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Abstract: Heart rate estimation from face videos is an emerging technology that offers numerous
potential applications in healthcare and human–computer interaction. However, most of the existing
approaches often overlook the importance of long-range spatiotemporal dependencies, which is
essential for robust measurement of heart rate prediction. Additionally, they involve extensive
pre-processing steps to enhance the prediction accuracy, resulting in high computational complexity.
In this paper, we propose an innovative solution called LGTransPPG. This end-to-end transformer-
based framework eliminates the need for pre-processing steps while achieving improved efficiency
and accuracy. LGTransPPG incorporates local and global aggregation techniques to capture fine-
grained facial features and contextual information. By leveraging the power of transformers, our
framework can effectively model long-range dependencies and temporal dynamics, enhancing
the heart rate prediction process. The proposed approach is evaluated on three publicly available
datasets, demonstrating its robustness and generalizability. Furthermore, we achieved a high Pearson
correlation coefficient (PCC) value of 0.88, indicating its superior efficiency and accuracy between the
predicted and actual heart rate values.

Keywords: remote photoplethysmography; transformer; heart rate prediction

1. Introduction

Heart rate (HR) monitoring is a fundamental part of healthcare, since it offers valuable
information about individuals’ health. Conventional HR measurements use specialized
medical devices like electrocardiograms (ECG) and photoplethysmography (PPG) sensors,
which require direct contact with the skin and are suitable in clinical settings. These ap-
proaches are not suitable for long-term monitoring, particularly in vulnerable people like
infants and the elderly, and it also causes skin irritation. The development of non-invasive
camera-based technologies has revolutionized HR monitoring which predicts the heart
rate by analyzing subtle changes in skin coloration, resulting from the blood flow varia-
tion [1], and this method is referred to as remote photoplethysmography (rPPG). These
subtle changes on the skin are imperceptible to the human eye, but camera sensors can
capture them with precision. By processing these image pixels over time using special-
ized signal processing techniques, we can extract the PPG signal and thereby predict the
physiological parameters including heart rate, Heart Rate Variability (HRV) and Blood
Pressure (BP). With the introduction of digital cameras, remote heart rate monitoring has
become accessible across diverse fields, encompassing hospital care [2], telemedicine [3,4],
fitness assessment [5,6], motion recognition [7], and the automotive industry [8,9]. This
remote method has extended its applications to numerous areas including mental stress
detection, cardiovascular function variations, sleep quality assessment, and drowsiness
identification [10–12].
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Initially, the possibilities of rPPG from face videos were introduced in [13]. Since the
rPPG method is a camera-based technique, it is affected by changes in lighting, compression
and motion artifacts, all of which can impact the accuracy of predicted output. The main
objective is to extract the required signal by addressing these issues, and it needs extensive
pre-processing steps including face and region of interest (ROI) detection, signal extraction,
and normalization. While these steps were essential for ensuring robust results, they often
imposed computational burdens and time constraints. Signal processing methods were the
techniques used to extract remote photoplethysmography (rPPG) signals in the beginning.

Later, there was a shift toward learning-based approaches to enhance precision and
real-world applicability. These models, particularly, convolutional neural networks (CNNs),
have demonstrated their effectiveness in extracting features from facial videos. In the
literature, there have been some studies that propose end-to-end methods; even in these
cases, several pre-processing steps are required to regenerate the data before inputting it
into the network. A comprehensive survey dealing with the developments of this area can
be found in [14–16]. For instance, handcrafted methods are employed [17] to regenerate and
normalize frames, which are then used as inputs to the network. Similarly, [18,19] utilizes
feature maps called MSTmaps, which involve landmark detection and pixel averaging in
various color spaces. The accuracy of the output prediction depends on the selection of
pre-processing steps and the algorithms employed. Nevertheless, deep learning methods
come with their own set of challenges. They often demand substantial amounts of labeled
data for training. Moreover, deep learning models may necessitate multiple steps to prepare
input data, including face detection and alignment, normalization, and data augmentation,
all of which can introduce errors in rPPG extraction. The importance of non-contact
methods for HR prediction from facial videos has been further discussed in recent times,
especially during the COVID-19 pandemic, where the demand for remote healthcare
solutions has increased.

To address the limitations discussed above, this paper proposes an efficient, end-to-end
framework that explores the transformer-based network called LGTransPPG. Transformers
are known for their capability to understand the long-range dependencies directly from
raw data by enabling a multi-head self-attention mechanism. By employing a hybrid of
local and global multi-head self-attention techniques, our method is capable of capturing
spatiotemporal dependencies and thus enabling a more robust heart rate estimation. Our
proposed approach aims to eliminate the need for extensive pre-processing steps and
thereby reduce the computational complexity. The local aggregation mechanism focuses
on capturing detailed elements within specific facial regions, while the global aggregation
mechanism considers the overall spatial context of the face video.

To evaluate the performance of our approach, we conduct experiments on three pub-
licly available datasets—MAHNOB, COHFACE and UCLA–rPPG, which are specifically
designed for heart rate estimation from face videos. In addition to intra-dataset validation,
we also perform cross-dataset validation to evaluate the generalizability of our approach.
This paper aims to develop a more accurate and robust method for heart rate prediction.
The contributions of this work include the following:

1. Introducing LGTransPPG, an end-to-end transformer-based framework for heart rate
prediction from face videos that eliminates the need for extensive pre-processing steps.

2. Incorporating local and global aggregation techniques to capture both fine-grained
facial details and spatial context, improving the accuracy of heart rate estimation.

3. The Frequency-Aware Correlation Loss (FACL) is designed to facilitate accurate heart
rate prediction by emphasizing the alignment of frequency components.

4. We evaluate our approach on multiple publicly available datasets, showcasing its
efficiency and accuracy compared to existing approaches.

In the subsequent sections, we provide a comprehensive description of the proposed
LGTransPPG framework, detailing its architectural design, the experiments and the evalu-
ation metrics employed. Furthermore, we analyze and discuss the experimental results,
highlighting the advantages of our method over state-of-the-art methods.
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2. Related Works

In this section, we provide an overview of the existing approaches of heart rate
prediction from facial videos. We start by discussing state-of-art rPPG methods and then
delve into the advancements in the research. We subsequently discuss the role of attention
mechanisms and transformers in improving the accuracy of heart rate estimation.

Traditional approaches in remote heart rate estimation initially used Blind Source
Separation (BSS) methods [20–22]. The aim of Blind Source Separation (BSS) algorithms is
to extract the target PPG signal from noise and artifacts by using the correlation between
the signals and thereby improving the signal-to-noise ratio. BSS methods for remote
heart rate estimation such as Independent Component Analysis (ICA) [13] and Principal
Component Analysis (PCA) [20] are applied to temporal RGB color signal sequences to
identify the dominant component associated with heart rate. These are purely based on
signal processing and thus difficult to incorporate deeper understandings of physiological
and optical processes involved in rPPG measurement.

Taking these challenges into account, model-based methods have been proposed. One
such method is the chrominance method (CHROM) [23], which aims to reduce motion
challenges by utilizing orthogonal chrominance signals. It eliminates the specular reflection
component to build orthogonal chrominance signals from RGB data. Another approach,
known as spatial subspace rotation (2SR) [24], utilizes a spatial subspace of skin pixels
and measures the temporal rotation within this subspace to extract pulse signals. These
methods offer computational efficiency and ease of implementation. They assume an equal
contribution of each pixel to the rPPG estimate, which makes them sensitive to noise and
limits their applicability in real-world scenarios.

Later, with the development of computer vision, several convolutional neural network
(CNN)-based methods have been proposed. DeepPhys [17] was the first learning-based ap-
proach, and it shows remarkable improvement on conventional signal processing methods
by utilizing deep neural networks. However, these methods are based on two dimensional
CNN, and it is primarily designed for image processing. While they are good at capturing
spatial features, their effectiveness at capturing temporal features which involve changes
over time is limited. Spatial processing involves identifying the skin area within the frame
where the pulse signal is located, while temporal processing refers to separating the pulse
signal in the time domain at various time instants.

Unlike static images, videos contain dynamic information that captures the variations in
physiological signals over time. Therefore, successful rPPG methods need to incorporate not
only spatial features but also temporal dynamics to predict the physiological signal accurately.
A three-dimensional CNN based PhysNet [25] adopts various spatial–temporal modeling
based on convolutional neural networks (CNNs). MTTS–CAN [26] illustrated an efficient
on-device architecture that utilizes tensor-shift modules and 2D convolutional operations
for spatial–temporal information extraction. Dual-GAN [19] employed an adversarial
learning approach using facial landmarks to map video frames to pulse waveforms, while
the concept of spatiotemporal maps (STmaps) [27] involved dividing the face into patches
and concatenating them into sequences for analysis. The efficacy of three-dimensional
architecture with two-dimensional CNN is demonstrated in [28]. However, ST maps serve
as a pre-processing module and make a significant computational load to the entire pipeline.
Hybrid methods [29–32] also suggested the integration of handcrafted features with deep
learning networks for heart rate estimation. Motion and appearance frames are utilized
in [31] to predict PPG signals and mitigate noise and illumination artifacts.

Another approach [33] utilized the CHROM method [23] and time-frequency repre-
sentation for pulse signal extraction. These methods often require pre-processing steps,
such as calculating difference frames and image normalization, to enhance the data quality.
So, it is evident that these methods still need an improvement in measurement accuracy, as
even minor input variations can have a significant impact on output predictions.
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Attention Mechanism and Transformers

Transformers, originally popularized in natural language processing, have found their
way into various sequence modeling tasks, including rPPG analysis. By incorporating
self-attention mechanisms, transformers can effectively capture long-range dependencies,
making them well suited for heart rate estimation from facial videos. The attention mech-
anism enables the model to focus on relevant facial regions and frames, enhancing the
accuracy of heart rate prediction while suppressing the influence of noise and other artifacts.
This approach eliminates the need for manual feature extraction and predefined filtering
techniques. Unlike signal processing methods that require careful parameter tuning and
assumptions about signal characteristics, transformer mechanisms automatically learn and
adapt to diverse conditions.

The era of transformers began with their introduction in natural language process-
ing [34], which transformed with the concept of attention mechanisms [35]. Attention
mechanisms enable transformers to capture dependencies effectively by attending to rel-
evant parts of the input sequence. Subsequently, transformers were successfully applied
to image classification [36,37] and video understanding [38], showcasing their capability
across different areas. Transformers outperformed traditional models like convolutional
neural networks (CNNs), leveraging the self-attention mechanism to capture long-range
dependencies [39,40].

In recent research, the Swin Transformer architecture was proposed [41], integrating
shifted windows and a self-attention mechanism with non-overlapping windows. It helps
to improve the model’s ability to capture both local and global information. Later, an in-
ductive bias of locality in the video transformers [42] introduces a better trade-off between
speed and accuracy when compared to previous approaches that compute self-attention
globally even with spatial–temporal factorization. While the use of transformers in rPPG
prediction is hardly explored, there are some relevant works in this area. A temporal differ-
ence transformer was introduced [43,44] with the quasi-periodic rPPG features to represent
the local spatiotemporal features and evaluated the results on multiple public datasets. An-
other notable contribution, Efficientphys [45], introduced an end-to-end neural architecture
for device-based physiological sensing and conducted a comprehensive comparison with
convolutional neural networks. It uses a Swin Transformer layer to extract spatial–temporal
features, utilizing tensor shift modules. Despite its less favorable inference time compared
to convolution-based methods, it demonstrates promising results. A detailed survey of
visual transformers and attention mechanisms can be found in [46–48].

3. Proposed Approach

The proposed framework comprises an embedding module and local–global aggre-
gation based on a multi-head self-attention mechanism followed by a predictor head for
rPPG signal prediction. Inspired by [48], we present a novel approach for heart rate pre-
diction from face videos by integrating a token embedding module as the initial step and
processing raw video frames as input.

This methodology effectively captures crucial spatiotemporal information by em-
ploying a global–local aggregation technique with multi-head self-attention mechanisms,
enabling the model to capture both local and global features. Lastly, it incorporates a
prediction head to generate accurate heart rate predictions. Through the combination of
these techniques, our method achieves both high accuracy in heart rate estimation and
computational efficiency on state-of-art methods. An overview of the proposed approach
can be seen in Figure 1. We start explaining the token embedding block and then two
types of attention modules called Local Multi-Head Self-Attention (L-MHSA) and Global
MHSA (G-MHSA).



Technologies 2024, 12, 2 5 of 18

Technologies 2024, 12, x FOR PEER REVIEW 5 of 18 
 

 

seen in Figure 1. We start explaining the token embedding block and then two types of 
attention modules called Local Multi-Head Self-Attention (L-MHSA) and Global MHSA 
(G-MHSA). 

 
Figure 1. Pipeline of proposed method. A transformer-based rPPG prediction from face videos. It 
includes an embedding module, a multi-head self-attention mechanism based on local and global 
aggregation and a prediction head. 

3.1. Token-Embedding Module 
The token-embedding module consists of a convolution token embedding (CTE) and 

convolution projection (CP). This module incorporates into this architecture to enhance 
both performance and robustness all while preserving computational efficiency. CTE aims 
to model local spatial attribute information from raw frames using a hierarchical multi-
stage approach. Instead of partitioning each frame into patches, the convolutional layer 
tokenizes the input video [48]. 

At the start of each stage, a convolutional token-embedding step conducts an over-
lapping convolution operation on the token map, and then a layer normalization is ap-
plied. This approach enables the model to capture local details and achieve spatial 
downsampling. The convolutional token embedding layer provides the flexibility to mod-
ify the token feature dimension and the token count at each stage by adjusting the convo-
lution operation’s parameters. Consequently, in each stage, we achieve a gradual reduc-
tion in the token sequence length while expanding the token feature dimension. This em-
powers the tokens to capture more complex visual patterns over larger spatial areas sim-
ilar to the feature layers in CNNs. An illustration of the token-embedding module can be 
seen in Figure 2. 

 
Figure 2. Illustration of token-embedding module[48]. 

Given an input video X of size T × H × W × C where T, H, W, and C represent the 
sequence length, width, height and channel, respectively. Given an input video X, the 
LGTransPPG can be represented as: 

Token Embedding 
Block Pr

ed
ict

orLocal Global Hybrid 
Multi-head Self 

Attention

Convolutional 
Projection

Convolutional 
Token 

Embedding

Local MHSA

Add & Norm

Global MHSA

Add & Norm

Video

Token Map

K

V

Q

1x
1x

1

3x
3x

3

1x
1x

1

FFN

input Convolution Batch 
Normalization

Flatten

Q

Multi 
head 
Self
Atte
ntion

K

V

Figure 1. Pipeline of proposed method. A transformer-based rPPG prediction from face videos. It
includes an embedding module, a multi-head self-attention mechanism based on local and global
aggregation and a prediction head.

3.1. Token-Embedding Module

The token-embedding module consists of a convolution token embedding (CTE) and
convolution projection (CP). This module incorporates into this architecture to enhance
both performance and robustness all while preserving computational efficiency. CTE aims
to model local spatial attribute information from raw frames using a hierarchical multistage
approach. Instead of partitioning each frame into patches, the convolutional layer tokenizes
the input video [48].

At the start of each stage, a convolutional token-embedding step conducts an overlap-
ping convolution operation on the token map, and then a layer normalization is applied.
This approach enables the model to capture local details and achieve spatial downsam-
pling. The convolutional token embedding layer provides the flexibility to modify the
token feature dimension and the token count at each stage by adjusting the convolution
operation’s parameters. Consequently, in each stage, we achieve a gradual reduction in
the token sequence length while expanding the token feature dimension. This empowers
the tokens to capture more complex visual patterns over larger spatial areas similar to the
feature layers in CNNs. An illustration of the token-embedding module can be seen in
Figure 2.
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Given an input video X of size T × H × W × C where T, H, W, and C represent the
sequence length, width, height and channel, respectively. Given an input video X, the
LGTransPPG can be represented as:

XTM = CTE(X) (1)

Q, K, V = CP(XTM) (2)
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Then, the token map will be XTM ∈ RT×Htm×Wtm×Ctm where T is the number of frames.
To project a token-embedding tensor into the queries, keys and values, a convolution
projection mechanism is used. Convolutional projection (CP) is used to encode query (Q),
key (K) and value (V) feature maps. This Q/K/V are then fed into the LGTransPPG module
to learn the long-range dependencies over frames. Finally, a feed-forward network (FFN) is
employed to fuse the result.

XTM ∈ RT×Htm×Wtm×Ctm (3)

Y = H + XTM (4)

Z = (FFN(Norm(Y)) + Y) (5)

The convolutional projection layer introduced here aims to enhance the local spatial
context and, secondly, to increase efficiency by enabling downsampling of the K and V
matrices. Essentially, the transformer block incorporating the convolutional projection
represents an extension of the original transformer block. We use depth-wise separable
convolutions, thereby creating the convolutional projection layer.

3.2. Local–Global Hybrid MHSA Transformer

Multi-head self-attention is an important component of the transformer architecture,
which is designed to enhance the model’s capacity to capture complex relationships and
patterns within sequences of data. Unlike the conventional method that employs coarse
image patches with a single scale, the MHSA module enables the extraction of fine-grained
representations by partitioning the feature maps of query (Q), key (K), and value (V) into
multi-scale patches. A combination method allows short-range attention within a frame
to focus on local details and long-range attention over frames to capture dependencies.
By incorporating local and global MHSA into a single transformer in a coarse-to-fine
manner, our approach enhances the model’s ability to learn fine-grained representations.
This effectively combines the advantages of short-range and long-range spatiotemporal
attention, resulting in improved performance. LGTransPPG consists of L blocks and each
block consists of Local Multi-Head Self-Attention (L-MHSA) and Global Multi-Head Self-
Attention (G-MHSA) to learn spatiotemporal feature representation [49].

The spatial and temporal modeling of video data are essential for the successful
extraction of rPPG signals. Spatial processing involves the identification of the skin area
within a frame, where the pulse signal is located, enabling us to find the relevant region
for further analysis. On the other hand, temporal processing is related to the pulse signal
over time. It is important to note that the spatial distribution of the pulse signal can
change significantly at different time instants, and its intensity can fluctuate over time.
Therefore, achieving accurate spatial and temporal modeling is critical for improving the
reliability and accuracy of rPPG extraction methods. We perform L-MHSA within the
non-overlapping window to obtain the local interactions [50,51]. The input is feature
map F × H × W. Then, we flatten the token within the window (i, j) Xi,j ∈ R( f hw)×d The
multi-head local attention of the k-th block is formulated as

Yk = Xk−1
i,j + MSA(LN (Xk−1

i,j )) (6)

While our local attention mechanism is efficient in capturing local information, it
may not fully capture global correlations across the frame sequence [50]. To address
this limitation and capture long-range dependencies, we incorporate a multi-head global
attention mechanism. This additional attention mechanism complements the local attention
by enabling the model to capture and learn global information. By leveraging the multi-
head global attention, our approach gains the capability to capture the broader context and
relationships between frames, enhancing its ability to understand long-term dependencies
within the video sequence. In our approach, we utilize each region to propagate global
information to every query token. This is achieved through the formulation of the multi-
head global attention mechanism [52]. By incorporating the MHSA, the model enables the
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exchange in valuable information across different regions, facilitating an understanding of
the entire video sequence.

To mitigate computational overhead, we introduce a down sampling approach by
applying window-wise pooling to the input feature maps K and V. This involves dividing
the feature maps into non-overlapping regions through convolutional operations and
pooling. Each region represents a spatiotemporal abstraction of the feature map, and its
purpose is to convey global contextual information to each query token. Formally, the
multi-head global attention is formulated as an integration of these pooled regions with
the query, key, and value inputs, allowing for the fusion of local and global information to
facilitate more comprehensive and accurate heart rate prediction.

Qk = Wk
QLN

(
YK
)

(7)

G − MHSA
(

YK
)
= YK + so f tmax

(
Qk(KK)T

√
Dh

)
(8)

where KK = Wk
k LNPool

(
YK). Then, the whole local global attention complexity can be

formulated as
C = FHW f hw + (FHW)2/ f hw (9)

In our method, we introduce a novel approach that builds upon existing techniques
such as PhysFormer [53,54]. A tube tokenizer-based approach was employed [53,54] for
measuring long-distance spatial–temporal rPPGs in facial videos, showcasing appealing
outcomes. It highlights the advantages of attention mechanisms in capturing salient
features and achieving accurate results. Instead of utilizing a spatiotemporal feed-forward
network, we incorporate a spatio feed-forward network. Additionally, inspired by the
divided space-time attention-based rPPGTr [55], we introduce a feature fusion module
that combines local features and global dependencies to leverage their respective strengths.
This is an encoder–decoder architecture that starts with detecting and sampling faces
from the original video. The encoder has three encoding layers of different spatial scales,
each consisting of a Convolution Block, Divided Space–Time Attention Block, and Feature
Fusion Block. The fusion process involves concatenating the local and global features,
which is followed by max pooling and average pooling operations. The resulting features
are then activated using the sigmoid function and combined through addition. Finally, a
3D convolution with a kernel size of 1 is applied to adjust the channel dimension of the
feature map.

4. Experiments

All experiments were conducted in Python 3.8 and Pytorch. We used Pearson loss [56]
and FACL for training and also reproduced several existing models, namely PhysNet [25],
TS-CAN [26], and DeepPhys [17] based on their open-source code. The Physnet and TS
CAN were trained on Tensorflow 2.6. In the case of TS-CAN and DeepPhys, we used a
lower resolution of 36 × 36 instead of 72 × 72 from the open-source code to trade-offs
between computational efficiency and model performance. Furthermore, we made certain
adjustments to the training parameters of PhysNet to achieve improved performance. It
involved adjusting the learning rate, and experimenting with batch sizes, to enhance the
performance of PhysNet. These adjustments were made to optimize the model’s training
process, improve its generalizability and align effectively with our dataset. To test their
mobile CPU inference performance, we used Raspberry Pi CCPU: Cortex–A72 4 cores.

The videos in the MAHNOB-HCI dataset were downsampled to 30 fps for efficiency.
In the training stage, we randomly sampled RGB face clips with size 160 × 128 × 128
as model inputs. For the task of heart rate estimation on the MAHNOB-HCI dataset,
the low illumination and high compression videos in MAHNOB-HCI raised convergence
difficulties. We fine-tuned the pre-trained model on the dataset for an additional 30 epochs.
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Additionally, the frequency-aware correlation loss (FACL) is designed to achieve
accurate heart rate prediction from the inspiration of the work [57] by emphasizing the
alignment of frequency components. A successful approach to model training in previous
works is the Mean Squared Error (MSE) loss function. However, MSE loss trains the model
to capture both amplitude and frequency. In the context of heart rate estimation, we focus
more on the frequency of the pulsatile signal, and we opt for a frequency-aware correlation
loss in the frequency domain instead of the time domain. To assess the robustness of the loss
function, we compute the selected loss on the data after each epoch and choose the model
with the lowest loss during testing. Our evaluation of RMSE performance of different
loss functions shows that Pearson’s correlation coefficient (PCC) and frequency-aware
correlation loss (FACL) consistently perform well. Based on these findings, we use FACL
as the preferred loss function.

Unlike traditional correlation computations in the time domain, FACL performs the
correlation computation in the frequency domain. The FACL loss is defined as follows:

L(y, ŷ) =
−c × Max|F(y)× F(ŷ)|

σ(y)× σ(ŷ)
(10)

where y represents the ground-truth heart rate signal and ŷ is the predicted heart rate
signal. F denotes the Fourier-transform operator, and σ(y) and σ(ŷ) are the standard
deviations of y and ŷ, respectively. In FACL, the Fourier-transformed representations of
y and ŷ is element-wise multiplied, highlighting the alignment of frequency components.
By dividing this product by the respective standard deviations, we ensure that the loss is
appropriately scaled.

The coefficient c represents the ratio of power within the frequency range associated
with heart rate to the total power. It allows us to weigh the loss based on the importance
of frequencies for heart rate prediction. By employing FACL, we encourage the model to
align the frequency characteristics of the predicted heart rate with the ground truth. This
approach effectively captures the underlying pulsatile nature of the signal and enhances
the accuracy of heart rate prediction.

Datasets and Evaluation Metrics

We conducted experiments on three public datasets, COHFACE [56], MAHNOB-
HCI [58], and UCLA rPPG [59]. To assess the accuracy of the rPPG pulse extraction
algorithms, we employed evaluation metrics derived from recent publications [33,34,60].
These evaluation metrics mean absolute HR error (HRmae), root mean squared HR error
(HRrmse), and Pearson’s correlation coefficients (ρ). These metrics serve as benchmarks for
evaluating the performance of the algorithms.

Mean absolute Error HRMAE =
1
n ∑n

i=1 HRi
est − HRi

gnd (11)

Root Mean Square Error HRRMSE =

√
1
n ∑n

i=1 (HRi
est − HRi

gnd))
2 (12)

Pearson Correlation Coefficient ρ =
∑n

i=1
∣∣(Xi − X)

(
Yi − Y

)∣∣√
∑n

i=1 (Xi − X)
2
√

∑n
i=1 (Yi − Y)2

(13)

The COHFACE [56] dataset consisted of a total of 160 videos including 40 healthy
individuals, 28 males and 12 females. The recordings were made using a Logitech C525
camera with a frame rate of 20 and a resolution of 640 × 480. The dataset was recorded
in various experimental scenarios, including both studio and natural lighting conditions.
In the studio setting, natural light was avoided, and additional light from a spotlight was
used to ensure proper illumination of the subject’s face. On the other hand, the natural
lighting scenario involved turning off all the lights in the room. To capture the face area
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in its entirety, all participants in the dataset were instructed to remain still in front of the
webcam for four sessions, each lasting approximately 1 min.

MAHNOB-HCI [58] was made available in 2011, comprising 527 videos. These videos
featured 27 subjects, consisting of 15 males and 12 females. The frame rate for these
recordings was 61, and the resolution was set at 780 × 580. During the recording process,
the ECG signal values were simultaneously recorded to ensure synchronization

UCLA rPPG [59] is a real dataset comprising 104 subjects. However, due to faulty
settings, we excluded the samples of two subjects, resulting in a final dataset of 102 subjects
encompassing a diverse range of skin tones, ages, genders, ethnicities, and races. Each
subject was recorded in five videos, each lasting approximately one minute, capturing
a total of 1790 frames at a frame rate of 30 fps. Some of the example frames from these
datasets can be seen in Figure 3.
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5. Results and Discussion

A comparative analysis of ground truth HR and predicted HR have been performed.
From Figure 4, we can see the strong correlation between the HR values that shows
the accuracy and robustness of the suggested method. It exhibits minimal bias and low
variance concerning the regression line. Figure 4 shows the graphical representation of
the comparison between the ground truth rPPG and predicted rPPG, which are both
normalized to keep the amplitudes in the same range.
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To further investigate the relationship between the predicted HR and the ground
truth HR, we selected 300 samples from our test dataset for comparative analysis. The
results of this analysis are shown in Figure 5, which includes Bland–Altman (BA) plots and
regression plots. The solid line in the BA plot denotes the mean value, while the two dashed
lines represent the interval. Meanwhile, a dashed line in the regression plot represents the
standard line where the predicted HR matches precisely with the ground truth HR. From
the figure, we can indicate that the LGTransPPG exhibits a smaller standard deviation, and
its predicted HR aligns more closely with the ground truth HR. This outcome underscores
the enhanced prediction accuracy and robustness of the recommended method.
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Figure 5. Bland–Altman analysis and regression plot between ground truth HR and predicted HR.

To compare our method with state-of-the-art methods, we perform an intra-dataset
validation. We chose both traditional methods (ICA [13], CHROM [23], POS [61]) and CNN-
based methods (TS-CAN [26], HR-CNN [62], PhysNet [25], DeepPhys [17]) and tested on
three datasets MAHNOB, COHFACE and UCLA rPPG. The results are shown in Table 1.
We applied a bandpass filter with a cut-off frequency of 0.7 Hz and 4 Hz to calculate the
performance metrics. We used the average heart rate and calculated performance metrics
for each video.

Table 1. Quantitative analysis results of the proposed method in comparison with three publicly
available datasets, COHFACE, MAHNOB-HCI and UCLA-rPPG.

Methods MAHNOB COHFACE UCLA-rPPG

Signal
Processing
methods

SNR
(dB) MAE RMSE ρ

SNR
(dB) MAE RMSE ρ

SNR
(dB) MAE RMSE ρ

ICA [13] 2.47 5.14 7.84 0.15 1.23 18.99 14.67 0.21 13.54 24.68 0.43
CHROM [23] 1.74 4.32 9.64 0.23 16.05 23.54 0.17 1.25 19.44 11.23 0.22

POS [61] 3.43 8.33 10.24 0.45 0.76 17.67 18.76 0.13 0.61 15.78 13.33 0.11

Learning
Based

methods

TS-CAN [26] 3.22 1.06 4.55 0.76 2.32 8.32 9.74 0.54 1.98 8.04 12.48 0.43
HR-CNN [62] 2.91 2.42 6.26 0.44 10.04 19.38 0.37 5.51 9.81 14.98 0.58
PhysNet [25] 8.67 1.43 2.45 0.67 5.01 2.46 9.61 0.87 3.79 10.27 2.45 0.43

DeepPhys [17] 9.54 0.87 1.67 0.89 4.03 1.96 6.43 0.94 6.38 1.96 1.98 0.97
Ours 10.01 0.94 1.36 0.94 4.16 1.33 4.43 0.97 6.22 1.36 1.97 0.97

Performance on MAHNOB: We split the 527 videos of the MAHNOB dataset and used
422 videos for training and 105 for testing. The performance was compared with those of
other state-of-the-art methods and reported in Table 1. Starting with SNR, the suggested
approach (“Ours”) achieved the highest SNR value of 10.01 dB, indicating superior noise
control and signal preservation. DeepPhys is closely followed with a competitive SNR of
9.54 dB, emphasizing its capability to minimize noise. ICA, HR-CNN, and TS-CAN showed
lower SNR values, which denotes less effective noise reduction. On Moving to MAE, “Ours”
maintains its lead by achieving the lowest MAE of 0.94, showcasing exceptional accuracy
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in heart rate prediction. DeepPhys, with an MAE of 0.87, also demonstrates remarkable
predictive precision. Conversely, ICA, HR-CNN, and TS-CAN still exhibit comparatively
higher MAE values, indicating larger prediction errors.

Regarding RMSE, “Ours” remains the best, delivering the smallest RMSE value of
1.36, highlighting its effectiveness in predicting errors. DeepPhys closely follows with an
RMSE of 1.67, showcasing robust performance. ICA, HR-CNN, and TS-CAN continue to
display higher RMSE values, suggesting less accurate predictions. Taking into account
the provided standard deviation values (ρ), it is evident that DeepPhys maintains its
strong performance with a ρ of 0.89, indicating a relatively stable and consistent prediction.
“Ours” also demonstrates noteworthy stability with a ρ of 0.94. In contrast, ICA, HR-CNN,
and TS-CAN show higher ρ values, suggesting greater variability and less consistency
in their predictions. In summary, while “Ours” excels in SNR, MAE, and RMSE metrics,
showcasing impressive accuracy, precision, and error minimization, DeepPhys closely
follows with remarkable stability and consistent performance. This comprehensive analysis
highlights the strengths of these two methods in heart rate prediction from facial video
data, considering both accuracy and stability.

Performance on COHFACE: We use five-fold subject independent protocol [27] and
the results are reported in Table 1. Our method (“Ours”) achieved an SNR of 4.16 dB,
indicating a commendable level of noise control, which was closely followed by DeepPhys
at 4.03 dB. While both methods displayed competitive noise reduction capabilities, others
such as TS-CAN and HR-CNN exhibited comparatively lower SNR values. Comparing
this dataset to MAHNOB, the COHFACE dataset appears to present a more challenging
noise environment. Moving to MAE, “Ours” achieved an MAE of 1.33, showing accuracy
on output predictions. However, TS-CAN and HR-CNN displayed higher MAE values,
indicating high prediction errors. The COHFACE dataset introduced increased prediction
challenges in comparison to MAHNOB.

In terms of RMSE, “Ours” maintained an RMSE of 4.43, and DeepPhys closely followed
with an RMSE of 6.43, indicating robust performance. On the other side, TS-CAN and HR-
CNN exhibited higher RMSE values, implying less accuracy in predictions. Considering
the standard deviation (ρ) values, DeepPhys remained stable with a ρ value of 0.94, closely
followed by “Ours” at 0.97, indicating consistent performance. However, the absence of
standard deviation values in the initial analysis limited our ability to evaluate stability.
These ρ values now provide critical insights into the reliability and consistency of each
method’s performance. In conclusion, our method (“Ours”) and DeepPhys showcased
strong performance in SNR, MAE, and RMSE metrics on the challenging COHFACE dataset,
indicating their capacity for accurate and precise heart rate predictions. These findings
underscore the adaptability of these methods across diverse datasets.

Performance on UCLA rPPG: To compare more objectively, we randomly split all
the subjects; 80% of them were selected for training and 20% were used for testing. We
report the results in Table 1. Starting with SNR, our method (“Ours”) achieved an SNR
of 6.22 dB, while DeepPhys closely followed with an SNR of 6.38 dB, signifying strong
noise reduction capabilities. HR-CNN also exhibited a relatively high SNR value at 5.51 dB.
These results highlight the effectiveness of these methods in mitigating noise in the UCLA
rPPG dataset, enhancing the accuracy of heart rate predictions. Compared to previous
datasets (MAHNOB and COHFACE), the UCLA rPPG dataset presents a different noise
profile, necessitating tailored approaches.

Moving to MAE, “Ours” had an MAE of 1.36, and DeepPhys also demonstrated
exceptional accuracy with an MAE of 1.96. However, HR-CNN and PhysNet exhibited
higher MAE values. Regarding RMSE, “Ours” retained its lead with an RMSE of 1.97, and
HR-CNN and PhysNet exhibited relatively higher RMSE values, suggesting less accurate
predictions. Considering the standard deviation (ρ) values, both “Ours” and DeepPhys
maintained stability with ρ values of 0.97, emphasizing consistent performance. This
stability is a critical aspect of reliability in real-world applications. We also present error
statistics for all videos in Figure 6, showing that the majority (80%) have predicted errors of
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less than 5 bpm. These results underscore the effectiveness of our method in estimating
heart rates.
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From the obtained results, it is evident that when compared to signal processing meth-
ods, our proposed approach outperforms significantly across all three datasets. Learning-
based approaches exhibit larger root mean square error (RMSE) and mean absolute error
(MAE). This could be due to the overfitting of extracted features in learning-based methods.
Our method achieves better results without following any additional steps. It is worth
highlighting that even when compared to PhysNet, a benchmarked learning-based method,
our approach performs comparably, showcasing its ability to learn directly from scratch.
These results are achieved across three different publicly available datasets, indicating
the generalizability of our method and its capability to learn subtle features. In summary,
our method (“Ours”) consistently showcased performance across all three datasets, and it
shows their adaptability to the diverse dataset and their ability to provide accurate, precise,
and stable heart rate predictions. These results show the efficacy of our method even in the
absence of pre-processing steps.

We also performed a comparative assessment of the computational costs between the
proposed method and PhysNet [25]. The average training time per sample was calculated.
Our approach, LGTransPPG, demands 0.45 s per sample and outperformed PhysNet, which
requires 0.63 s per sample. This demonstrates that our proposed approach is 28.57% faster,
emphasizing its pathway to practical applications.

5.1. Cross Dataset Validation

For generalizability, we have conducted cross-dataset evaluation. Table 2a shows
the results trained on COHFACE and tested on MAHNOB. We conducted cross-dataset
validation following the five-fold cross-validation protocol [27]. The evaluation metrics
include the mean absolute error (MAE), root mean square error (RMSE), and Pearson
correlation coefficient (ρ). The results highlight the effectiveness of our method for heart
rate estimation across datasets and its potential for generalizability.
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Table 2. Cross-dataset results in terms of MAE, RMSE and ρ. Datasets were trained on COHFACE
and tested on MAHNOB, and cross-dataset results were tested on UCLA-rPPG.

Method

(a) (b)

MAHNOB UCLA rPPG

MAE RMSE ρ MAE RMSE ρ

ICA [13] 7.92 5.98 0.72 8.28 9.28 0.55
POS [61] 3.42 6.72 0.85 5.43 3.4 0.75

CHROM [23] 5.54 6.01 0.87 3.69 5.41 0.77
DeepPhys

[17] 3.82 2.78 0.98 1.42 1.8 0.84

Ours 2.98 3.12 0.99 0.94 1.76 0.87

Notably, the MAE values show the precision of our method’s heart rate predictions,
with a low value of 2.98. The low RMSE value of 3.12 further emphasizes the effectiveness
of our approach in minimizing prediction errors. The high Pearson correlation coefficient (ρ)
of 0.99 indicates a strong linear relationship between the predicted and ground truth heart
rates across datasets. Comparatively, our method outperformed other heart rate prediction
methods, including ICA, POS, CHROM, DeepPhys, and HR-CNN, in this cross-dataset
scenario. These results highlight the superior generalizability of our method. In addition,
we evaluate the model training on COHFACE, and we test on all subjects in UCLA-rPPG.
All the results are reported in Table 2b. Our model achieved the lowest MAE and RMSE
(0.94 and 1.76, respectively). In conclusion, our cross-dataset evaluation demonstrates that
LGTransPPG excels in heart rate estimation even without pre-processing steps and shows
its generalizability.

5.2. Ablation Study

In this section, we analyze the factors influencing the performance of our proposed
heart rate prediction model, considering feature fusion. To validate the efficacy of feature
fusion, we use two networks: LGTransPPG-local to capture local features and LGTransPPG-
global to capture global features.

The ablation study results show the impact of feature fusion and model architecture
on heart rate prediction performance. LGTransPPG-local focuses on local features, whereas
LGTransPPG-global emphasizes global features. Comparing these models with our method-
ology, we observe significant differences in performance. LGTransPPG-global consistently
outperforms LGTransPPG-local across all metrics. Our approach, which integrates both lo-
cal and global features, is highlighted as the most effective approach. It achieves the lowest
MAE, RMSE, and HRMSE and shows high accuracy. This result validates the combination
of both local and global sources, enhancing the model’s accuracy. The Pearson correlation
coefficient (PCC) highlights the reliability of the suggested method. With the highest PCC
value of 0.88, it shows a strong linear relationship between predicted and ground truth
heart rates. To assess how well the model fits the data, we calculated the R-squared value,
which is a measure of the proportion of the variance in one variable that is predictable from
another variable, and it ranges from 0 to 1. A higher R-squared value indicates a stronger
relationship between the variables. From our experiments, we achieved 0.77, and it shows a
stronger linear relationship between the variables. This highlights the model’s consistency.
This study draws motivation and inspiration from the rPPGTr paper authored by [43,55].

This suggests that the integration of both local and global features in our proposed
approach effectively captures relevant information for heart rate estimation. The superior
performance of the proposed model highlights the importance of feature fusion in capturing
comprehensive spatiotemporal features and represents its efficacy in improving heart rate
estimation accuracy and robustness across the UCLA RPPG and COHFACE datasets.
Results can be seen in Figure 7.
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The ablation study conducted on the MAHNOB and COHFACE datasets explores
the impact of various spatial scales on heart rate estimation performance. The first set of
experiments focuses on spatial size invariance while keeping the channel size invariant.
The results show the model’s ability to handle different spatial scales, as shown in Figure 6
by HRMAE, HRSD, HRRMSE, and Pearson correlation coefficient (PCC) as an evaluation
indicator in the rPPG signal.

When the channel size is increased, there is a performance improvement. To find the
influence of the temporal dependency, we conducted an ablation that includes a comparison
with rPPGTr [55], and the results are reported in Figure 8. Our method exhibits the smallest
parameter when the spatial size decreases and the channel size increases. Experimental
results affirm that the utilization of the local–global hybrid MHSA in this study contributes
to enhanced prediction accuracy. The second set of experiments investigates the effect
of decreasing spatial size while keeping the channel size either invariant or increased.
The proposed approach with a smaller spatial size and increased channel size achieves
superior performance compared to the spatial size invariant. The lower HRMAE, HRSD
and HRRMSE values highlight the effectiveness of incorporating fine-grained information
from smaller spatial scales. The higher PCC values indicate a stronger correlation between
the predicted and ground truth rPPG signals.

These results show the significance of considering both spatial scales and channel
sizes for accurate heart rate estimation. The study suggests that combining information
from smaller spatial scales, with an increased channel size, helps the model capture finer
details and increases its ability to estimate heart rates more accurately. This indicates the
importance of multi-scale processing in rPPG-based heart rate estimation algorithms. By
effectively adapting to different spatial scales and increased channel sizes, the proposed
method demonstrates its efficacy in improving heart rate estimation performance on the
MAHNOB and COHFACE datasets.
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6. Conclusions

In conclusion, this paper presents a comprehensive investigation into heart rate predic-
tion from face videos using a novel transformer-based framework. The proposed approach
incorporates token embedding, convolution, and convolution projection as initial pro-
cessing steps, which is followed by a hybrid attention mechanism that combines local
and global information. The results obtained from extensive experiments on multiple
publicly available datasets demonstrate the efficacy of the recommended technique. With
a high Pearson correlation coefficient (PCC) value of 0.88, our method demonstrates a
robust and accurate prediction, which is further validated by Bland–Altman plots and
regression plots. We conduct comprehensive intra and cross-dataset validation experiments
to evaluate the performance of the proposed approach. LGTransPPG delivers superior
performance across multiple datasets, achieving remarkable signal-to-noise ratios (SNRs)
of 10.01 dB on MAHNOB and 6.22 dB on UCLA rPPG, demonstrating its robustness in
noise control capabilities.

Looking at the results, we can see that our method performs well compared to the best
existing methods. What is notable is that our method does not require any preprocessing
steps; it learns directly from the raw data while considering both spatial and temporal
aspects. Despite this, it maintains robustness even when compared to methods that use
preprocessing steps. This is a significant advantage for real-world applications. However,
we observed a notable decrease in accuracy when applied to individuals with darker
skin tones. We conducted additional testing using self-collected images of individuals
with darker skin, which again highlighted this challenge. To ensure diverse populations’
applicability, we realize the need for improvement in this specific area. We are actively
addressing this limitation to enhance generalizability, considering the lighter skin tone bias
in existing datasets.

The accuracy, computational efficiency, and adaptability of the recommended method
make it a promising solution for real-time heart rate estimation tasks. Future work could
focus on exploring different datasets and further optimizing the proposed framework to
enhance its performance.
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