cells, and in turn, through the
whole trajectory. At a high level, the database solves the kinematics of the robots.

The database is accessed as a LookUp Table (LUT). The LUT is indexed by the robot’s
location to obtain either the robot accessibility information or the associated joint configu-
ration, and it is also indexed by the location of all the robots to obtain collision information.

Algorithm 2: Pseudo-code for data base generation (including collision detection, reachability,
and joint configuration).

1: // For each arm of the robot get robot configuration
2: Move robot to initial position
3: for i from 1 to (X × Y × Z) do
4: Read coordinates from file and RobTarget calculation
5: if RobTarget = reachable then
6: JointTarget calculation from RobTarget
7: if JointPosError = not reachable or OutReach then
8: Pos not reachable and RobTarget values set to 0
9: end if
10: Write Coordinates, Reachability and JointTarget data in file
11: end if
12: end for
13: // For each height of the grid get collision data
14: Move α & β to initial position
15: for i from 1 to (X × Y × Z) do
16: for j from 1 to (X × Y × Z) do
17: Read α and β joints values from file
18: Move α and β

19: Check positions reachability
20: if α & β = reachable then
21: Measure distances between links
22: Distance comparison and get δmin
23: Write Coordinates & δmin info in file
24: else
25: Write Coordinates & δmin = 0 info in file
26: end if
27: end for
28: end for
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4. Solution of the Problem

The problem has been addressed as a decision-making challenge. Reinforcement
Learning (RL), a growing field in Artificial Intelligence, is dedicated to this domain, en-
compassing a wide range of situations, including uncertainty, vast or continuous state and
action spaces, the absence of a model, multi-agent environments, and so on. RL necessitates
the representation of the model as a Markov Decision Process (MDP).

In this study, the architecture of the system and the model has been defined by
design, hence the model is perfectly known, the state and action spaces are discrete, finite,
deterministic, and relatively huge, but do not exceed the limits, requiring some kind of
function approximator. The architecture is designed such that the controller acts as a single
brain for all robots, making it a single agent. Given these properties, methods from other
areas, such as graph search or planning languages, may be applied as well.

Figure 7 represents the whole experiment process for all three approaches (MDP,
Graph search, and PPDL). The diagram illustrates a sequence of tasks that each approach
needs to complete in a specific order. The flow is divided into three stages: Project Level,
Task Level, and Execution Level.

The Project Level stage is common for all approaches and involves any task depending
on predefined and invariable design decisions for the project, such as the robot selection
(YuMi) or the grid resolution (10 × 5 × 3). This stage needs to be performed only once,
unless any of those design decisions change, such as using a new robot. This stage is
responsible for generating the system database (described in Section 3.3.5), which in turn,
is an input for the Task Level stage. The database includes information related to robot
location feasibility, the robots’ collision, and the robots’ joint configuration.
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The Task Level stage is related to any task that involves parameter changes in succes-
sive experiments. This stage only needs to be re-executed if any of those parameters change.
These parameters are the number of available actions, the grid size, and the number of
pieces. The number of available actions and the grid size depend on the mode of action
(described in Section 3.3.2) selected for the experiment. While still keeping the same grid
resolution (100 mm between cells), some experiments restrict the robot movement to a
plane (reducing the grid to 10 × 5 × 1). The number of pieces ranges from 2 to 10. This
stage only applies to approaches based on the MDP (MDP and Graph search) and it is
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responsible for building the MDP model and saving it to disk. This stage is performed
offline, and the resulting MDP model is valid for any parameter changes in the next stage.

The Execution Level is also known as the online stage. At this stage, the process
receives information about the location of the pieces and robots. The entity providing
the location of the pieces is out of the scope of this study. At this stage, the flow for each
approach diverges.

The first step in the MDP approach is to update the MDP model. Even though the
MDP model is built in the previous stage, the location of the pieces is unknown at that
point, hence the state-action pairs related to pick or drop operations need to be updated in
this stage once this information is available. MDP generation is split to reduce the online
execution time, as most of the computation is performed offline. Once the MDP is built, an
MDP solver can be applied to generate a solution. Value Iteration was selected (described
in Section 4.1) for this study.

The first step in the Graph search flow is common with the MDP flow, the MDP model
update. Once the MDP is fully defined, there is a conversion task devoted to transforming
the MDP model into a graph (described in Section 4.2). This graph could be solved by any
search algorithm. BFS was selected for this study (described in Section 4.2).

The last flow, PDDL, involves two tasks, the generation of the PDDL source code
and generating a solution for the PDDL description. The first task is automated. This
automation takes some inputs: the number of pieces, their locations, the robot locations,
and the target, and generates the PDDL description for this particular problem. The
solution generation is carried out by a PDDL planner solver. FastDownward was
selected for this study.

All three approaches converge again in the Task Plan, where a common file format
solution is generated. Specifically, for this study, this file contains the sequence of joint
configurations and gripper actions required for each robot to complete the overall task.

The final step of the process involves implementing the solution to either a real
or simulated problem. In this study, RobotStudio® was used to simulate the process.
RobotStudio® requires the solution file, the process project (including the robot, the pieces,
and the worktable), and the robot source code as inputs. The robot source code is written
in RAPID, which is a programming language used for ABB robots. The robot program was
used in all experiments to parse the solution file and execute the actions on the robots (see
simulation video links in Section 5.2).

4.1. MDP Model

A Markov Decision Process is a mathematical framework for modeling decision-
making problems under uncertainty. The four core components of an MDP model are: a
set of states S, a set of actions A, the state transition function P(s′|s, a), and the reward
function R(s, a, s′). The transition function indicates the probability of reaching a state s′ if
an action a is taken in state s. The reward function indicates the reward obtained for that
same transition. The key property of an MDP is the Markov property, which states that the
effects of an action taken in a state only depend on that state and not on the prior history.
Figure 8 represents this concept, where the next state st+1 and reward rt+1 only depend on
the current state st and the action taken in it.

In the context of this study, the agent is the brain making decisions, and the envi-
ronment is the system under control, including the pieces and robots. Depending on the
nature of the problem, the MDP may be fully known, partially known (i.e., the reward
function is unknown), or totally unknown. In this work, the MDP is totally known (all four
core components are defined by design). The state-space and action-space are described in
detail in Sections 3.3.2 and 3.3.3, respectively.

The system is deterministic, so the state transition function in this study is not ex-
pressed in terms of probabilities P(s, a, s′), but as a function T(s, a), which specifies the
next state of the system given its current state and the action taken. This component has
been modelled in the software implementation as a LookUp Table (LUT), which is indexed



Technologies 2024, 12, 12 13 of 26

by the current state and action and returns the next state. The logic used to populate the
table has been implemented in Python and takes all the information into consideration (i.e.,
the grid boundary exceeded by a robot, collision between robots, location not reachable,
invalid action on the current state, etc.).
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For the same reason (deterministic system), the reward function is expressed in this
study as R(s, a) instead of R(s, a, s′). This component is also modelled as a LUT, and is
indexed the same way as the transition function, but it returns the reward value. The logic
to populate this LUT is implemented in Python as well. By design, there are three kinds of
defined rewards:

R(s, a) =


100
−1
−20

i f s′ = sgoal
else i f (s, a) is valid

else
(4)

A big reward (+100) indicates that the goal is met (all pieces have been transported).
A big penalty (−20) indicates that the action taken on the state s is not valid (i.e., exceeding
grid boundaries, collision between robots, etc.). Finally, a small penalty is applied in all
other cases as a strategy for RL algorithms to find the optimal solution (smallest number of
steps), since their purpose is to maximize the long-term reward.

The core idea behind this framework is simple. At any point in time, the agent takes
an action based on the current system state. As a result, the system state changes, according
to the Transition function, and the agent receives a feedback or reward, according to the
Reward function.

The purpose of any RL algorithm over an MDP model is to find the optimal action
to take on any state. This concept is called Policy, π(s, a), and based on that policy the
agent can make a sequence of optimal decisions from the initial state up to the goal state.
Typically, RL algorithms are classified into two groups, model-based and model-free. Unlike
model-free algorithms, model-based ones explicitly learn the model (reward and transition
functions) of the system, and then apply planning over it. In this work, the model is known,
and consequently, only the planning stage is required.

MDP Solver

There are many reinforcement learning algorithms that aim to learn the MDP model
either implicitly or explicitly with the goal of finding a good policy [16]. In this study, the
MDP is defined by design, hence there is no need to learn it. In this scenario, finding a
good policy is a matter of planning. There are several dynamic programming algorithms
that are well suited to this task, such as Value Iteration and Policy Iteration. Value Iteration
(VI) was selected for this study.

The Value Iteration core component is called the Value function (V) and represents,
for any given state s, the expected cumulative reward from that state s to the goal state,
following a certain policy π. Initially, the policy π(s) is usually arbitrary, so the Value
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function Vπ(s) presented in Equation (5) is not a good estimation of the cumulative reward.
The aim of Value Iteration is to find a policy that maximizes V, which is known as V∗

presented in Equation (6).

Vπ(s) = Eπ

[
∑H

k=0 γkRk+1

∣∣∣st=s

]
(5)

V*(s) = max
π

[
∑H

k=0 γkRk+1

∣∣∣π, st=s

]
(6)

Indeed, it is an iterative algorithm, where Vπ(s) is gradually improved on each
iteration by applying the Bellman equation presented as (7).

V(s) = max
a ∑

s′
Pa
(
s′
∣∣s)[R

(
s, a, s′

)
+ γ × V

(
s′
)]

= max
a

[
R(s, a) + V

(
s′
)]

(7)

The General Bellman equation may be simplified for deterministic environments when
using additive discounting (a small negative reward for moving to non-terminal states).
Under this scenario, the multiplicative discount (discount factor) may be set to 1, and the
expression is reduced to its simplest form, as seen in (7).

The algorithm stops when Vπ converges to V∗, since the Value function is not going
to improve anymore, that is, the V matrix will remain the same on additional iterations.
In practice, the algorithm usually stops when the variation in V is less than a certain
predefined threshold. At this point, the optimal policy π∗ can be directly derived from V∗

and it is presented in Equation (8).

π*(s) = argmax
a

[
R(s, a) + γ× ∑

S′
T
(
s, a, s′

)
× V*(s′

)]
= argmax

a

[
R(s, a) + V*(s′

)]
(8)

Applying the same reasoning as in (7), the discount factor is set to 1 in (8). T is used
to model the uncertainty in the environment. The system in this study is deterministic,
hence there is only one state s′ out of the whole state-space with a probability bigger than 0
(actually, probability 1). Under this scenario, this term can be removed, and the expression
is reduced to its simplest form, as seen in (8).

It is worth noting the optimal V∗ is unique, but there might be multiple π∗ leading to
this optimal Value function. This means that different sequences of actions might lead to
the same result. This has a direct impact on this problem, specifically in the situation where
a robot has nothing else to do (i.e., there are two robots and only one piece left).

The implementation of this algorithm was written in Python. The simplified Bellman
Equation (7) was expressed in matrix form, and the matrix computations were performed
using a numerical library called NumPy. Once the Value function has converged, the
optimal policy is obtained using the simplified policy Equation (8).

From the point of view of the algorithm, it is irrelevant if one of the robots is idle or
randomly moving. In practice, it is usually preferred that this robot keeps idle. To tackle
this point, a smart ordering of the system actions was performed (system actions that affect
only one robot’s movement have priority over those in which both robots move), so in case
of multiple actions leading to the same result, the preferred one will be returned by the
argmax operation in Equation (8).

4.2. Graph Model

In this approach, the system model was represented as a graph. Specifically, the
graph was directly derived from the matrix version of the MDP model (transition and
reward functions) described in Section 4.1. A graph basically consists of three types of
elements: nodes, transitions, and costs. There is a direct mapping between MDP states
and graph nodes, and between MDP state transitions and graph node transitions. Graph
costs are derived from the MDP rewards, although the mapping is not direct and specific
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transformations have been performed. The resulting graph is a reduced version of the MDP
model that incorporates the following reward-cost transformations, as shown in Table 1.

Table 1. MDP reward conversion to Graph cost.

MDP Graph Meaning

−20 - Invalid MDP state-action transition
+100 +1 Direct-to-goal transition (very last transition of the path)
−1 +1 Any other transition

All invalid state-action pairs (i.e., an action in a specific state results in exceeding the
grid boundaries) have not been included in the graph. The small penalty (−1) reward in
the MDP is transformed as a small positive reward (+1), since the target of a graph search
algorithm is to minimize the path cost, unlike MDP-based algorithms where their target is
to maximize the long-term reward.

Finally, all direct-to-goal transitions in MDP (transitions from state s to s′ where s′ is
a goal state) have the same reward value (+100). The Graph search algorithm’s target is
to minimize the path cost, and the key point is that every solution (optimal or not) will
include one and only one of those direct-to-goal transitions (the very last transition in the
path). Based on that property, any arbitrary cost value would be valid for those transitions
as long as all of them keep the same value. The cost value chosen for those transitions is +1,
resulting in a graph where all costs are the same value (unweighted graph).

Graph Search

There is a wide range of graph search algorithms. Commonly, they are classified as
informed search algorithms (i.e., Dijkstra [17] or A* [18]) or uninformed search algorithms
(i.e., BFS [19] or DFS [20]). Uninformed search algorithms explore the state space in a blind
manner, while informed search algorithms take advantage of additional information (such
as the transition cost values) to guide and reduce the state-space exploration.

Given the characteristics of the current graph model, where all the costs have the same
value, which is equivalent to say that there is no information at all to guide the search, an
informed search algorithm does not provide any advantage over an uninformed search one.
Moreover, under this specific scenario, an uninformed search implementation is easier and
lighter, resulting in slightly better execution times. The BFS (uninformed search) algorithm
was selected for this approach.

BFS is an algorithm used to explore a graph or a tree-like data structure. BFS guar-
antees to find an optimal solution if the graph is finite and deterministic [21]. The graph
representing the system in this work meets those properties. Additionally, it is an un-
weighted graph, hence the computational cost might be further reduced since the algorithm
can be stopped at the depth level where the first solution is found. Any solution found on
a deeper depth level would imply a path with more actions involved.

It is worth noting that the common mental representation of a graph solution is the
shortest path between two points, seen as a physical distance magnitude. Actually, the path
between two nodes may involve multiple concepts other than physical distance. In this
study, the shortest path between the node representing the initial state of the system and
the node representing the goal state includes all kinds of trajectories carried out by every
robot, the optimal assignment of the pieces, the order in which they are processed, etc.

The main language used for the implementation of this study was Python. Generally,
a Python application is not as efficient as one written in a compiled language, such as C.
On the other hand, Python supports using modules written in other languages, such as
NumPy [22], a very optimized numerical library written in C. The Value Iteration algorithm
described in Section 4.1 was implemented in Matrix form, taking advantage of the NumPy
matrix operations. In order to enable a fair comparison between algorithms, BFS was
implemented in C as well, and imported in Python as a module. Its pseudo-code can be
seen in Algorithm 3.
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Algorithm 3: Pseudo-code to implement Breadth First Search algorithm.

1: BFS (G, s) // Where G is the graph, and s is the source node
2: let Q be the FIFO queue.
3: // Inserting s in queue
4: Q.enqueue(s)
5: mark s as visited
6: // Loop until the queue is empty
7: while (Q is not empty)
8: // Remove the first node from the queue
9: v = Q.dequeue
10: // Process all its neighbors
11: for all neighbors w of v in Graph G
12: if w is not visited
13: // Insert w in Q
14: Q.enqueue(w)
15: end if
16: end for
17: end while

4.3. Planning Domain Definition Language

Planning Domain Definition Language (PDDL) is an attempt to standardize Artificial
Intelligence (AI) planning languages. PDDL has a variety of versions, such as Probabilistic
PDDL (PPDDL) [23] to account for uncertainty, Multi-Agent PDDL (MA-PDDL) to allow
planning for multiple agents, etc. In this study, the problem was designed as single-agent
and deterministic, so the official PDDL language was used. PDDL models the problem
in two separate files: the Domain file and the Problem file. The Domain file contains the
predicates and actions; predicates are facts of interest, such as “is i robot in XYZ location?”,
“is there collision in the current state?”, and “is i robot carrying the piece j?”, and those
predicates are evaluated as true or false; actions are the counterpart of the transition
function in the MDP model; that is, the way the system state changes. The Problem file
contains the initial state, the goal specification, and the objects; the initial state and goal
specification are straightforwardly associated with the initial and goal state in the MDP
model; the objects are the counterpart of the internal variables of the MDP model (robot
location, robot status, and piece status).

Unlike MDP or graph search methods, this approach ends with the model problem
definition. Then a well-proved software planner is used to obtain a solution. Some of
the most used planners are FastDownward [24], LPG [25], and PDDL.jl [26]. In this
project, FastDownward was used. FastDownward is a planner that relies on a heuristic
search to address several planning problems, including PDDL. It is recognized as one of
the most efficient planners currently available. Unlike other planners, FastDownward
employs an alternative translation known as “multivalued planning tasks” instead of
using the propositional representation of PDDL. This approach significantly enhances
search efficiency.

5. Results
5.1. Validation by Comparison

RobotStudio® was used to validate the results obtained in this work. This simulator is
based on Algoryx [27] and provides high precision in both kinematic and dynamic simula-
tions. In this way, it is possible to simulate a robotic station with a high level of accuracy
regarding movements and/or collisions between robots. Therefore, the conclusions reached
using this software are considered to faithfully reflect the behavior of the real system. In
this project, values and data generated by the simulator were accepted as valid.
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5.2. Comparison of Results

To comparatively assess the results obtained from the proposed algorithms, the
following data have been considered: the number of steps performed by the solution
provided by each algorithm required off-line resources (RAM and disk storage) and
on-line computational cost (associated with scalability and implementation feasibility
in a production line).

The initial comparison among algorithms focuses on the number of steps or move-
ments that algorithms need to perform to solve the task. This is the factor to be minimized
as it determines how fast the task is performed. The number of pieces used in each indus-
trial operation can significantly vary. Some assemblies only require a few pieces to obtain
the intermediate or final product, while in other cases, hundreds of pieces are needed.
This work is focused on SimplicityWorks Europe manufacturing process [5], where the
company carries out pick-and-place operations without any specific order constraints. The
goal is to minimize the task time by selecting the best sequence for placing between 4 and
9 pieces. Table 2 shows a comparison between solutions provided by several algorithms:
Value Iteration (VI), Breadth First Search (BFS) and Planning Domain Definition Language
(PDDL). Multiple tests for different scenarios (number of pieces and action mode) have
been conducted. Initial conditions for each test are the same for every algorithm, including
the source and destination location of the pieces and the initial location of the robots. The
primary observation indicates that every algorithm reaches a solution with the same num-
ber of steps. This makes sense as all three algorithms are able to find an optimal solution
to the problem. Those solutions may be different but with the same level of quality. The
second point to note is that the PDDL algorithm scales better than the others, being the
only one able to solve all tests. Finally, both VI and BFS solve the same test cases. This is
because both of them rely on the MDP model, which does not scale well when the number
of pieces and actions increases.

Table 2. Number of steps required to complete the pick-and-place task using two robotic arms.

NUMBER OF STEPS

NAVIGATION MODE # OF PIECES VI BFS PDDL

1

2 28 28 28
4 46 46 46
6 55 55 55
8 68 68 68
9 77 77 77

10 - - 88

2

2 25 25 25
4 37 37 37
6 46 46 46
8 56 56 56
9 - - 67

10 - - 75

3

2 25 25 25
4 37 37 37
6 46 46 46
8 - - 56
9 - - 67

10 - - 75

4

2 24 24 24
4 35 35 35
6 - - 44
8 - - 56
9 - - 66

10 - - 73
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The number of steps required for a set of robots to manipulate N pieces depends on
their initial and final locations. This information is accessible just before the task starts. At
that moment, the MDP must be updated (for all state-action pairs where the action is pick
or drop), and after that, the solution for this particular MDP must be found. This whole
process is carried out during the process, hence it is called “online computation” in this
work. There is only a few seconds or minutes available in the best case scenario. Table 3
shows the time required for each algorithm to find a solution. The BFS algorithm is clearly
the fastest whenever it can provide a solution. The comparison between BFS and PDDL
is more intriguing. There is not a clear winner in all test scenarios. As a reference, VI is
slower than PDDL in the test case “Mode 1 and 9 pieces” (5 min 57.5 s vs. 1 min 15.2 s), but
it is faster in the test case “Mode 4 and 4 pieces” (6 min 27.4 s vs. 15 min 37.3 s).

Another important issue is the offline resources required to calculate the VI and BFS
algorithms described in Tables 2 and 3. Both algorithms use the MDP architecture described
in Section 4.1, which describes the number of states and their behavior according to the
actions taken. The number of states of the MDP can be calculated according to Equation (9),
where ξσ is the number of states and N is the number of pieces.

ξσ = ((M·N·Z) + (K·P))2·(2 + T)K·(K + 1)2 (9)

where M, N, and Z are the number of rows, columns, and heights of the grid, K is the
number of pieces to be picked, T is the number of possible intermediate positions, and P is
the number of states required for the pick and drop operations. Intermediate positions (T)
are useful in case a piece cannot be transported by any robot, due to accessibility problems,
either on the source or destination location of the piece. In this case, the piece can be
partially transported by a robot up to a certain intermediate position, and then another
robot can complete the transportation. These kinds of problems are represented in Figure 3.

Table 3. Online computation time of each algorithm for a different number of pieces and different
Navigation Modes.

ONLINE TIME

NAVIGATION MODE # OF PIECES VI BFS PDDL

1

2 0.4 s 0.001 s 15 s
4 4.6 s 0.016 s 16 s
6 39 s 0.125 s 19 s
8 4 min 37 s 0.973 s 36 s
9 5 min 57 s 2.918 s 1 min 15 s

10 - - 2 min 56 s

2

2 0.8 s 0.016 s 39 s
4 10 s 0.047 s 41 s
6 1 min 26 s 0.267 s 47 s
8 9 min 45 s 1.851 s 1 min 20 s
9 - - 2 min 38 s

10 - - 5 min 49 s

3

2 8.2 s 0.032 s 3 min 39 s
4 1 min 26 s 0.376 s 4 min 02 s
6 11 min 18 s 2.907 s 5 min 53 s
8 - - 16 min 08 s
9 - - 36 min 54 s

10 - - 1 h 29 min 24 s

4

2 37 s 0.110 s 14 min 30 s
4 6 min 27 s 1.146 s 15 min 37 s
6 - - 22 min 19 s
8 - - 1 h 27 min 18 s
9 - - 2 h 14 min 46 s

10 - - 5 h 24 min 10 s
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Table 4 shows the computational cost (time) and disk resources and memory required
to build the MDP. This computation is performed only once for a specific problem topology
(e.g., a certain grid size and number of pieces). This is particularly relevant because the
MDP may take several hours to be calculated on a medium-power computer such as the
one used in this project (e.g., 4 h 39 min and 42 s to calculate an MDP in Navigation Mode
4 with four pieces to be manipulated). In addition, the MDP size on disk exceeded 5GB in
some test cases. Actually, this size grew as the numbers of pieces increased.

There are empty cells on some test cases for all the columns except for the BRUTE
STATES because either the computer ran out of memory when solving the MDP or it could
not be done in a reasonable amount of time. BRUTE STATES refer to the number of states in
the state-space according to Equation (9). However, there is a considerable subset of those
states that are not valid data (i.e., states where the robots collide, a robot is not able to reach
a specific grid location). The MDP states are the number of actual states used in the MDP
after filtering invalid states in the original BRUTE state-space. This information is provided
by the software when building the MDP. The number of MDP states exponentially increases
with the number of pieces, and the other variables (disk, RAM, and time) depends on this
size, hence they exponentially increase as well.

Table 4. Offline computational cost (time), DISK memory used to store the state-transition table (GB),
RAM memory necessary (MB), number of states of the MDP, and number of brute states of the MDP.

STATE-TRANSITION TABLE (MDP)

NAVIGATION
MODE

(# ACTIONS)
# PIECES TIME DISK (GB) RAM (MB) # MDP

STATES
# BRUTE
STATES

1 (49)

2 12 s 0.004 8 13,568 104,976
4 2 min 06 s 0.043 81 138,240 1,345,600
6 15 min 57 s 0.328 619 1,052,672 12,054,784
8 1 h 43 min 58 s 2.142 4.037 6,864,896 90,326,016
9 4 h 28 min 04 s 5.265 9.923 16,875,520 236,748,800
10 - - - - 607,129,600

2 (121)

2 36 s 0.010 20 13,568 104,976
4 6 min 04 s 0.103 201 138,240 1,345,600
6 45 min 46 s 0.783 1.523 1,052,672 12,054,784
8 4 h 49 min 30 s 5.107 9.968 6,864,896 90,326,016
9 - - - - 236,748,800
10 - - - - 607,129,600

3 (169)

2 05 min 42 s 0.090 28 13,568 853,776
4 54 min 58 s 0.863 280 138,240 9,985,600
6 6 h 47 min 04 s 6.383 2.135 1,052,672 82,301,184
8 - - - - 571,401,216
9 - - - - 1,445,068,800
10 - - - - 3,580,825,600

4 (841)

2 28 min 40 s 0.444 137 13,568 853,776
4 4 h 39 min 42 s 4.235 1.395 138,240 9,985,600
6 - - - - 82,301,184
8 - - - - 571,401,216
9 - - - - 1,445,068,800
10 - - - - 3,580,825,600

Disk resource information required to store the MDP is directly obtained from
the filesystem. The time and MDP states columns are provided by the software when
building the MDP. The RAM required is computed based on the number of states, the
number of actions, and the number of bytes needed to encode the MDP information.
In this implementation, the state value is represented by a 32-bit value and the reward
by a 16-bit value, making a total of 6 bytes per state-action pair. Additionally, during
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the Value Iteration algorithm execution, the implementation keeps a copy of the Value
function in the previous time-step in order to be able to check if it converges.

The PC used in this research is an Intel Core i7-12700KF 12th Gen 3.60 Ghz, with
64 GB of RAM, 1TB SSD, a Nvidia Quadro P100 graphics card, and a Windows 11 Pro 22H2
operating system.

5.3. Data Validation

The results presented in this section show the behavior of the algorithms being com-
pared (VI, BFS, and PDDL). For this purpose, RobotStudio® software was used. It provides
a graphical representation of the setup, including a dual arm collaborative robot ABB IRB
14,000 (also called YuMi), multiple pieces, and a worktable. It also monitors the whole
simulation, detecting any fault, such as collisions.

The first simulation involves a YuMi robot only supporting orthogonal movements
in a horizontal plane (except for the pick and place operations). This corresponds to
Navigation Mode 1 (see Section 3.3.2). Figure 9 shows two frames of the simulation, and a
demonstrative video is available on https://www.youtube.com/watch?v=3ysBDbBr5mQ
(accessed on 6 June 2023). This approach offers a collision-free optimized solution to the
manipulation problem, as the robot is capable of completing the task in 46 steps. It is worth
noting that the robot’s speed for each movement is configured to take approximately 0.5 s
per transition (time to move from one state to the next one). This means that the entire task
is completed in 23 s.
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Figure 10 shows another simulation of the same pick-and-place process. In this case,
the robot supports both orthogonal and diagonal movements in the horizontal plane (Navi-
gation Mode 2 described in Section 3.3.2). By giving the system the ability to diagonally
move, the robot can combine two movements into one and reduce the number of steps.
The simulation can be viewed on https://www.youtube.com/watch?v=3ysBDbBr5mQ
(accessed on 6 June 2023). The number of steps is lower than in the previous case, even
though the initial and final positions of pieces are the same. In this case, the task is com-
pleted in 37 steps, taking 18.5 s. It confirms that with a more flexible combination of
movements, the algorithm finds a better solution to complete the task.

A third simulation is presented, where the robot supports moving through a 3D virtual
grid, enabling the arm’s intersection without collision by operating on different planes. This
configuration corresponds to Navigation Mode 4 described in Section 3.3.2. The objective
of this simulation is to check if the algorithm finds a solution with a lower number of
steps. The full video is available at https://www.youtube.com/watch?v=kqKprKYazKk
(accessed on 6 June 2023). In this case, the task is completed in 35 steps, taking 17.5 s for the
robot to place all pieces in their final positions. Once again, with a larger set of movements,
the algorithm finds a better solution for the task than in previous cases. On this occasion,
arms have the ability to cross each other to minimize the operation time, avoiding collisions.

https://www.youtube.com/watch?v=3ysBDbBr5mQ
https://www.youtube.com/watch?v=3ysBDbBr5mQ
https://www.youtube.com/watch?v=kqKprKYazKk
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Figure 10. Simulation of a pick-and-place operation with Navigation Mode 2 movement. (a) t = 10 s;
(b) t = 19 s.

Figure 11 shows a set of frames extracted from this simulation, representing a couple
of situations where the algorithm takes advantage of both arms moving on different planes.
The first situation, shown in frames (a), (b) and (c) of Figure 11 involves the left arm picking
up and placing the first piece (yellow), and the right arm picking up the second piece
(blue). In this sequence, the left arm transitions to a higher plane, allowing the right arm
to approximate the blue piece without interrupting the left arm trajectory. In the second
situation, shown in frames (c), (d) and (e) of Figure 11, the algorithm finds optimal to
move the right arm to a higher plane in order to maintain its course without collision. At
t = 14 s (Figure 11d), the right arm is about to pick up the blue piece and the left arm is
approximating the green piece. After that, the right arm starts moving towards the red
piece. At t = 16 s (Figure 11e), the right arm is moving at a higher plane than the left arm to
avoid a collision. After that, both arms progress in parallel in the same direction. At t = 20 s
(Figure 11f), the left arm is still transporting the green piece while the right arm has already
picked up the red piece and is moving toward its destination.

Finally, a new simulation is presented. The robot still supports moving through
the virtual 3D grid, but the number of pieces is increased to 10. In this case, the task is
successfully performed in 73 steps and a total time of 36.5 s. Note that in frames (c), (f), and
(h) of Figure 12, both arms are crossing, which is possible because the algorithm places
them at different heights. As seen in Table 2, only the PDDL algorithm is capable of finding
a solution for such a high number of pieces, scaling the problem much better than the VI
and BFS options to solve the proposed MDP.
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Figure 11. Simulation of a pick-and-place operation with Navigation Mode 4 movements (movements
in 3 different heights). (a) t = 3 s; (b) t = 6 s; (c) t = 8 s; (d) t = 14 s; (e) t = 16 s; (f) t = 20 s.

A comprehensive collection of simulations, classified per algorithm, can be found at
the following links: Value Iteration (https://www.youtube.com/watch?v=cXEfuw8WPqA,
accessed on 8 November 2023), BFS (https://www.youtube.com/watch?v=2T0z_3_9az8,
accessed on 8 November 2023), and PDDL (https://www.youtube.com/watch?v=vV5
W80SKIOo, accessed on 8 November 2023). Additionally, at https://www.youtube.com/
watch?v=jl47uA9LN_w (accessed on 8 November 2023) is presented a test case where both
arms must cooperate to transport one of the pieces. In this case, one of the arms can only
access the initial location of the piece, and the other one can only access its destination
location. The first arm leaves the piece in an intermediate position so that the second one
can finish the subtask. In this case, the approach proposed can solve the problem presented
in Figure 3, where two or more robots should coordinately collaborate between them and
in the minimum time.
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6. Conclusions and Future Work

This article presents a method to coordinate robotic manipulators, avoiding collisions
between arms during pick-and-place operations, and minimizing the task time by selecting
the best manipulation sequence and the best trajectory planning. Due to the assumed
simplifications in the system (deterministic, single-agent, and fully observable), the Markov
Decision Process (MDP) proposed can be transformed into a graph that can be solved using
a search algorithm, such as Breadth First Search (BFS). Additionally, the Planning Domain
Definition Language (PDDL) has been used to generate an alternative solution that can be
compared with VI and BFS.

For every test case where a solution can be obtained, all three algorithms consistently
produce an optimal solution, which is not unique and may differ between all algorithms.
In this context, optimal refers to the least number of steps required to complete the task.
Regarding the computational cost to find a solution, the graph search method (BFS) turns
out to be the fastest one, although limited in terms of scalability. In fact, the generated
graph is derived from the MDP model, so actually both MDP and BFS approaches suffer
this same scalability issue, directly related to the number of pieces and robots. On the
other hand, the PDDL scales better and is able to solve all tested cases. The MDP approach
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is neither the fastest nor the least eager on resources, but provides a general framework
capable of scaling to more complex problems, including uncertainty, the continuous state
and action spaces, the partially observable state, etc. The last factor, irrespective of the
algorithm used, is the flexibility of the robot’s navigation. A significant enhancement of
the solution is observed when diagonal movements are incorporated into the 2D plane (as
outlined in Mode 2 in Section 3.3.2). While the inclusion of extra movements for 3D space
navigation results in a marginal improvement in the solution, it comes at a substantial
expense due to the computational cost being exponential to the number of robots (in this
case, quadratic, as there are two robots).

However, the proposed method has several disadvantages. Firstly, the system does
not scale well. The provided solution is feasible for certain production processes where the
number of pieces to manipulate is small (less than 10 elements). Secondly, the movements
that the robots must perform are constrained within a grid, which is less natural compared
to other solutions such as [15], although it provides a robust and faster industrial solution
to the problem. Lastly, a preliminary study using RobotStudio® is required to create a
database, including information about collision situations between arms.

In future work, the intention is to explore new techniques, such as hierarchical rein-
forcement learning or multi-agent learning, that can overcome the scalability limitation of
the current single-agent approach. The goal is to introduce a larger number of pieces and
robots that could operate within the same workspace. Another objective is to investigate
alternative implementation strategies, such as using specialized HW (GPU), since the algo-
rithm (VI) core is heavily based on matrix operations. Additionally, the preliminary study
of robot collisions demands considerable time and complexity. Therefore, an alternative
method is being considered. A possible solution is to frame the robot links within a set of
ellipsoids and check for collisions between these ellipsoids in space. This approach would
eliminate the need to rely on a graphical environment such as RobotStudio®, reducing
offline computational costs but potentially increasing online computational requirements.
Hence, an analysis of the performance of this new approach would be required.
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