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Abstract: This manuscript provides a comprehensive exploration of Probabilistic latent semantic
analysis (PLSA), highlighting its strengths, drawbacks, and challenges. The PLSA, originally a tool
for information retrieval, provides a probabilistic sense for a table of co-occurrences as a mixture of
multinomial distributions spanned over a latent class variable and adjusted with the expectation–
maximization algorithm. The distributional assumptions and the iterative nature lead to a rigid
model, dividing enthusiasts and detractors. Those drawbacks have led to several reformulations: the
extension of the method to normal data distributions and a non-parametric formulation obtained
with the help of Non-negative matrix factorization (NMF) techniques. Furthermore, the combination
of theoretical studies and programming techniques alleviates the computational problem, thus
making the potential of the method explicit: its relation with the Singular value decomposition
(SVD), which means that PLSA can be used to satisfactorily support other techniques, such as the
construction of Fisher kernels, the probabilistic interpretation of Principal component analysis (PCA),
Transfer learning (TL), and the training of neural networks, among others. We also present open
questions as a practical and theoretical research window.

Keywords: probabilistic latent semantic analysis; probabilistic semantic indexing; nonnegative matrix
factorization; singular value decomposition

1. Introduction

Informally, Information retrieval (IR) can be defined as the methods to process infor-
mation to construct document collections. PLSA was first formulated as an unsupervised
IR technique. This method, also known as Probabilistic latent semantic indexing (PLSI),
was introduced in conference proceedings [1,2]. The classical reference is unsupervised
learning by probabilistic latent semantic analysis by Hofmann [3]. PLSA is based on the ideas
of Latent semantic analysis (LSA) [4] and, in fact, is a probabilistic remake. LSA uses
cross terms and documents of a corpus to obtain a count or a table of co-occurrences.
Then, arranging frequencies in a matrix, the SVD space span is considered a set of latent
variables and interpreted as the aspect model [5]. The PLSA uses the frequencies to de-
compose them as mixtures or aggregate Markov models [3], and adjust them with the
Expectation–maximization (EM) algorithm.

In the original formulation, the PLSA is a method that identifies a data frame of co-
occurrences or a contingency table with probabilities when using the Laplace rule for the
probabilistic transformation. The introduction of a set of latent variables and the use of
Bayes’ rule furnishes probabilistic significance to the distributions of words and documents
over the latent space. These distributions require adjusting probabilities, achieved with
the aid of the EM algorithm, providing maximum-likelihood solutions. The data classes
considered by Hofmann (words and documents) limit the method to some particular cases
of discrete data.

PLSA has been used for diverse purposes. PLSA’s versatility, clarity of results, and
solid statistical properties have enabled a wide range of applications in which the concepts
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of words and documents are assimilated into other discrete entities, thus enabling justifica-
tion of the hypotheses on which PLSA relies. However, PLSA has several problems: (i) the
nature of the data and the underlying hypotheses leads to a rigid model; (ii) the iterative
nature based on the EM algorithm has very slow convergence; and (iii) probabilistic inter-
pretation is lacking for latent variables. Those problems translate to uneven growth, partly
determined by algorithmic and computational advances. These limitations have prompted
several reformulations and a myriad of algorithms, the development of related techniques,
such as Latent Dirichlet allocation (LDA), and other studies focused on the relationship
between PLSA and NMF.

There are many surveys and review articles that include PLSA as a technique for IR,
as [6], with a classical perspective. Other studies recompile this technique as an alternative
to classifying opinions from Twitter [7] or a method to detect fake news [7]. However, few
reviews have focused exclusively on PLSA. One such review is by Tian [8]; it focuses on
semantic image analysis.

This review aims to show what can be obtained with PLSA, its difficulties, and how
they have been solved over time. We pay special attention to what has been written on
PLSA, the extension of this method to less restrictive data structures than co-occurrences
or contingency tables, the obtained results by modifying the underlying hypotheses, and
the relationship with other techniques. In addition, we also remark on the studies that use
this technique to build up other Machine learning (ML) techniques and the stat of the art
of its relationships. We pay special attention to results that make the PLSA a fundamental
character, providing a probabilistic interpretation of the SVD.

The manuscript is structured to reflect this point of view. Section 2 is a classic presen-
tation of PLSA and its solutions. PLSA received severe criticism early, with Blei proposing
LDA as an alternative. One of Blei’s main questions was related to overfitting. The conse-
quence of these criticisms is several reformulations, examined in Section 3. These studies
are aimed at solving more general data structures. In particular, the tensorial formulation
by Peng facilitates the study of fibers (vectors of observations) in d-dimensional space
and connects it to time-domain data structures. This section also explains its use as a
semi-supervised technique, achieved by modifying the likelihood function to assign proba-
bilities to unobserved documents [9]; the hypothesis of the case of Boolean variables [10],
important in bioinformatics, and the hypothesis to extend the model to continuous data
classes [11,12]. This multivariate model lets inferential applications [13]. To complete this
section, we describe several fields of applications in Section 4.

The algebraic methods of the non-negative entries matrices can handle probabilistic
data frames and allow for simpler formulations. This connection was highlighted by Hof-
mann in his original paper [3]. Further studies have shown the intimate connection between
both techniques, demonstrating that PLSA solves the NMF problems [14,15]. The equiv-
alence conditions between the two methods’ solutions are shown in [16]. These works
constitute the core of Section 5 and are oriented to reveal the explicit relationship with the
PLSA and SVD, which was suggested early by Hofmann, but as a mere formal equivalence.

The connection between PLSA and the SVD theorem has important consequences.
It allows the construction of a Fisher kernel preserving efficiency [12,17,18]; it is related to
the PCA; furnishes a probabilistic framework of this descriptive technique [19]; and relates
hard and fuzzy clustering [15]. Additionally, it is connected to the Information theory,
providing robust geometric properties [20]. Conceptually, it also provides a probabilistic
interpretation of the Independent component analysis (ICA). Its use for TL appears when
the latent variables have statistical significance [21]. Furthermore, it offers advantages in
training neural networks [22]. These works are described in the Section 6 and Table 1.

Despite the attractive properties of the PLSA, it presents serious computational prob-
lems. This gives rise to algorithms based on several fundamentals and/or the use of
computational techniques. We describe them in Section 7. Furthermore, we briefly discuss
the chances and possible future research in Section 8 before discussing some conceptual
aspects and presenting the conclusions.
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Table 1. Milestones.

Year Contribution Remarks

2000 PLSA PLSA formulation in conference proceedings [1–3] comments on the
connections among NMF, SVD, and information geometry.

2001 Kernelization Fisher kernel derivation from PLSA [17].

2003 LDA Criticism of PLSA: LDA formulation [23].

2003 Gaussian PLSA Assumption of Gaussian mixtures [11].

2005 NMF PLSA solves the NMF problem [14]. Introduction to stochastic matrices [15].

2008 k-means Equivalence between k-means and NMF [24].

2009 PCA Comparison of NMF, PLSA, and PCA [19].

2012 Information Geometry Relationship between Fisher information matrix and variance from the PLSA
context [20].

2013 Transfer Learning Use of latent variables weight for classifying most relevant variables [21].

2015 Unified framework for PLSA and NMF. Algorithm for NMF and PLSI based on Poisson likelihood [25].

2019 Neural Networks Neural networks training with PLSA [22].

2020 SVD Establishment of conditions for equivalence of NMF, PLSA, and SVD [16].

2020 Inference Construction of hypothesis tests [13]

2021 Number of topics NMF and Silhouette index to determine the number of latent variables [26].

2023 Discrete and continuous case equivalence. Relation between co-occurrences and continuous variables [12].

The contributions of this manuscript are to comprehensively explain the works made
to alleviate the PLSA problems. The formulation from the NMF algebra simplifies the
connection with SVD. We also describe the ideas of the studies that have been based on
PLSA to build other techniques in ML, making the PLSA a fundamental practical and
theoretical resource. Future studies in this sense can contribute to a greater understanding
of the problem.

2. The Method: PLSA Formulas

The original formulation of the PLSA, according to [3], provides a probabilistic solution
to the problem of extracting a set of zk (k = 1, · · · , K) latent variables of a data frame
N(di, wj), obtained from a corpus of di (i = 1, . . . , m) documents when crossed with a
thesaurus of wj (j = 1, . . . , n) words. The relative frequencies

n(di, wj) =
N(di, wj)

∑j ∑j N(di, wj)
(1)

are estimated by the joint probability P(di, wj). A key idea in this method is the decomposi-
tion of this probabilistic approximation into the product of conditional distributions over a
set of latent variables. After some manipulations and using the Bayes rule,

P(di, wj) = P(di)∑
k

P(wj|zk)P(zk|di) (asymmetric formulation) (2)

= ∑
k

P(zk)P(wj|zk)P(di|zk) (symmetric formulation) (3)

where P(di) and P(zk) are probabilities of the document di and the latent variable zk,
respectively. Formulas (2) and (3) are called by Hofmann the asymmetric and symmetric
formulations [17], or formulations I and II [27].

The discrete nature of the documents identifies each one with the probabilities of
(d1, . . . , dn)t over the latent variables and justifies the postulation that the mixtures P(di| zk)
are k-independent identically distributed (iid) multinomials. Because the same occurs for
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the words, the objective is to determine parameters θ and ϕ, such that the conditional proba-
bilities P(wj| zk) ∼ Multinomial(θjk) and P(zk|di) ∼ Multinomial(ϕki) for the asymmetric
formulation (alternatively P(wj| zk) ∼ Multinomial(θjk) and P(di| zk) ∼ Multinomial(ϕik)
for the symmetric case), with no hypothesis regarding the number or distribution of zk,
which is a set of dummy variables with no probabilistic sense.

The adjustment of mixtures, given by Formulas (2) and (3), is the other key idea
for obtaining a reliable probabilistic interpretation by maximizing the likelihood of the
parameters. A method widely used for this purpose is the EM algorithm, which always
converges [28]. The use of the EM algorithm is roughly equivalent to the problem of fitting
P(di, wj) to n(di, wj), but ensuring a maximum likelihood estimation of the sufficient (not
necessarily minimal) parameters θ and ϕ.

In fact, the EM algorithm is a consequence of the Jensen inequality [29]. For a function,
Q, such that

Q(M(θ)|θ) ≥ M(Q(θ|θ)) (4)

where M is a map, and in statistics usages, is the expectation, usually written as E. Then, for
the log-likelihood L, L(M(θ)) ≥ M(L(θ)) occurs, defining a monotonically increasing
sequence reaching the limit if M(θ) = θ. In the PLSA case, the parameters (which are not
provided by the model in a closed manner) are the mixtures of relations (2) or (3).

The EM algorithm supposes two steps: expectation and maximization. Expectation
(E-step) is computed on the log-likelihood

L = ∑
i

∑
j

n(di, wj) log P(di, wj) (5)

and for parametrization, (2) or (3) takes the forms

L = ∑
i

∑
j

n(di, wj) log
{

P(di)∑
k

P(wj| zk)P(zk| di)
}

(6)

= ∑
i

∑
j

n(di, wj) log
{

∑
k

P(zk)P(wj| zk)P(di| zk)
}

(7)

for the asymmetric and symmetric cases, respectively.
In both cases, after several manipulations, the posterior

P(zk| di, wj) =
P (zk, di, wj)

P (di, wj)
(8)

has expectation

E(L) = ∑
k

∑
i

∑
j

P (zk| di, wj) (9)

and the expressions for the posterior P(zk| di, wj) for both formulations are shown in Table 2.
The calculation of P(zk| di, wj) and E(L) presents several complications related to

the meaning of the primed index appearing in the formulas of Table 2. Interpretation
requires consideration of the expression P(zk| di, wj) of Formula (8). For computational
purposes, the object supporting the data structure is an array containing the matrices with
the estimates of P(di, wj), fixing the values of zk for each one. Then, each element of the
array is a matrix taking the form

[P(di, wj)]ijk′ = vec
[
P(·| zk′)

]
vec
[
P(·| zk′)

]t
(k′ = 1, 2, · · · ) (10)

indicating the primed index that is fixed (it should be noticed that a vector multiplied by
its transpose is a matrix. In this case, there are k′ = k matrices). The vec notation has been
used to better identify the scalar products of the vectors of probabilities P(·| zk′) obtained
by varying zk. The entire array is
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[P(di, wj)]ijk =
[
[P(di, wj)]ij1]

∣∣∣ [P(di, wj)]ij2

∣∣∣ . . .
∣∣∣ [P(di, wj)]ijK

]
(11)

Maximization (M-step) uses Lagrange multipliers, the correspondent derivatives, to
obtain the solutions maximizing probabilities after eliminating them. These solutions for
each formulation yield the generative models for the figures shown in Figure 1.

Table 2. PLSA Solutions. PLSA solutions are the M-step formulas. For a formulation, select a
value of k and initialize the M-step equations. Then estimate expression P(zk| di, wj) and recom-
pute n(di, wj). The expression (9) increases in each step. The iterative process finishes achieving
certain previous conditions.

Asymmetric Formulation Symmetric Formulation

E-step
(

P(zk| di, wj)
)

P(wj, zk)P(zk, di)

∑k′ P(wj, zk′ )P(zk′ , di)

P(wj| zk)P(di| zk)P(zk)

∑k′ P(wj| zk′ )P(zk′ )P(di| zk′ )

M-step

P(di) =
∑j ∑k n(di, wj)P(zk|wj, di)

∑j ∑i ∑k n(di, wj)P(zk|wj, di)
P(zk) =

∑i ∑j n(di, wj) P(zk|wj, di)

∑i ∑j ∑k n(di, wj)P(zk|wj, di)

P(wj| zk) =
∑i n(di, wj)P(zk|wj, di)

∑j ∑i n(di, wj)P(zk|wj, di)
P(wj| zk) =

∑i n(di, wj)P(zk| di, wj)

∑i ∑j n(di, wj)P(zk|wj, di)

P(dj| zk) =
∑j n(di, wj)P(zk|wj, di)

∑j ∑i n(di, wj)P(zk|wj, di)
P(zk| di) =

∑j n(di, wj) P(zk|wj, di)

∑i ∑j n(di, wj) P(zk|wj, di)

Figure 1. Reproduced form [17]. PLSA generative models; (left) panel is the asymmetric formulation:
(i) select a document di with probability P(di); (ii) pick a latent class zk with probability P(zk| di); (iii) gen-
erate a word with probability P(wj| zk); (right) panel is the symmetric formulation: (i) select a latent class
zk; (ii) generate documents and words with probabilities P(di| zk) and P(wj| zk), respectively.

The execution of adjustment of probabilities, in both formulations, involves selecting
a value for k, initializing the distributions appearing in (2) or (3), and computing the E-step
and M-step in an iterative process in which P(di, wj) is recalculated until a certain condition
is achieved. Hofmann has noted that the iterative process can end when there are no
changes in the qualitative inputs, a condition called early stop [3]. A detailed, accessible
derivation of the PLSA formulas and an introductory discussion of the EM algorithm
convergence can be found in [27].

Another point to consider is what PLSA solutions are. In many cases, providing words
or documents that best identify each aspect or latent variable would be more appropriate.
Then, the numerical values of the columns of the involved matrices are ordered, and
the corresponding labels are substituted, thus revealing the most relevant items in the
respective latent class. While the specific solution type may not be explicitly stated, its
clarity within the context guides the provision of the appropriate result. As an example, we
provide two cases related to image study. For classification purposes, qualitative solutions
are more suitable, and numerical solutions are more suitable for spatial co-occurrence
analysis on image regions.

Example 1. An example provided by Hofmann is reproduced below to illustrate the concept of word
rank for interpreting “the 4 aspects most likely to generate the word“ segment, “derived from a
k = 128 aspect model of the CLUSTER document collection. The displayed word stems are the most
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probable words in the class-conditional distributions P(wj| zk), from top to bottom in descending
order” [3].

Aspect 1 Aspect 2 Aspect 3 Aspect 4

imag video region speaker
SEGMENT sequenc contour speech

color motion boundari recogni
tissu frame descript signal

Aspect1 scene imag train
brain SEGMENT SEGMENT hmm
slice shot precis sourc

cluster imag estim speakerindepend
mri cluster pixel SEGMENT

algorithm visual paramet sound

In addition, we provide an artificial example to illustrate the effects of the selection of k,
consisting of a corpus of 5 (d1 to d5) documents containing letters {a, b, c, d, e, f }, which we
assimilate into words in a thesaurus. The co-occurrences’ data frame N is

N(di, wj) =



a b c d e f

d1 3 4 0 0 0 0

d2 3 3 0 0 0 0

d3 1 3 4 1 0 0

d4 0 0 2 4 0 0

d5 0 0 0 0 3 4


and the frequency matrix n

n(di, wj) =


0.086 0.114 0 0 0 0
0.086 0.086 0 0 0 0
0.029 0.086 0.114 0.029 0 0

0 0 0.057 0.114 0 0
0 0 0 0 0.086 0.114


If, in this example, the objective is to classify documents by subject (or specialized words with

the correspondent matters). A simple visual inspection indicates that they are 3. For the symmetric
case formulas, running p = 1000 iterations in each case, the results are
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for k = 2 P(di| zk) =



0 0.411
0 0.588

0.333 0
0.278 0
0.167 0
0.222 0





c b
d a
f −
e −
− −
− −



for k = 3 P(di| zk) =



0 0 0.462
0 0 0.538

0.545 0 0
0.454 0 0

0 0.429 0
0 0.571 0





c f b
d e a
− − −
− − −
− − −
− − −



for k = 5 P(di| zk) =



0.007 0 0 0.462 0
0.347 0 0 0.538 0
0.646 0.333 0 0 0

0 0.667 0 0 0.
0 0 0.538 0 0.419
0 0 0.462 0 0.581





c d e b f
b c f a e
a − − − −
− − − − −
− − − − −
− − − − −


The characters’ matrices are the ordination of the most likely words identifying each latent

variable (informally, the subjects in our toy example). Lines represent probabilities close to zero and
are not useful for classification. The effect of selecting k is clear in the comparison of columns 3 and
5, which are equivalent (for k = 5).

3. Criticism: LDA and Reformulations

Hofmann’s work is not a closed contribution, and it has given rise to several extensions.
Despite the solidity of his contribution, the good statistical properties, and the clarity of
the results, it presents several problems. They are methodological, computational, and
related to their applicability in IR. These problems have given rise to reformulations and
algorithms of different nature, broadening their applicability.

Methodological issues are inherent to the data structure that Hofmann postulates.
Such issues could be related to the type of distributions, the lack of statistical significance
of the latent variables, and the adjustment of the probabilities with the EM algorithm. Hof-
mann’s original formulation assumes data structures compatible with Laplace’s definition
of probability. This definition limits the applicable data to counts, frequencies, and contin-
gency tables. The distributions that support these data are discrete. In the multivariate case,
they are multinomial, and the marginal of a multinomial is a binomial, providing a rigid
model. Another problem is the lack of statistical content from the latent variables. This
problem is related to the conception of LSA and does not allow assigning distributional
significance to the latent variables. Adjusting the probabilities with the EM algorithm
aggravates the problem: the likelihood increases with the number of components (or latent
variables). Furthermore, the slow convergence of this algorithm, particularly in multi-
variate environments, has led to several affirmations. These include that the convergence
limit does not necessarily occur at a global optimum [30], and it may not converge to a
point but can converge on a compact set [31], thus yielding sub-optimal results for the
PLSA sub-optimal results [32]. In addition, sparse data structures can cause failure in
convergence [33].

Other issues are related to the computational problems. These problems are inherited
from the slow convergence of the EM algorithm. In the PLSA case, it is aggrieved for need-
ing to handle 3-dim objects. Thus, the occupied memory space is important. These problems
seriously compromise the applicability of PLSA against large data structures.
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As an IR technique, the PLSA cannot assign probabilities to unseen documents.
This problem is a consequence of the Bayesian nature. Other difficulties are related to
synonymy and polysemy. These problems complicate the pre-processing step, which is
aggravated by the absence of distributions of the discrete unobserved entities. The use
of hierarchical models to address these problems are the techniques briefly described in
Section 3.1 and they have seen great development in recent years.

3.1. Latent Dirichlet Allocation

One of the first criticisms was noted by Blei, who has argued that Hofmann’s work is
incomplete in that it provides no probabilistic model at the level of documents. This incompleteness
leads to several problems: (i) the number of parameters grows linearly with the size of the corpus,
thus resulting in severe problems with overfitting, and (ii) how to assign probabilities to a document
outside the training set is unclear. LDA has been proposed to solve this problem [23].

LDA introduces a generative Bayesian model that maps documents on topics such that
these topics capture the words of each document. Each document is described by a topic
distribution, and a word distribution describes each topic. Introducing θ, a k-dimensional
Dirichlet with parameter αk, and β as an array of initialization with values P(w| z), and
maintaining the notation of Formulas (2) and (3),

P(θ, z, w| α, β) = P(θ| α)∏
k

P(zh| θ)P(wj| zk, β)∗ (12)

LDA is also a generative model. The probabilities of a document and a corpus are ob-
tained by marginalizing (integrating) over the complete collection. Further improvements
to the model, also provided by Blei, include hierarchical LDA [23] and dynamic LDA [34].

LDA is a closely related technique that is different from PLSA. Its criticisms provided
a starting point for several developments. Formal equivalence with the PLSA has been
shown by [35] and has led to several proposed solutions to those problems in the case of the
PLSA. Although LDA is not our review’s objective, we indicate further developments of
this technique exist. We underline Teh’s studies in which he proposes a non-parametric ap-
proach of mixture components with a hierarchical Bayesian distribution [36]. A hierarchical
nested topic model is described in [37], and more recently in [38].

3.2. Other Formulations

There are reformulations of the PLSA, mainly arising from these criticisms. These de-
velopments have the objective of relaxing distributional hypotheses and overfitting prob-
lems. They also find the applications described.

3.2.1. Probabilities for Unseen Documents

The PLSA algorithm can be executed for the entire dataset, providing results in the
same manner as probabilistic clustering methods [39], Chapter 3. However, to exploit the
predictive power of the PLSA, the model must be fitted to the available data (or training
phase). Predictions for new observations are made by simply comparing them with the
trained dataset.

In the prediction phase, we cannot assign probabilities for documents that are not in
the training phase, because non-zero probabilities are needed. This problem has been solved
in [40] by splitting the dataset into a training group with the di observed documents and
the new unobserved documents q ∈ Q. By using probabilities P(zk| di) instead of P(di| zk)
in (2) and expanding the logarithm, Equation (6) can be rewritten as

L = ∑
i

∑
j

n(di, wj) log P(di) + ∑
i

∑
j

n(di, wj) log P(wj| di) (13)

To avoid a zero probability of unseen documents in the training phase, Brants has
introduced P(di) > 0, stating that the log-likelihood can be maximized, taking into account
only the second term of (13), and for the new documents likelihood L is
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L(new)(Q) = ∏
j

∏
i

P(wj| qi) (14)

Brants has highlighted that Equation (14) does not represent the true likelihood, but if the
goal is likelihood maximization, the same parameter setting is found as that when the true likelihood
had been maximized [40]. The same article has proposed other methods for estimating
likelihood based on marginalization and splitting. Brants also proposed PLSA folding-in,
a more refined derivation of this technique [9]. A further improvement, which is more
computationally efficient and is protected by a patent, is [41], involves estimating the
log-likelihood by spiting the dataset in the training set, denoted n′(di, wj), and introducing
the unknown documents one by one as the second term of AUTHOR: This is a direct quote.

L ∝ ∑
i

∑
j

n′(di, wj) log P(di) + ∑
i

∑
j

log P(wj| di) (15)

In the symmetric formulation, after training on the documents by using the formulas
given in Table 2, new documents can be classified by simply alternating the expressions
given by [10]

P(zk| di, wj) =
P(zk| di)P(wj| zk)

∑k′ P (zk′| di)P(wj| zk′)
(16)

P(zk, di) =
∑i n(di, wj)P(zk| di, wj)

∑i ∑j n(di, wj)P(zk| di, wj)
(17)

In this case, binary data can be handled by entering a matrix A, such that

[A]ij =

{
1 if i is annotated to j
0 otherwise

(18)

substituting n(di, wj) in equations of Table 2.
PLSA can also be used as a semi-supervised learning tool in a process known as

semi-supervised PLSA [42]. Using this mode requires entering labeled and non-labeled
data in the EM iterative process and splitting the dataset into a portion in which the
labels are assigned and a portion in which the labels are not assigned. A measure of
similarity performs the rest of the task. Another related strategy involves introducing the
link functions must-link and cannot-link in the training phase [43].

3.2.2. Extension to Continuous Data

In the context of collaborative filtering, Hofmann has also provided a generalization of
the PLSA for continuously evaluated responses as an alternative to the neighbor regression
method [11]. The method construction assumes a set of items y rated v for a subset of
persons u. Then,

P(v| u, y) = ∑
z

P(zk| u)P(v| µyz, σyz) (19)

where µ and σ are the expectation and variance, respectively, and assuming normality

P(v| u, σyz) =
1√

2πσyz
exp

{
−

(v− µyz)2

2σ2
yz

}
(20)

which is fitted with the EM algorithm.
Within the semantic image analysis field, the visual entities from a database are assim-

ilated with the words from a thesaurus [44], but as discrete entities. This variant constitutes
the Gaussian mixture model PLSA [45], and it is a normal distribution of the descriptors
f (the most relevant visual words) such that fh ∼ N( fh| µk, Σk) (h the most relevant
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visual words). Horster noted that this expression is difficult to train and has proposed
the alternative models shared Gaussian words PLSA and fixed shared Gaussian words
PLSA. A more general treatment in which normality is postulated for the mixtures P(w| d)
is reported in [46].

This variant finds direct application in various domains, including missing data
prediction [47]. The idea of Ma is to use the correlation coefficient as a measure of similarity.
Then, a convex combination of the similarity plays the role of P(di, zk) in Equation (3). An
application for unsupervised image classification in the presence of noise is [48].

3.2.3. Tensorial Approach

Non-negative tensor factorization was introduced by [49] for n-way data structures.
Peng has established the relationship with the PLSA in [50], noting that allows for handling
more complex data structures. The objective is to better estimate the number of latent
variables or clusters.

Peng has introduced a structure of the type

[F]ijl ≈ P(di, wj, xl) (21)

called a tensor, and now being xl (l = 1, . . . L) other probabilistic observations. The
extension of these ideas to the PLSA is obtained by considering the factorizations

P(di, wj, xl) = ∑
p

P(di| xp)P(wj| zr)P(zk| zr)P(xp, yq, zk) (k < r) (22)

= ∑
r

P(di| xr)P(wj| xr)P(zk| xr)P(xr) (23)

Those decompositions are the tensorial cases of the asymmetric and symmetric formu-
lations given by Formulas (2) and (3).

Two methods exist for adjusting Formulas (22) and (23): parafrac [51] (parallel factor
analysis), assuming a linear approximation of the fibers (the one-dimensional structures
that can be extracted from P(di, wj, zk)) and Tucker [52], a multiway PCA. Peng has
noted that both methods provide different results even when the objective function is the
same [50], indicating that the method is useful for determining the number of latent factors.
An alternative formulation has been proposed by [53].

This approach finds applications in the study of transportation problems. The study
of urban mobility involves identifying the vector x with the trips of a type of passenger
(classified by age, transport zone, and time) [54]. Another similar application referring to the
study of air traffic takes this vector as the locations on the aircraft route, including landing
and departure times [55]. These studies greatly simplify the parametric relationships that
appear in geostatistical studies. Syntactic information in the vector allows for the study of
syntactic structures [56]. For details and examples, we refer readers to [57], Chapter 7.

3.2.4. Overfitting

Randomized PLSA arose to address the problem of overfitting [58]. Taking a random
fraction of the trained datasets, the method proceeds by folding the training dataset T =
{T1, . . . , TΩ} and the fraction Tl (Tl < Ω) to run the PLSA algorithm with the l samples.
The average of the results is the provided output.

The basis for this statement is Ho’s study [59] on the subspace method. This method
takes random subsets of the support vector machine to avoid computational complexity.
In addition, the derived algorithm has been reported to be slower than the conventional
PLSA implementation.

Although not explicitly referenced in this work, this method constitutes one of the
foundations of the applications of PLSA in areas of TL. It serves as an alternative approach
to consider the most relevant components that affect convergence.
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3.2.5. Discrete and Continuous Variables Case Equivalence

One of the relevant issues in extending the PLSA to continuous data is establishing the
conditions under which the obtained probabilities are equivalent. Smoothing techniques,
which are classic in statistics, are useful for achieving this result. These techniques involve
considering that the transformation (1) allows one to write

P(di, wj) = P(di|wj)P(wj) (24)

where ∑j P(di|wj) = 1.
If wj represents observation variables on which the di observations are continuously

evaluated, and are represented as the vector x = (x1, . . . , xm)t (where they are not discrete
documents), the density can be written as

P(xi, wj) ≈ f̂Φ, h(x|wj)P(wj) (25)

where f̂Φ, h(xj|wj) is the density of each column of the matrix associated with the data
frame (1). It should be noticed in this case that P(wj) is a weight function with a uniform
Probability Density Function (pdf) (otherwise, it will provide different importance to the
observed variables).

Then, for each single column, and omitting the sub-index j for simplicity,

f̂Φ, h(x) =
1
n ∑

i
Φ
( x− xi

h

)
(26)

and Φ is a kernel density function (kdf), valued in a neighborhood of radius h, also known
as the bandwidth of a point, xi ∈ x, and n is the number of mixtures taken for the estimate f̂
that approximates f at x.

The equivalence between (24) and (25) is achieved by taking a triangular kernel,
defined as [60] and is illustrated in Figure 2.

Figure 2. Triangular distribution. The use of triangular kernel has been investigated by [60,61],
stating that it corresponds to a discrete pdf, while it is exposed as continuous in [62], Chapter 13. This
question depends on the conditions of the definition of the variable domain and its support.

Φ(x⋆; h) =


h− | x− xi|

h2 (if x⋆ − h ≤ x ≤ x⋆ − h)

0 otherwise
(27)

For the grid (the values at which the density is evaluated, or observed), and writing the
difference | x− x⋆| = x⋆ + | h| x⋆ for h = 1, the interval [x⋆ − h, x⋆ + h] contains a single
point. Then

Φ(x⋆; h) = xi (28)

with density estimate at xi ∈ x

f̂ (xi, h) =
xi
nr

(29)
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with nr being the number of observations with value xi. The smoothed density is

f̂ (x; h) =
1
n

(
f̂1(x1; h) + · · ·+ f̂n(xn; h)

)
(30)

has multivariate density

P(di|wj) =

{
N(di/ ∑i di, wj) if di and wj ∈ Z+

[ f̂ (xj=1|w1)| . . . | f̂ (xj=n|wn)] otherwise
(31)

This equivalence is proposed in [12] in the context of kernelization and using matrices
of non-negative entries in the probabilistic space to provide a unified treatment for data
of different kinds. An introduction to smoothing methods is [63], which provides many
examples and code for its execution.

3.2.6. Inference

A development allowing inference (in the statistical sense of the term, which means
confidence in the results) is [64]. The procedure uses the (2) relationship. Following the
notation used, Tao introduces the variational

P̂(di|zk) = P(di|zk)− αP(di|zk) (α ∈ R) (32)

and proposes the use of the χ2 statistic

χ2 =
1
D ∑

i
∑

j

(
P(di|zk)

1/2 − P̂(di|zk)
1/2

σij

)2 (
s.t. D = ∑

i
di

)
(33)

This study is aimed at biological applications, specifically in biological imaging spec-
troscopy for the identification of biological tissues, reporting that the results depend on the
dimensionality of the model. Tao reports a high significance of the results.

3.3. Extensions Significance

PLSA in the classical sense (it does not incorporate the formulations from the NMF)
reaches its maturity by solving some of the problems of its original formulation. In this
sense, the most seminal papers are the foundational one [3]; the studies by [40], assigning
probabilities to unseen documents; the extension to continuous data by [11] and the study
addressed to avoid overfitting by [58]. Moreover, the tensorial approach of [50] is key, as it
opens doors to numerous applications.

4. The Landscape of Applications

According to our bibliographic searches (Web of Science, Scopus, Arxiv, and Google
Scholar), there are a relatively large number of articles based on the PLSA. It has suc-
cessfully spanned many research areas, as shown in Table 3. These applications rely on
other interpretations of Formulas (2) and (3). The percentage of studies in each area is
shown in Table 3 and Figure 3, a timeline. Also, the methodological studies are described
in further sections.

Table 3. PLSA Research Areas.

Discipline Research Area %

Engineering (43%)
Mechanics & Robotics 35

Acoustics 4
Telecommunications & Control Theory 3

Materials Science 1
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Table 3. Cont.

Discipline Research Area %

Computer Science (34%)

Clustering 18
Information retrieval 9

Networks 4
Machine learning applications 3

Semantic image analysis (10%)
Image annotation 4

Image retrieval 3
Image classification 3

Life Sciences (5%)
Computational Biology 2

Biochemistry & Molecular Biology 2
Environmental Sciences Ecology 1

Methodological (4%) Statistics & Computational Techniques 4

Fundamental Sciences (2%) Geochemistry & Geophysics 1
Instrumentation 1

Other Applications (2%) Pain Detection 1
Sentiment Analysis 1

Figure 3. Landscape of PLSA applications. Practical orientation studies according to the time line.

4.1. Engineering

Engineering is a wide field of applications, which we consider separate from infor-
mation engineering or computer sciences. The applications of the PLSA to this field rely
on its ability to handle discrete entities as words. Studies related to engineering appear in
mechanics and robotics, acoustics, telecommunications and control theory, and materials
science, among others.

In mechanics and robotics, the necessity arises to establish a dynamic vocabulary
for mapping the machine workplace [65]. Evaluations of human-machine interaction
learning [66], indicate that results achieved with the PLSA are better than those obtained
with other methods.

PLSA finds application in the area of communications and Control Theory as a filtering
technique to separate the characteristics of a signal from those that are not wanted or
that do not provide information. A pioneering study in this area is [67], which uses the
technique to get a probabilistic filtering for the dynamical parameters. Another study
is [68], which derives a polynomial from terms involving Lagrange multipliers, reporting
that it stabilizes communications between machines. Ref. [69] uses the method to obtain a
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statistical distribution of the most relevant latent variables. Ref. [64] introduces a metric for
robotics signals.

In acoustics, relevant studies include [70]. This study is oriented to capture relevant
acoustic information, being influential in related studies that use LDA [71] for developing
audio signal recognition algorithms [72].

Materials science applications are in [73] that involve the identification of keywords
within synthesis procedures, clustering them into distinct topics. Classification techniques
may be used on these topics to make groups of materials based on their synthesis steps,
reporting accurate results. A related study is [74] proposing the Pretrained Language
Models for learning plausible materials for industrial components.

Other engineering applications of PLSA include minimizing the energy extracted from
a power network [75]. In this case, the algorithm provides estimates for forecasting. In the
field of quality, the PLSA allows the evaluation of quality when interpreting probabilities
as automated scoring [76]. The experiments carried out by Ke provide results very similar to
those of a human operator.

Applications in mechanics and robotics involve labeling observations. It is advisable
to select the significant ones to avoid noise in applications that do not include image
processing. The same occurs in the areas of acoustics and material identification.

4.2. Computer Science

Within computer science, the PLSA influences various types of applications such as
clustering, computer networks, and ML.

There are many types of models for information retrieval. They can mainly be classified
into those based on logic and those based on statistics, with the PLSA being a reference for
the latter. They include syntactic structure study, quickly examined in [77].

Clustering is the formal study of algorithms and methods for grouping, or cluster-
ing objects according to measured or perceived intrinsic characteristics or similarity for
purposes such as classification of underlying data structures, natural classification, data
compression, and summarization. Clustering techniques are important in Computational
Engineering. Identifying latent variables with clusters allows the use of PLSA as a cluster-
ing technique. This is a probabilistic classification or soft clustering in which each element
belongs to more than one category. Early studies on this [40] report good results for text
segmentation and polysemy detection, as well as problems with overfitting. Another early
study is that of [78], which reports an improvement in the interpretability of the results.
PLSA also allows co-clustering, which allows simultaneous clustering of the rows and
columns of the data frame containing the data [79,80].

Applications of information retrieval can be found in speech recognition, introducing
a score concatenation matrix [81,82], relevant in cybersecurity [83]. Moreover, collaborative
filtering techniques, leverage user ratings to construct matrices for implementing PLSA al-
gorithms [84]. Ref. [67] introduces a new model, a temporal latent semantic space, to keep
track of the user’s interests changes. Keyword analysis from webs related to certain topics
and sentiment analysis (involving a system of definitions on which the users’ opinions and
other instances are analyzed as co-occurrences) is also used [85,86]. Moreover, an alterna-
tive algorithm based on PLSA is described in [87], where image and textual information
are explained.

In the field of computer network design, it allows for analyzing the underlying struc-
ture in communications systems, providing information in heterogeneous networks [88],
and reporting that the PLSA is a flexible tool for different topologies. Ref. [89] reports that
this technique significantly improves the baseline topic models.

The use of PLSA in pure branches of machine learning involves identifying entities
that make PLSA techniques find application in a previously trained model. In the field
of computer security, it finds applications in the classification of software changes [90].
Uses in cybersecurity are due to [83]. In both cases, it involves labeling the words in the log
files. Yan report good results without the need for relearning. Efficiently reusing software
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is analyzed by [91], reporting that they can save the cost of developing the software from
scratch. Another type of application is the detection of cyber attacks. A compilation of
such methods can be found in [92], with applications designing more robust systems [93]
or analyzing communication networks [94].

In clustering applications, all observations must be considered, but in IR, the words
without semantic information must be excluded. They are the stop words. In other cir-
cumstances, pre-processing is suggested to prevent large amounts of data, which can lead
to overfitting.

4.3. Semantic Image Analysis

Computer vision is one of the areas that currently receives great attention. This field
has its own methodologies for data acquisition (cameras and their variants) that involve
preprocessing. PLSA provides several solutions in this field and can be found in Tian’s
review paper [8]. This study is important because it reviews a researcher with contributions
on the subject. In addition, it is a review exclusively focused on computer vision with the
PLSA. Tian classifies contributions into three types: image annotation, image retrieval, and
image classification.

Image annotation is intended to understand images, involving generating textual
words to describe the content [95], requiring image segmentation (edge and region detection
to separate objects). Currently, it finds civil applications on the internet image filtering [96]
and stabilization of images with jittering [97].

Image retrieval is a procedure of ranking images in a database according to their posterior
probabilities of being relevant to infer which visual patterns describe each object [8]. Pioneer-
ing studies on this were conducted by [98–100], who studied its use in clinical image
diagnosis, and [101], who applied it to facial expression recognition.

The recognition of observed images with different perspectives [102], image classifi-
cation [103] has also enabled pain recognition [104] or autonomous driving [105]. In this
case, the results obtained from the PLSA were pioneering among those that use probabilis-
tic models.

4.4. Life Sciences

PLSA life sciences applications come from computational biology, also known as
bioinformatics, which seeks information on genetic chains, molecular biology, and en-
vironmental sciences. This field of applications is of interest because of its recent rise.
Moreover, it is conceptually easy to implement identifying biological categories to words
and classifying facts as documents. Latent class variables provide a semantic explanation
of the co-occurrences.

Refs. [10,106] present examples of its use in Computational Biology, identifying ge-
nomic sequences with documents and some classes of genotype characteristics as words.
The study by [107] is devoted to the nuclear prediction and localization of proteins. Fur-
thermore, a good example of its ecology applications is the study by [108], which relates
environmental aspects with socio-economical parameters. Another class of applications is
on neurodegenerative diseases, identifying common and non-common symptoms [109].

Strings of characters linked to molecular sequences are recognized in bioinformatics
and related fields. The few significant matches can be skipped.

4.5. Fundamental Sciences

The fundamental sciences, except for statistical mechanics and quantum mechanics,
within the current paradigm, are characterized by the causal laws that regulate the facts they
explain. However, some branches, due to their complexity in terms of the number of factors
and their interactions, model the phenomena more simply by using statistical techniques.

Applications in fundamental sciences include geophysics [110], instrumentation [111],
and spectroscopy [112]. A comparative study of the PLSA, latent Dirichlet allocation (LDA),
and other techniques within the framework of spectroscopy is presented in [113].
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4.6. Other Applications

Other applications are pain recognition [104] and facial expression recognition [114].
These applications use semantic image analysis techniques. In these cases, the documents
are identified with the sensations. For these treatments, trained data must previously be
available on all the sensations and feelings that must be considered.

5. NMF Point of View

The algebraic object that supports the probabilities of (2) or (3) are matrices with
restricted entries to the set [0, 1], and they are non-negative. To construct such matrices, the
transformation (1) involves identifying N(di, wj) to a multivariate matrix X. The matrix
Y containing the probabilities P(di, wj) is obtained with the transformation Y = X/ ∑ij X.
This is a special case of probabilistic transformation in which probabilities are in Laplace’s
sense or relative frequencies. Also, from Formula (25), the use of smoothing lets to handle
more general data structures.

For matrices obtained in this way, the standard formulation of the NMF is [57], p. 131

[Y]ij = [W]ik[H]kj + [E]ij (k = 1, 2, . . . ) (34)

≈ [W]ik[H]kj (35)

where E is the error matrix and makes the NMF suitable for its use in alternative for-
mulations of the PLSA [115] (Notation in areas with strong mathematical content is non-
trivial and has a secular history [116]. The notation often determines conceptual devel-
opments [117]. The classical matrix notation, attributed to Cayley [118], among others,
remains useful today. However, in the case of NMF, it is more convenient to write, at least
in elementary statements, the product WH = ∑k wikhkj as

[WH]ij = [W]ik[H]kj

making the dimension of span space explicit).
Many authors attribute the introduction of this technique to Paatero’s studies [119],

while others attribute it to Lee and Seung [120]. Both approaches are not equivalent.
While Paatero uses the Euclidean norm as the objective function, Lee and Seung use the
I-divergence (distances d are maps that satisfy, for vectors a, b, and c, the following axioms:
(i) symmetry, d(a, b) = d(b, a); (ii) identity d(a, b) = 0 if a = b; and (iii) (triangular
inequality) d(a, b) ≤ d(a, c) + d(c, b). A divergence D does not satisfy one of these
axioms, usually symmetry, which is more suitable for measuring how densities are similar).
Furthermore, Lee and Seung’s study focuses on the clustering problem. This attribution
creates conceptual errors in many works, identifying NMF techniques for classification.
A previous and algebraically rigorous and sound formulation of the NMF is a debt of
Chen [121]. A brief introduction to NMF as an optimization problem can be found in [122],
Chap. 6; a more standard introduction is provided in [39], Chap. 7.

On the other hand, the SVD emerged from the efforts of several generations of math-
ematicians, dating back to the nineteenth-century studies of Beltrami [123], and inde-
pendently by Jordan [124]. This development continued with more recent contributions
regarding inequalities between eigenvalues and matrix norms by Ky-Fan [125,126]. Cur-
rently, the SVD plays a central role in algebra, constituting a field known as eigenanalysis.
It serves as a foundation for matrix function theory [127] and is also fundamental to many
multivariate methods. This research field remains active. Currently, it is formulated as [122],
p. 275.

Theorem 1. Let X ∈ ℜm× n (or Cm× n); then orthogonal (or unitary) matrices U ∈ ℜm×m (or
U ∈ Cm×m) and V ∈ ℜn× n (or V ∈ Cm×m) exist, such that

X = UΣVt (or X = UΣVH) Σ =

[
Σ1 0
0 0

]
(36)
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where Σ1 = diag(σ1, . . . , σr) with diagonal entries

σ1 ≥, . . . ,≥ σr > 0 r = rank(A)

One of the first proofs can be found in [128]. The theorem as given is known as full
rank SVD. The approximation for r′ < r is known as low-rank approximation, assuming an
approximation for (36) [129]. In the PLSA context, connected with probabilities, only real
matrices are used.

Hofmann has related PLSA (in the symmetric formulation case) to SVD in conference
proceedings [1,3], writing the formal equivalence

[U]ik ∼ P(di| zk) (37a)

diag(Σ)k ∼ P(zk) (37b)

[V]kj ∼ P(wj| zk) (37c)

where U, diag(Σ), and V are related to the SVD of the matrix Y.
The relationships between the PLSA and the SVD have severe restrictions because the

data are frequencies obtained from counts obeying multinomial laws, whereas SVD exists
for every matrix of real entries. In addition, the conditions for the degree of adjustment
of n(di, wj) to Y are unclear since the approximation bound is not defined. Also, the
possibility of the use of smooth techniques for cases where data are not frequencies is
omitted. The relations (37a)–(37c), first written by Hofmann, were considered a mere
formal equivalence [3,10].

Several attempts focusing on the equivalence between PLSA and SVD, in light of
NMF, have aimed to build more rigorous relations. The explicit relationship between PLSA
and NMF, stated by Gaussier, minimizes I-divergence (Several authors have referred to the
Kullback–Leibler (KL) divergence as

DI(Y∥W H) = ∑
i

∑
j

(
[Y]ij log

[Y]ij
[W H]ij

− [Y]ij + [WH]ij

)
which we prefer to call I-divergence or generalized KL-divergence, according to [57],
p. 105 reserving the term KL divergence for the mean information, following the original
nomenclature of Kullback, S. and Leibler, R.A. [130], and given by Formula (46), with
non-negative constraints

[·]ij ≥ 0

∇D(·) ≥ 0

[·]ij ⊙∇DI = 0

known as Karush–Kuhn–Tucker (KKT) conditions, where ⊙ is the Hadamard or element-
wise product. KKT conditions are a widespread optimization method when divergences
are used.

Solutions are [120]

[W]ik ← [W]ik ⊙
[YHt]ik[

WHHt]
ik

(38)

[H]kj ← [H]kj ⊙
[WtY]kj[

WtWH
]

kj
(39)

and the matrix quotient is the element-wise entry division.
After adjusting Equation (45) in an iterative process, consisting of selecting a value of

k, switching between (47) and (48) until a satisfactory approximation degree is achieved,
Gaussier has introduced diagonal matrices D1 and D2 of suitable dimension



Technologies 2024, 12, 5 18 of 39

[W H]ij = [
(
WD−1

1 D1
)
]ik [
(
D2D−1

2 H
)
]kj (40)

= [
(
WD−1

1
)
]ikdiag [

(
D1D2

)
][
(
D−1

2 H
)
]kj (41)

stating that any (local) maximum solution of PLSA is a solution of the NMF with KL-divergence
(I-divergence according to the nomenclature herein) [14].

Further work by Ding [131], with the same divergence, has introduced normalization
for matrices W and H, such that the column stochastic matrix W̃ = [w̃1, · · · , w̃K] and the
row stochastic matrix H̃ = [h̃1, · · · , h̃K] are obtained as

w̃k =
wk

∑i wik
= 1 (42)

h̃k =
hk

∑j hkj
= 1 (43)

calling those conditions probabilistic normalization, and writing

Y = W̃DW H̃DH (44)

= W̃S H̃ (s.t. S = DW DH) (45)

where the DW and DH diagonal matrices contain the column sums of the respective sub-
index matrices. Ding has arrived at similar conclusions to Gaussier, and assimilated the
latent variables into the space span of matrix factorization [132].

Conditions for the reverse result are shown in [16] by the KL divergence

DKL(Y∥W H) = ∑
i

∑
j
[Y]ij log

[Y]ij
[WH]ij

(46)

obtaining the solutions

[W]ik ← [W]ik ⊙
(

[Y]ij
[W H]ij

[H]tkj

)
(47)

[H] kj ← [H] kj ⊙
(
[W] t

ik

[Y] ij

[W H] ij

)
(48)

after proof that WH→ Y if k ≥ min(m, n), choosing the diagonal matrix as

t =
diag

(
[WH]tij[WH]ij

)1/2

trace
(
[WH]tij[WH]ij

)1/2 (49)

and arranging the entries of t in decreasing order, with the same permutation on the
columns of W and the rows of H, and obtaining the respective column and row stochastic
matrices F̃ and G̃, indicating that

[WH]ij = [F̃]ik diag(t)[G̃]kj (50)

In this case, factorization (47) reaches the SVD of the orthonormalization of Y (see [133],
p. 24 for the orthonormalization process).

This procedure keeps matrix norms (also row or column norms) [59]. Moreover, mini-
mization of KL divergence is equivalent to maximization of the likelihood in certain cases
(as can easily be seen by expanding the logarithm of the KL divergence as a difference;
while the first term is a constant, the second term is the log-likelihood), however, this is
not exact. The minimization of the KL divergence is known as the em algorithm. In many
cases, the results obtained with both methods are similar. Amari has shown that in the
general case, the em solutions are asymptotes of the EM algorithm case [134]. This study
finds applications in the context of big data for dimensionality control [135]. Further-
more, the study by [26], establishes the number of underlying latent variables which uses
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classical non-parametric statistics for the columns of the data frame. Despite its use of the
I-divergences, this study does not clearly state the transformations that allow for the use of
a divergence to measure differences in the probability space.

The NMF solves the convergence problems of the PLSA. Furthermore, with the help
of the relations (31) allows broader datasets, only restricted to statistical independence.
Another contribution of the NMF is revealing the differences between the symmetric and
asymmetric formulations. Hofmann does not indicate when each formulation is applicable.
However, NMF reveals that the asymmetric formulation is applicable when distributional
information on the latent variables is not needed. Furthermore, this formulation is more
appropriate for the derivation of hierarchical models. However, it cannot be related to
methods that involve PCA as a descriptive technique.

6. Extensions

The possibility to formulate the PLSA from the NMF was early noticed by [3]. For the
symmetric case, modifying the hypotheses on the nature of the data can constitute the basis
for other techniques, furnishing a probabilistic sense. In this section, we present them in
the chronological order of appearance.

6.1. Kernelization

The dot product is used to measure similarity among instances. The transformation
of the scalar products of the observations to a different space (not necessarily of the same
dimension) is called kernelization and, in fact, is a generalization of the dot product,
transforming ⟨ xi1 , xi2⟩ to K(xi1 , xi2). The PLSA symmetric formulation allows for building
a Fisher kernel. This approach, proposed by [3], despite computational difficulties in
supporting messy data, has found practical applications in the analysis of document
similarity [18].

The Fisher kernel is defined as [136]

K(y, yt) = Uθ(y)I−1
F Uθ(y) (51)

where

Uθ(y) = −
∂

∂ θ
log P(y| θ) (52)

the Fisher scores, and

IF = EY
[
UθUt

θ

]
(53)

the Fisher information matrix. This kernel provides an efficient estimator of the posterior [137].
Hofmann’s proposal in [17] is

K(di, d′i) = ⟨ u(di; θ̂)IF(θ̂)
−1; u(dj θ̂)⟩ (54)

= ∑
j

P̂(di, wj)P̂(d′i, wj)∑
k

P(zk| di, wj)P(zk| di, wj)

P(wj, zk)
(55)

by direct computation, and P̂ denotes the documents in which the distance is measured.
A later version is [18], assuming only iid mixtures. In addition, NMF enables the use of
the generalization of the dot product to measure similarity and preserve consistency [12].
A related technique is graph-regularized PLSA [138]. The objective is to classify entities
into topics according to probabilistic criteria to measure similarity.

This kernel finds applications in personalized information filtering, a method proposed
by Hofmann [11]. Applications have also been proposed to obtain relevant visual data in
medical applications [139]. Recent reformulations from the NMF preserving the consistency
properties are [12]. In this study, we show that the Fisher kernel obtained with the NMF
shares the geometric properties of the kernel proposed by Hofmann and illustrates its use as
a classifier in the Support vector machine (SVM) with various data structures, maintaining



Technologies 2024, 12, 5 20 of 39

consistency. We point out the difficulties that this type of kernel encounters in the face of
large data structures.

6.2. Principal Component Analysis

PCA is one of the most extended multivariate and data analysis tools. It can be
considered as a particular case of the SVD, with the terms SVD and PCA sometimes
being interchanged. The objective is to find an orthogonal axis system in Euclidean space,
maximizing the variance. From a statistical point of view, this representation is a descriptive
method. In addition, several attempts have been made to provide a probabilistic sense for
PCA [70,140,141], and establishing a relationship with PLSA seems natural.

From relation (36), and restricted to the case of real matrices

Σ2 =
(
[U]ikΣ[V]ik

)t(
[U]ikΣ[V]ik

)
(56)

relates Σ2 of the SVD theorem to the variance matrix S when Xc is the centered matrix
obtained from X as

[Xc]ij = [X]ij −
[
Jx̄1| . . . |Jx̄n

]
ij

(
with x̄j =

1
m ∑

i
xij for all j

)
(57)

where J is a m × 1 dimension matrix of ones, and the second term relation (57) is the
expectation of X. It is immediate

Σ2 = [Xc]
t
ij[Xc]ij (58)

= E
(
[X]ij − E([X]ij)

)tE
(
[X]ij − E([X]ij)

)
(59)

= S (60)

PCA provides graphical representations for considering the orthogonal projections of
observations on the planes formed by the consecutive pairs of columns of the matrix V,
which are orthogonal as a consequence of the SVD (i.e., Σ1/2V).

The relationship between the planes in which the PCA and the PLSA project entities
was not immediately clear but has been determined in light of the NMF. However, the
column vectors of the matrices of Formula (50) are not necessarily orthogonal but are non-
negative. Interpreting probabilities as coordinates, Klingenberg has introduced simplicial
cones Γ [19]

Γ =
{

yj s.t. y = ∑
j

αjhj with αj ≥ 0 and hj ∈ [H]kj
}

(61)

which is a convex region in the positive orthant. Figure 4 illustrates this transformation.
A formulation known as logistic PCA, described in [142], formulates the likelihood

optimization problem of L(WH)

L = P(Y|WH) (62)

= σ([WH]
∑ij [Y]ij
ij (1− σ([WH]ij)

1−∑ij [Y]ij (63)

being σ(WH) = (1 + exp(WH))−1. Optimizing the likelihood as a Bernoulli pdf with
parameters in [0, 1] leads to a model for dichotomous variables.

A comparison between NMF and the PCA has been provided by [143], who have noted
that the PCA is capable of finding the global minimum, whereas NMF (interpreting the
PCA as a dimension reduction problem and not in the full rank case) does not. In addition,
the ranking of factors in the NMF is not ordered, and all are equally important. Moreover,
non-negative constraints are violated by PCA.

PCA is a classic descriptive technique. It is impossible to describe its many applications
over the last century. At this point, we only point out that the PLSA provides inferential
significance. The dimension reduction is shown in [144].
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Figure 4. PCA and PLSA comparative. Vectors t are the columns of H, which are the transformations
of the Cartesian canonical basis.

6.3. Clustering

The relationships between the PLSA and clustering techniques, which have been
satisfactorily studied, demonstrate the classification capability of the PLSA. PLSA, in fact,
functions as a probabilistic clustering method when latent variables are identified with
clusters, as has been shown in several studies [15,25].

Probabilistic clustering implies that all entities belong to each cluster with different
probabilities (including zero) [145], an idea shared with fuzzy clustering methods [146].
However, in the current state of the art, there are still gaps concerning overlapping.

In addition, PLSA can be used for partitional clustering, relating PLSA and k-means.
This process involves introducing a Bayesian classifier in the matrix W of Formula (48) [24],
after proof, in the conference paper [15], the connection between NMF and PLSA, and
relaxing the assumptions of non-negativity assumptions on the basis matrix [24]. Using
this technique, Ding has obtained graphical representations close to the centroids of the
k-means [131]. In addition, these ideas have been used to build a simplex model based
on topics containing normalized data points [147]. Clustering with the PLSA appears as a
natural application for it.

6.4. Information Theory Interpretation

The link between the PLSA and information theory is apparent when divergences are
used to evaluate the similarity between distributions. It is convenient to recall that the intro-
duction of distances or divergences induces metrics when the Cauchy–Schwartz inequality
(∥AB∥ ≤ ∥A∥∥B∥) is satisfied [129]. Hofmann has noted that Euclidean distance implies
Gaussian distributions [17]. Although this topic is complicated and beyond the scope of
this article, it notably has several implications in the symmetric PLSA interpretation.

The frequentist framework does not provide reliable estimations in some cases, as
noted by Rao in population diversity studies [148,149]. Divergences satisfying the identity
axiom are related to entropy after the introduction of a monotonically decreasing function
J of the differences (or quotient) with parameters θ and ϕ of the same class of densities
(Rao has used Jensen’s difference in [150], defined as J(θ, ϕ) = H(θ, ϕ)− λ H(θ)− µ H(ϕ),
where H is an entropy, and λ y µ scalars such that λ + µ = 1). Based on the assumption
that the parameter space is a sufficiently differentiable manifold, the (dis)similarity between
populations can be estimated with the development [150]

J(θ, ϕ) = J(θ, ϕ) +
∂

∂θ
J(θ, ϕ) +

1
2!

∂2

∂θi∂θj
J(θ, ϕ) + · · · (64)
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for ϕ ≈ θ + dθ the first two terms vanish, and

H =


∂2 θ

∂θ1∂θ1
· · · ∂2 θ

∂θ1∂θn
...

. . .
...

∂2 θ

∂θn∂θ1
· · · ∂2 θ

∂θn∂θn


(
for parameter θ ∈ R s.t. θ = (θ1, . . . , θn)

)

=
∂2

∂θi∂θj
J(θ, θ + dθ) (65)

whereH is the Hessian. So, the geodesic distance gij is

gij = ∑
i

∑
j
H (66)

The expectation of J is the Fisher information matrix (or the inverse variance matrix).
The connection with Σ of (36) and/or (48) is

E(H) = IF (67)

= diag
(
1/σ2

1 , . . . , 1/σ2
K
)

and as a consequence of the Jensen inequality, the bound IF ≥ 1/S appears.
The general treatment for connecting the divergences and underlying distributions

is provided in [150]. This article reproduces the relationships between metrics and distri-
butions obtained by [151]. A more recent treatment based on the concept of kernelization
is [152].

The conference paper [20] explicitly relates the PLSA, when the KL divergence is used,
to Shannon’s information, as a result of expanding the logarithm of KL divergence

DKL(Y ∥W H) = ∑
ij
[Y]ij log [Y]ij − [Y]ij log [WH]ij (68)

and identifying terms

I(Y|WH) = H(Y)− H(W|H) (69)

where I is the mutual information. In this context, there are r! representations (if the entries
are labeled) corresponding to the indistinguishable entities (different entities with the
same values for all observational variables). A geometric interpretation of the information
appears when the equivalence of the likelihood maximization is considered with the
EM algorithm and the KL divergence. These results provide a stronger foundation for the
probability space projection than for the orthogonal projection [153], as Hofmann has noted,
where the divergence is the loss of information [154], p. 185.

Although Chaudhuri used this result for k-means error classification purposes, ob-
taining a bound for the variance expectation, the consequence of relating divergences is a
parametric estimation of the variance.

6.5. Independent Component Analysis and Blind Source Separation

PCA is a variance-based representation and is a low rank approximation by taking
the k largest eigenvectors associated with their corresponding eigenvalues. ICA provides
a measure of independence other than variance, which is useful when the data (signals)
depend on time. The non-existence of correlation means independence only if variables
(column normalized matrix X) are Gaussian, but not in other cases. ICA is introduced to
help in such situations. The objective is to separate observations into the underlying signals.
Figure 5 explains this idea.

In this case, the matrix X is transformed as
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S = BX (70)

where B is a basis. An approximation is obtained by minimizing a divergence between S
and the column-normalized matrix Y.

Figure 5. Independent Component Analysis.Reproduced from [155]. Several signal sources are mixed
in a matrix. Projections are the observed signals. ICA consists of separating noise into observations,
providing the informative or source signals.

Minor components are associated with noise. A set of techniques known as Blind
source separation (BSS) exists to extract them. This approach assumes the consideration
of dynamic systems, in which the entries X = X(t) are time-dependent (t is time) and
centered. The classic approach, attributed to Oja [156], supposes an update of the matrix
W = (w1, . . . , wm)′ with the update rules

W(t) = W(t− 1) + γ(t)x(t)x(t)′W(t− 1) (71)

where γ(t) is a scalar representing the gain parameter, x(t) the systems inputs, and W are
the constraints to maximize E(w′ix), subject to orthogonality.

Orthonormalizing the expression (71) by introducing a suitable array S(t)

W⊥(t) = W(t)S(t)−1 (72)

W⊥(t) is an orthonormal matrix.
Taking into account that the product x(t)x(t)′ is the covariance matrix, which is

represented now as V, the differential equations corresponding are obtained by simple
differentiation of (72)

Ẇ = XX′W−WW′XX′W (73)

= VW−WW′VW (74)

The dot means, as usual, the time derivative. It is stable in the Lyapunov sense (a
linear combination nearby solution differs from a first-order infinitesimal).

Further studies by Chen [157] established that the necessary and sufficient condition
to extract the principal space (principal components) is that the initial condition W(0) must
be full rank. In this case, it occurs that

W(t) −−→
t→∞

W (75)

and introducing W = θD (D is diagonal) to orthogonalize, we have

Ẇ = VWD−WW′VW (76)

in this case, the SVD of W takes the form

W(t) = U(t)D(t)V(t) (77)

with invariance properties for U, D, and V in (77) [154], p. 321.
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A more recent approach focused on detecting minor components, with illustrative
examples, is that by Tan [158].

Related BSS methods have grown remarkably since the formulation of pioneering
studies by Oja [156] and Chen [157], finding applications in physics, engineering, finance,
and medicine, among many others. Without being unfair to the many excellent published
studies, we highlight the one by Cichocki, applicable when the dimensionality of the latent
variable space is unknown [159].

The construction of matrix (77) is used in the PLSA sense in [160] with a non-negative
probabilistic decomposition of the spectra components. In addition, the author reports
that the method is better than PCA. A study in the area of IR combining both techniques
is [161], reporting better and more accurate results than those obtained with ICA.

6.6. Transfer Learning

Transfer learning can be defined as the machine learning problem of trying to transfer
knowledge from a source domain to a target domain [162].

PLSA can be used from the point of view of neural networks for TL purposes by
solving the problem in the case in which the source domain shares only a subset of its
classes (column vectors of the data matrix) for an unlabeled target data domain [21].
The log-likelihood expression is thus [21]

L =∑
i

∑
j

n(dS
i , wj) log ∑

i
∑

j
P(dS

i | z
S
k )P(wj| zS

k )P(zk| zS
k )

+ ∑
i

∑
j

n(dT
i , wj) log ∑

i
∑

j
P(dT

i | zT
k )P(wj| zT

k )P(zk| zT
k ) (78)

where S indicates that a document is in the source, and T indicates the target domain.
A detailed survey introducing neural networks is [163]. A similar study on the issue of
TL was carried out by [164].

Krithara reports that TL with PLSA seems particularly effective for multiclass text
classification tasks with many classes and few documents per class, and the performance
is better than other methods when the percentage of shared classes of source and target
domain is small. Ref. [165] detects changes and anomalies in high-dimensional data.
Ref. [166] analyzes purchase behavior.

6.7. Neuronal Networks

Neural networks (NN) are a set of techniques based on the idea of the perceptron, a
mathematical entity that simulates the behavior of a biological neuron [167]. The fundamen-
tal idea is to create computational systems using its characteristics that consist of weighing
several input signals and activating the output if a cut value is exceeded. A simplified
model for the j-th neuron is

input signals: xi(t)

weight of input signals: wi

with output

f (t) = f
(

∑
i

wixi(t)
)

(79)

with f being an activation function known as the sigmoid function (a function that leads
to an output if the input is greater than a predetermined value, and zero otherwise). The
model is illustrated in Figure 6. Ref. [168] provides an introduction to the types of such
functions and their effects on the output, and Ref. [169] offers a more recent study on this
topic.

The limitations of a simple perceptron model lead to multilayer architectures, an idea
by to [170]. The standard multilayer model or L−layer assumes the existence of L − 1



Technologies 2024, 12, 5 25 of 39

hidden layers and an output layer. Conventionally, the input layer is omitted. A multilayer
model is shown in Figure 7. The multilayer model can be constructed by superpositioning
the single perceptrons, and

f j(t) = f
(

∑
i

W(t)xi(t)
)

(80)

Figure 6. Perceptron. Input signals are weighted, producing an output signal.

Figure 7. Multilayer architecture.

To apply the model, it is necessary to know what information is available and how
to update the weights. The model is trained to minimize the objective function, for which
several techniques exist, like the backward propagation error.

A strategy is to minimize the error function

Wi(t)xi(t) =
exp

(
−W(t)xi(t)Fi

)
∑i Fi

(81)

where Fi = f (∑i W(t)xi(t). A quick introduction to this topic is the classic tutorial by [171],
while a classic exposition is presented by [172].

Although NN methods are deterministic, probabilistic approaches can be used when
there is uncertainty in the data and justification to use the PLSA. The introduction of the
PLSA in this field is attributed to [22]. The basic idea is first to adjust the probabilities of the
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relation (3) and to simplify the notation take the vectors xj = P(wj| di); and yj = P(wj| zk).
In this case, f takes the form

f j =
exp{∑i yjxj}

∑i exp{∑i yjxj}
(82)

and not depending on the time.
Ba’s work showcases research expertise; however, it occasionally leaves certain details

for the reader to infer. Conversely, the sigmoid function tends to smooth the probabilities,
which creates problems in choosing cut-off values.

6.8. Open Questions

Gaussier and Ding’s studies have been important in relating the PLSA and the SVD,
translating the conceptual framework to the context of the probabilistic interpretations
of the NMF, extending the data class domain from the non-negative integers to the non-
negative reals, and relaxing distributional assumptions, since no hypothesis is conducted
on the parameter space. This is a non-parametric method based on NMF algebra. In
addition, NMF techniques mainly focus on symmetric formulation. There does not seem to
be any objection preventing its use for the asymmetric one, although problems in assigning
probabilities P(di) in Equation (2) could complicate the problem.

In addition, Ding has stated that the difference between the results of the SVD and
NMF (and, thus, PLSA) depends on the convergence to different local optima, and it is
true if k < min(m, n). Ding’s studies have considered SVD as a dimensional reduction
problem or low-rank decomposition. In this case, the matrix WH will not be Y, but an
approximation, and the SVD is not achievable with NMF. In addition, because PCA
decomposition is related to the geometric multiplicities of eigenvalues, in the case of the
relations obtained with NMF, it is not so clear, and it should be faced with algebraic
dimensionality (PCA dimension refers to the geometric multiplicity of the eigenvalues σr
of the SVD theorem and corresponds to dim E(σ), with E(σ) = {v ∈ Rm s.t Yvr = σuy}
being ur and vr vectors of U and V, respectively. The nonzero roots of σ, such that
det(Y − σI) = 0, referred to as the characteristic polynomial, represent the algebraic
multiplicity. Both concepts play a fundamental role in the canonical forms [173], Chapter 10,
and are crucial for interpreting dimensionality in matrix analysis).

However, when the discussion is restricted to the symmetric formulation, questions
arise, and the results depend on k and determining the equivalence of the solutions,
leaving aside the type of convergence of WH→ Y, which holds in the case k ≥ min(m, n),
as indicated by several authors [16,19,174]. Suboptimality occurs when this condition
is not fulfilled and implies that the SVD low-rank approximation is an ill-conditioned
problem [19].

7. PLSA Processing Steps and State-of-the-Art Solutions

PLSA is considered an effective technique but has a notable drawback in its high consumption
of computing resources, in terms of both execution and internal memory. This drawback has limited
its practical applications [175] and additionally makes the relationship between the SVD and
PLSA curious. In the SVD case, the typical blackboard exercise of obtaining eigenvalues
and eigenvectors is simple but does not occur similarly for moderate and large datasets.
Methods for its effective computation have arisen from numerous studies and sustained
efforts over several decades [176]. Currently, many language programs implement the
Linear algebra package (LAPACK) to facilitate SVD computation [177]. Also, solutions for
PLSA are hard to obtain.

Beyond the EM algorithm problems, PLSA is highly dependent on the initialization
values [178,179]. This leads to several algorithms for computational efficiency purposes,
based on certain initialization conditions, and others on alternative versions of the EM al-
gorithm, apart from those that strictly use computational techniques.
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Herein, contributions to increasing computational efficiency are examined according
to the concepts on which they are based, their initialization conditions, and the use of EM
algorithm variants. Efforts using purely computational techniques are also discussed.

7.1. Algorithm Initialization

The dependence of the PLSA results on the initialization conditions has led to several
variations. One possibility, applicable only in the symmetric formulation, as proposed
by [178], initializes the algorithm with LSA solutions, which are the SVD solutions. Be-
cause some values can be negative, correction may be necessary (typically setting values
to zero). Another strategy applicable in both formulations is execution for several ran-
dom initialization distributions of the considered algorithm; after running, the higher
log-likelihood value offers the best solution [179].

One algorithm is Online belief propagation (OBP), which is based on a sequence of
initializations on subsets of the data frame [179,180]. OBP segments the data frame into
several parts. After the initialization of the first segmentation, solutions are obtained and
used in the next initialization, and so on. This technique enables the use of PLSA on large
datasets.

A fundamental of the OBP is stochastic initialization [181], which consists of defining
a learning function as a risk function for which the difference in conditional distributions
describes a decreasing sequence between iterations [181]. The execution of this algorithm re-
quires at least one iteration for the complete dataset and the selection of the most significant
contributions to the first partition.

In [182], it is reported that algorithms based on these principles present advantages
over other existing algorithms for IR in the context of big data and for determining pa-
rameters in sets of data streams without ending. This procedure has been advantageously
applied in automatic translation with a topic model obtained from the LSA and a sub-
sequent adjustment with the PLSA [183]. However, these claims should be re-examined.
The LDA represents the SVD, which presents serious computational problems with large
data structures [129], giving rise to several approaches, such as randomized SVD, ker-
nelization methods, and the CUR method, consisting of extracting a matrix C into a
lower-dimensional space (for rows and columns) and using a compressed representation of
the data, or a sample, obtaining the truncated SVD.

7.2. Algorithms Based on Expectation–Maximization Improvement

The EM convergence rate is [184]

∥ θ(p+1) − θ⋆∥ ≤ λ∥ θ(p) − θ⋆∥ (83)

where λ is the largest eigenvalue of the data matrix. Several methods are used to accelerate
convergence, such as the descendant gradient. However, PLSA must preserve maximum
log-likelihood solutions. To improve computational efficiency in such conditions, some
variants and alternative algorithms have been proposed. The EM algorithm is one of the
most studied in statistical environments, and many variants and simplifications exist [185].
The EM algorithm is the classic optimization technique for PLSA, and some versions or
modifications have been exploited to achieve PLSA solutions. A general description of the
algorithm used in this section is [186].

7.2.1. Tempered EM

Tempered EM uses classical concepts of statistical mechanics for computational pur-
poses [187]. Aside from the significance in physics, the primary idea is achieving a posterior
(E-step) close to a uniform distribution. An objective function is introduced
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Fβ = −β ∑
i

∑
j

n(di, wj)∑
k

P̃(zk; di, wj) log
[
P(di| zk)P(wj| zk)P(zk)

]
+ ∑

i
∑

j
n(di, wj)∑

k
P̃(zk| di, wj) log P(zk| di, wj) (84)

where P̃(zk; di, wj) is a variational parameter defined as

P̃(zk; di, wj) =

[
P(zk)P(di| zk)P(wj| zk)

]β

∑k
[
P(zk)P(di| zk)P(wj| zk)

]β
(85)

and for β < 1, the convergence is faster [17].

7.2.2. Sparse PLSA

A proposal to improve the convergence speed has been based on sparse EM [188].
Assuming that only a subset of values is plausible for latent variables (in terms of proba-
bilities), freezing non-significant avoids many calculations. PLSA is considered to be an
algebraic optimization problem of the matrix Y ∈ Rm× n (which in this case is the data frame
containing the relative frequencies n(di, wj)) restricted to the constraint ∑r λryryt

r (r < m),
or unknown parameters, minimizing [189]

Dq(Y∥∑
r

λryryr′) (with ∑
r

λr = ∥yr∥1 = ∥y′r∥1 = 1, yr ∈ Y and r′ ̸= r < n) (86)

named Tsallis divergence [190], and computed for the r non-freezing column vectors of Y
as [57], p. 97

Dq(yj∥ λryryt
r) =

1
κ ∑

i

(
yj
(
yκ

j − (λryryt
r)

κ
))
−∑

i

(
yκ

j
(
yj − λryryt

r
))

(s.t. κ ̸= 0) (87)

This divergence solves the optimization problem of adjusting n(di, wj) to P(di, wj) [191].
After adjustment, probabilistic factorizations of the considered parametrization must again
be obtained.

7.2.3. Incremental PLSA

Instead of global maximization, simpler contributions can be maximized. This update
procedure used in the E-step for the PLSA gave rise to the incremental PLSA algorithm [192],
with which results can be obtained twice as quickly. Applications in image classification
can be found in [193,194].

A recursive algorithm, called recursive probabilistic latent semantic analysis, is based on
the computation of the likelihood of a subset of words, as well as other words, recursively [195].
The performance has been reported to be highly similar to that obtained with the incremen-
tal PLSA.

7.3. Use of Computational Techniques

Difficulties obtaining fast and reliable solutions for PLSA have also been approached
through purely computational techniques. These advancements are a consequence of
developments in computer architecture in recent decades: processing capabilities have
been increased, thus resulting in a new branch of algorithms to reduce the computational
time of the PLSA. The introduction of multicore processors by Intel and Sun Microsystems
in 2005 for portable machines enabled a major step toward parallel computing [196], which
is now the dominant paradigm.

Parallel computing involves the simultaneous execution of tasks. It requires divid-
ing a problem into independent pieces and executing each one in a separate processing
unit. The use of parallel computing techniques for the PLSA has been proposed in [197].
A current and widespread technique to support parallel capabilities is Map Reduce [198].
This technique essentially consists of dividing tasks into two phases. The first phase is a
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map that partitions the input dataset and assigns labels to each one. The reduce phase sup-
poses the execution of an operation on a set of previously labeled partitions. An algorithm
exploiting the possibilities of Map Reduce for the PLSA results has been proposed in [199].
Also, it reports problems due to the limited memory [199]. A recent application for the
effectiveness of research and development is largely determined by the application of the
best achievements in science and technology. To find and select the best solutions, experts
conduct patent searches in databases containing up to tens of millions of documents. In ex-
isting systems, documents are searched for by keywords. The complexity of performing
patent searches in existing systems is due to the large number of documents matching the
search query. The authors have developed a methodological approach to automating the
structuring of the patent research results, based on thematic modeling of a collection of
documents obtained as a result of a keyword search query [200].

Furthermore, graphic processing units have increased the range of capabilities, and
they are useful for a broad variety of applications, particularly the simulation of complex
models (General-Purpose Computation Graphics Hardware at https://web.archive.
org/web/20051214111850/http://www.gpgpu.org/ (accessed on 31 March 2023).
These capabilities have been transferred to the PLSA algorithm [201]. Ref. [202] provides a
new parallel version of Statistical dual-depth sparse probabilistic latent semantic analysis
(DEpLSA), reporting significant acceleration, but it has not yet produced definitive results.

7.4. Open Questions

The described methods do not provide completely satisfactory results, and perhaps it
is one of the causes of the division between enthusiasts and indifferent regarding PLSA.
The PLSA algorithms inherit the problems of EM, especially the slow convergence. Sur-
prisingly, despite the EM algorithm being one of the most studied, many versions and
works have been devoted to accelerating convergence (a recent one is [203]), but there are
no comparative studies.

Our research suggests that initializing Formulas (37a)–(37c) with the SVD and jittering,
few iterations using parallel computing techniques produce good results, at least for
moderate-sized datasets.

8. Future Work

The first question that arises is about the nature of the data. According to [12], the use
of NMF techniques seems to reduce them to statistical independence (In the examples made
in [204], we built a method for clustering validation with the probabilistic images of the data
with no restrictions on the class. This method consists of taking the linearly independent
columns of (35) and then varying the dimensionality of the space span, the sequence

zk =
{

tr
(
[W]ik[H]kj

)t(
[W]i1[H]1j

)}∞

k=1

The expectation of the limit of this sequence is a gamma distribution, and it reasonably
coincides with the values of the Silhouette index and gap statistic. In the experiments we
conducted, for the dataset glass of the repository https://archive.ics.uci.edu/datasets
(accessed on 15 February 2022), we take the iid and omit two columns that can be considered
as Boolean variables, indicating special chemical treatments. Introducing this variable, the
number of clusters is doubled, suggesting that the method can capture and model with the
hypothesis of independent variables). However, this statement requires further studies and
comparatives and it is faced with important overlapping cases.

The other question is on transformation to the probability domain. It involves the
construction of a probabilistic matrix that can be assimilated into a random variable. For-
mally, it can be justified to fix a value for j and consider the matrix as a juxtaposition of
column vectors. This construction is consistent with the estimation of a density f j associ-
ated with the distribution P that generates the data [62], Chapter 1. It has been discussed
in Section 3.2.5 that this transformation, when performed according to Laplace’s rule in
Hofmann’s original formulation, is also equivalent to smoothing with a triangular kernel.

https://web.archive.org/web/20051214111850/http://www.gpgpu.org/
https://web.archive.org/web/20051214111850/http://www.gpgpu.org/
https://archive.ics.uci.edu/datasets
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This choice provides similar results and is equivalent to any other choice in which the
minimization of some variance function would provide different values of the smooth-
ing parameter h. In these cases, the results would only be equivalent, but in no case
similar. We point out that there are other transformations. Among them is the logistic
transformation ϕ(X) = 1/(1 + exp(X)), which is used in regression problems to relate the
response and the explanatory variables. In the case of proportions, it has been widely used
to avoid the concentration of values at the ends of the range, and provides good results
in the tails of the distribution. This transformation can be understood as a sigmoid-type
transformation [169]. These transformations should be explored in the context of PLSA.

This situation could be used to advance in the context of Big Data. It would simply
involve smoothing the data matrix to use the approximation

MISE ( f̂ ) = E
{ ∫
D
( f̂ − f )dx

}2

where Mean integrated standard error (MISE) is the global variance, as explained in the
referred book [63], f is the data image, and f̂ is its estimation. Using this definition in the
reverse sense (i.e., a parametric distribution is fitted to the smoothed function) can save
computational efforts. Then, the information geometry methods (considering the similarity
or distance between densities in the parameter space) would provide a great operational
advantage. We emphasize that this is how Rao formulated the problem when he faced
massive data [148,149]. The parameter space is often of reduced dimension.

The practical problems that he presents as anIR technique are difficult to solve. Among these
problems are polysemy and synonymy. These problems have solutions in the LDA context and
have led some researchers and practitioners to consider the PLSA as an obsolete method. However,
these methods based on LDA and described in Section 3.1 also suffer an important drawback:
their statistical properties are not clear, while PLSA provides maximum likelihood solutions.

The symmetric formulation of the PLSA provides a rich interpretive framework. It al-
lows the formulation of the PLSA as a multivariate technique in which the transformation
to and the use of NMF techniques alleviates several problems. Using the EM algorithm to
adjust probabilities provides a maximum likelihood estimation of the parameters. This re-
sult can be generalized to other divergences. In particular, Bregman divergence allows
a generalization of these results as shown in [205]. However, these methods preserving
certain statistical properties are methods known as iterative updates. Other solutions, such
as those provided by gradient descent methods, should be examined.

Convergence occurs for k ≥ min(m, n), however, for the case k < min(m, n). Con-
vergence problems described in Section 3 are due to the interpretation of the SVD and,
therefore, the PCA as a low-rank approximation. However, these statements do not con-
sider the low-rank approximation, based on Schmidt’s approximation Theorem [206].
Establishing a boundary with the help of this result is an open question.

The LDA techniques and those built on them are hierarchical models whose construc-
tion corresponds to particular fields of application. These constructions are also possible in
the symmetric formulation assuming additional hypotheses on the data, like distribution,
qualitative categories, or relations between categories or variables. This type of treatment
supposes a pre-processing of the data, preserving the content of the PLSA significance.

Furthermore, although the concept of probabilistic learning is sound, based on Vail-
lant’s work [207], symmetric PLSA is especially apt in the context of TL. In this way, the
certainty depends on the available data, as suggested by the relation (78). Then, reanalyzing
a problem with new (or complementary) data or observational variables can provide learn-
ing sequences. Other lines of work, focused from a more practical point of view, would
be the construction of ICA with the PLSA model, relating it to the PCA in the probabilistic
context; TL with the same hypotheses; and their use in neural networks and depend solely
on the imagination of the researcher or practitioner. Asymmetric formulation, currently a
mere IR technique, should be explored in the same sense, except in the PCA case.
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9. Discussion

The period of most significant growth for PLSA can be identified as the decade from
2005 to 2015, marking the beginning of its maturation and its end with limitations, especially
computational ones, revealed mainly in bioinformatics, typically requiring massive data
processing, against which, traditionally, the PLSA has shown its weakness. To this, we
must add the continuously exponential growth of the web. It is during this period that
more than half of the works that used techniques related to the PLSA received support
from some founding agency (55% according to our queries in Web of Science).

This situation—in which solutions take priority and their attainment is conditioned by
the need for them to be in real-time—reflects the current dominant paradigm in the science
of a positivist orientation [208]: the cumulative addition of works. Without criticizing the
numerous contributions of this orientation, we note that it has overshadowed many of the
works referenced in Section 6. This observation demonstrates that the PLSA, especially in
its symmetric formulation, can lay the foundation for other techniques and can be utilized
in most operating system (OS! (OS!)) machine learning (ML) scenarios.

Another consequence, perhaps unnoticed, of the positivist current, is the admission
of simple verifications as a demonstration of the quality of a technique (and these are the
typical numerical experiments that appear at the end of many publications). In fundamen-
tal sciences, experimentation is used to validate or refute hypotheses. They evaluate the
relationship or dependence between causes and their effects (except in the fields of rela-
tivistic mechanics, in which the situation is somewhat more complicated), and not the other
way around. A consequence, expressed explicitly in the context of clustering validation,
is that the use of one or more criteria may inadvertently satisfy different algorithms [39], p. 22.
This way of thinking works against well-sound methods, such as PLSA. Furthermore, the
appearance of many alternative techniques brings to mind the conceptual complexity that
the celestial mechanics of the Ptolemaic system endured with the successive introduction
of equants, until the great simplification brought about by Galileo. Baroque complexity has
never been conducive to the advancement of science. The abuse of hierarchical models in
ML is baroque.

On the other hand, the results provided by the PLSA allow the interpretation of
the structure of the data in the space of latent variables in all the application areas with
satisfactory results. In addition, it shares with the SVD the computational problems faced
with large data structures.

Furthermore, issues related to the interpretability and explainability of ML methods
have recently gained ground. We believe that the PLSA (in its symmetric formulation
and as a probabilistic image of the SVD) can be of help in these questions. The SVD is the
starting point of many branches of pure and applied mathematics, such as eigenanalysis
and integral equations, and can find its companion in the PLSA in cases where the data
present uncertainty.

From this point of view, the PLSA represents a paradigm. Its development can offer
an explanatory framework from which many other techniques can be better understood,
also providing a broad spectrum of applications that appear to have no limit.

10. Conclusions

The PLSA is a technique with a quarter-century of existence and has been applied to
many research areas with good results. Despite the formal equivalence of the formulations,
the asymmetric formulation is an IR technique, while the symmetric formulation also allows
for establishing a probabilistic relationship with the SVD. Consequences of this relationship
include laying the foundation for the probabilistic construction of other techniques, such as
kernelization, PCA, clustering, or TL, as well as the possibility of building a Fisher kernel.
However, there are some open questions, notably the approximation error when using the
low-rank approximation and poor computational efficiency.

The computational problems of PLSA have limited its diffusion, although algorithms
based on NMF alleviate this problem. Furthermore, these algorithms preserve statistical or
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geometric properties. From a practical perspective, the PLSA allows the construction of
Fisher kernels, the probabilistic interpretation of PCA, applications in TL, and the training of
neural networks. On the other hand, the formulation from the NMF also plays a significant
role. These results lead to the conclusion that the PLSA offers a valuable opportunity for
theoretical research. From a purely practical standpoint, it finds applications in many areas,
offering notable advantages.
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