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Abstract: Globally, breast cancer (BC) is considered a major cause of death among women. Therefore,
researchers have used various machine and deep learning-based methods for its early and accurate
detection using X-ray, MRI, and mammography image modalities. However, the machine learning
model requires domain experts to select an optimal feature, obtains a limited accuracy, and has a high
false positive rate due to handcrafting features extraction. The deep learning model overcomes these
limitations, but these models require large amounts of training data and computation resources, and
further improvement in the model performance is needed. To do this, we employ a novel framework
called the Ensemble-based Channel and Spatial Attention Network (ECS-A-Net) to automatically
classify infected regions within BC images. The proposed framework consists of two phases: in the
first phase, we apply different augmentation techniques to enhance the size of the input data, while
the second phase includes an ensemble technique that parallelly leverages modified SE-ResNet50 and
InceptionV3 as a backbone for feature extraction, followed by Channel Attention (CA) and Spatial
Attention (SA) modules in a series manner for more dominant feature selection. To further validate
the ECS-A-Net, we conducted extensive experiments between several competitive state-of-the-art
(SOTA) techniques over two benchmarks, including DDSM and MIAS, where the proposed model
achieved 96.50% accuracy for the DDSM and 95.33% accuracy for the MIAS datasets. Additionally,
the experimental results demonstrated that our network achieved a better performance using various
evaluation indicators, including accuracy, sensitivity, and specificity among other methods.

Keywords: attention module; breast cancer; deep learning; ensemble technique; feature extraction

1. Introduction

Breast cancer (BC) is considered the second most widespread deadly disease world-
wide, where abnormal cells in the breast begin to spread uncontrollably, threatening the
lives of women specifically aged 25 to 50. There are two common types of breast cancer:
ductal and lobular cancer. Ductal cancer begins from the nipple, and lobular cancer starts
in the gland that produces breast milk. The risk factor of breast cancer is a combination of
factors which are genetic and environmental. Genetics is the factors that cannot be changed
and controlled, such as family history, early menstruation, late menopause, and dense
breast tissue. Secondly, the environmental and lifestyle risk factors that can be changed and
controlled are being overweight or obese, lack of physical activity, and drinking alcohol.
In 2019, the World Health Organization (WHO) reported 9.8 million deaths related to
cancer [1].

According to the International Agency for Research on Cancer, lung cancer for the
male gender and BC for the female gender are considered the most deadly diseases
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worldwide [2]. BC is the most threatening type of cancer in women, and its early de-
tection can increase the survival rate, which reduces the death ratio around the globe, as
proved by medical reports. The main challenge in controlling breast cancer is to be able to
provide comprehensive services in diagnosis and treatment. One of the most commonly
used imaging modalities used to detect breast cancer in the early stages is mammography,
in which normal (benign) and abnormal (malignant) have different categories. However,
the detection of benign and malignant tumors in the early stages is very challenging and
time-consuming. Various studies have been conducted to understand tumor detections in
mammography images. Numerous researchers have used traditional texture analysis [3,4],
extreme learning machine (ELM) [5–7], and random forest classifier [7,8] to separate the
mammography image from the selected dataset, whether the image is benign or malig-
nant. Many researchers have used the IRMA dataset to classify the mammogram using a
histogram-oriented gradient (HOG) and local configuration pattern (LCP). Currently, the
Deep Learning Convolution Neural Network (DL-CNN) shows remarkable performance
in early BC detection, which provides an end-to-end mechanism for feature extraction [9].
Several DL-CNN-based techniques are developed to analyze medical imaging modalities
that classify BC in mammographic images [10]; these techniques include the DL-CNN
to classify breast tumors into normal and abnormal tumors. However, this task is quite
challenging due to the wide-ranging light and pixel similarity among the affected and
non-affected areas of the breast.

From the recent literature, we have observed that there is very limited literature
available that can claim to classify BC accurately and efficiently in mammographic images.
According to the literature, most of the work in this area has been conducted by traditional
machine learning-based methods which require extra expertise in the feature extraction
domain. The DL-based techniques overcome the problems associated with traditional ML
approaches by providing automatic feature extraction; however, these techniques pose
several limitations, including heavyweight, time complexity, and poor performance. In
order to overcome these limitations, in this paper, we employ an ensemble technique based
on attention modules for effective and efficient BC detection within mammographic data.
Further, we conducted a comprehensive evaluation, comparing the proposed ECS-A-Net
with SOTA ML and DL techniques using different evaluation metrics for assessment, such
as accuracy, sensitivity, and specificity.

The major contributions of the study are available in the following bullet points:

• The publicly available datasets seem limited, which may affect the model performance
for effective BC classification. Therefore, this study significantly contributes to em-
ploying data augmentation techniques, for instance rotation, flipping, scaling, etc. The
data augmentation strategy plays a significant role in enhancing the diversity and
quantity of the training and testing sets, leading to improved model performance in
terms of accuracy, sensitivity, and specificity.

• This paper presents a novel approach named an Ensemble-based Channel and Spatial
Attention Network (ECS-A-Net) for effective BC classification. An ECS-A-Net parallel
leverages modified SE-ResNet50 and InceptionV3 for meaning pattern selections,
resulting in enhancing model performance for effective BC classification.

• We incorporated Channel Attention (CA) and Spatial Attention (SA) modules in a
serial manner to acquire relevant features from the data. In this study, the CA module
is responsible for highlighting the specific channel feature map based on relevance
to the task, while the SA module is applicable for emphasizing the spatial location
within the feature maps.

• To evaluate the generalization capability of the proposed ECS-A-Net, we performed
extensive experiments between numerous SOTA techniques using publicly available
benchmarks based on various evaluation indicators, including accuracy, sensitivity,
and specificity, whereas the comparative analysis indicates that the proposed network
achieved high performance for BC classification among SOTA techniques.
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The remainder of this paper is organized as follows: Section 2 presents major trends in
literature. Section 3 provides a detailed explanation about the novel framework used in the
study; in addition, the experimental setup, datasets discussion, and detailed comparison
are provided in Section 4. Finally, the conclusions and future direction of the study are
discussed in Section 5.

2. Literature Review

The DL-based networks play a significant role in various challenging domains, es-
pecially in medical image analysis [11,12]. Therefore, different techniques have been
developed to detect BC in its early stage; however, these methods require modification
to enhance performance in terms of accuracy, sensitivity, and specificity for effective BC
classification and detection. For instance, Aboutalib et al. [13] used the DL-CNN to classify
breast cancer using mammography images into malignant, negative, and benign cate-
gories. For the experiments, they combined two datasets and achieved 76% to 91% accuracy.
Platania et al. [14] used a new framework based on CNN for automated breast cancer detec-
tion and classification. They used a Digital Database for Screening Mammography (DDSM)
consisting of three classes and achieved 90% detection and 93.5% classification accuracy.
The next approach presented by Jannesari et al. [15] used fine-tuned pre-trained deep neural
networks. They used the ResNetV1-50 pre-trained model to predict four types of cancers,
including breast, bladder, lung, and lymphoma. They used a benchmark dataset, consisting
of 7909 images of 82 patients by name of the BreakHis database. Khuriwal et al. [16] used
a DL model for breast cancer diagnosis. Their method includes three basic steps, such as
(1) pre-processing (data collection and filtration), (2) splitting the data into train and test
sets and drawing a graph for visualization. Finally, a model is developed, and data is fed
into it. The next approach presented by Li et al. [17] used an improved DenseNet model.
In their approach, they used a mammographic images dataset for the training of four
different models, i.e., AlexNet, VGGNet, DenseNet, and GoogleNet. In the experiments,
the DensNet model achieved better accuracy compared to the others.

Khan et al. [18] used a DL framework for the detection and classification of breast
cancer using transfer learning. They extracted the features using different pre-trained
CNN models, namely GoogLeNet, VGGNet, and ResNet; they used a fully connected
layer for the classification of malignant and benign cells using average pooling classifi-
cation and achieved better results compared to others. The next approach presented by
Tsochatzidis et al. [19] used the DL-CNN for breast cancer classification from mammo-
grams with mass lesions. They used pre-trained models and achieved mismatch accuracy
using two different datasets, DDSM and the Curated Breast Imaging Subset of DDSM
(CBIS-DDSM). The next approach presented by Zhou et al. [20] used the DL model to
anticipate lymph node metastasis in patients with clinically lymph node-negative breast
cancer based on images of primary breast cancer. They used three pre-trained DL architec-
tures, i.e., Inception V3, Inception-ResNetV2, and ResNet-101, and achieved an accuracy of
0.89%. Next, Shen et al. [21] used a CNN model for the distributed screening of mammo-
gram images, which attained excellent results in comparison with previous state-of-the-art
techniques. They used a single model and reached per-image accuracy of 88%, and the
average of the four models improved the AUC to 91%. The authors used two datasets in
this research, namely full-field digital mammography (FFDM) and CBIS-DDSM.

The next approach was presented by Ismail et al. [22], where they employed two
different DL models for breast cancer classification into normal and abnormal tumors. They
used VGG16 and ResNet50 models, which achieved 94% and 91.4% accuracy, respectively.
They used the IRMA database for their experiments. Charan et al. [23] used a DL neural
network to classify normal and abnormal breast cancer. They used the Mammograms-MIAS
dataset in this research to train the model; firstly, they classified the normal and abnormal
types of cancer and then they divided the abnormal class into a further six classes and found
other types of abnormalities in the breast. The next method presented by Sha et al. [24]
used a CNN model for the optimal diagnosis of breast cancer by mammographic images.
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They used CNN to segment the region of interest (RoI), and several features were extracted
to decrease time complexity and increase precision. The extracted feature was fed to SVM
classifiers for classification. They performed their experiments on two benchmark datasets,
MIAS and DDSM, and reached an accuracy of 92%. Kaur et al. [25] used a pre-processing
technique and built-in feature extraction using K-mean clustering for Speed-Up Robust
Features (SURFs) selection. They used the automated DL method using K-mean clustering
with MSVM, which is better than using a decision tree model. Ten-fold cross-validation was
used, and the acquired results for the SVM, K-nearest neighbor (KNN), linear discriminant
analysis (LDA), and decision tree were 96.9%, 93.8%, 89.7%, and 88.7%, individually. They
used the Mini MIAS dataset in this research.

Arefan et al. [26] used a DL model which anticipates short-term breast cancer risk us-
ing normal screening mammogram images. They used the GoogleNet model and achieved
73% accuracy. This paper showed that the GoogleNet-LDA model outperformed the
end-to-end GoogLeNet model. These two DL models achieved a better result than the
mammographic breast density. In this approach [27], the authors provided comparative
results of two deep learning models, such as VGG16 and ResNet50, by using mammo-
graphic images. In this experiment, the VGG16 model reveals good results in terms of
accuracy compared to ResNet50. The accuracy of VGG16 and ResNet50 reached 94% and
91.7%, respectively. Similarly, Dhahbi et al. [28] proposed an innovative framework for
feature extraction, focusing on curvelet transform and moment theory for effective BC
classification. Rocha et al. [29] introduced a novel texture analysis technique based on
Local Binary Patterns (LBPs) to generate diverse representations of region of interest (ROI)
images. These representations, concatenating methods like histograms and co-occurrence
matrices, enable comprehensive texture analysis. Additionally, ecological indexes (Shannon,
McIntosh, Simpson, Gleason, Menhinick) are applied to these representations as unique
texture descriptors. Eun et al. [4] presented a texture analysis followed by random forest for
BC detection using MRI modality. A CNN with multiscale feature extraction capability was
proposed by Ranjbarzadeh et al. [30]; they used MIAS and DDSM datasets and achieved
an average accuracy of 89.90% and 91.70%, respectively. Furthermore, Saran et al. [31]
employed the ResNet50 model with a data augmentation approach utilizing the used MIAS
and DDSM datasets and obtained average accuracies of 94.0% and 96.0%, respectively. Be-
sides that, Tsochatzida et al. [32] presented a novel framework for highlighting the infected
region in mammographic images. Their study is focused on exploring the integration of
content-based image retrieval (CBIR) into computer-aided diagnosis (CADx) to enhance
radiologists’ decision making when characterizing mammographic masses.

As follow-up research, Bokade et al. [7] fused the deep learning-based features
extractor with a random forest classifier for an accurate BC classification. Aslan et al. [33]
proposed a hybrid model, integrated a CNN and Bidirectional Long Short Term Memo-
ries (BiLSTMs), for breast cancer diagnosis without the region of interest requirement,
and they obtained a higher performance. A self-attention-based hybrid model with a
random forest classifier for effective BC classification is proposed in [8]. A lightweight
hybrid model integrated with depth-wise separable, multi-head self-attention for BC
classification was proposed by Zhou et al. [34]. Similarly, Iqbal et al. [35] presented a
lightweight transformer model with feature fusion capability for BC segmentation and
classification. Sapate et al. [36] introduced a hybrid model based on connected compo-
nent labeling and adaptive fuzzy region growing techniques for effective BC detection.
To validate the proposed network, they utilized two publicly available datasets, where
the results indicated that the proposed model achieved a high performance in terms of
sensitivity, specificity, and FPsI. Similarly, another study also focused on BC detection;
after detecting the infected region, the major aim of their proposed framework was
to classify masses into two different classes using multi-resolution analysis, and these
classes include benign and malignant [37]. However, their performance requires further
enhancement in terms of accuracy for both classes.
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Al-Antari et al. [38] developed an automatic system based on Deep Belief Network
(DBN) for BC detection in mammogram data. They validated the performance of their
proposed network using a digital mammograph database. In addition, their proposed
network is focused on two ROI extraction techniques, including multiple mass ROI and
whole mass ROI. Moreover, Muramatsu et al. [39] proposed a CNN-based method for BC
classification, where the authors applied a data augmentation technique to enlarge the
size of the data, resulting in optimal performance in terms of sensitivity, specificity, and
accuracy. Furthermore, an ensemble classifier model, which utilizes eigenvalue, bagging,
KNN, SVM, and Nave Bayes classifiers, was used to determine whether a mammogram
contains malignant, benign, or normal tumors, proposed in [40,41]. However, the limited
performance and handcrafted feature extraction mechanisms restricted these systems
from real-world implementations. Several CNN-based methods for benign and malignant
tumor classification are proposed in [42–44]. However, the network structure and limited
performance in terms of high false positive rates need to be improved.

Jahangeer et al. [45] used a series of various networks and VGG-16 for effective BC
segmentation. Their proposed study is mainly focused on image preprocessing, where they
applied different preprocessing strategies, including salt and pepper filtering techniques,
resulting in optimal performance. Similarly, Saber et al. [46] proposed a CNN network
using transfer learning techniques for accurate BC detection and classification. Another
study presented by Byra et al. [47] developed a technique based on deep meta-learning for
effective BC mass classification using ultrasound images. Muralikrishnan et al. [48] pro-
posed a study where they provided a comparison between two different networks within
an effective BC classification domain; although, this study requires further enhancement in
performance in terms of accuracy, precision, recall, and F1-score.

As evident from the existing literature, the recent approaches reveal several limitations,
for instance, DL-based approaches for effective BC classification pose substantial challenges;
these approaches have high time complexity and a high number of parameters, making
them unsuitable for real-time implementation. Additionally, attention-based techniques,
with their potential to enhance model performance for BC detection, have been inadequately
explored, particularly in terms of achieving accurate BC detection. Furthermore, the existing
ML- and DL-based approaches need further improvement in terms of accuracy, precision,
recall, and F1-score for effective performance. In addition, publicly available datasets
exhibit several limitations, with one of the limitations being the scarcity of data. This
challenge necessitates the implementation of a creative data augmentation strategy to
address the data scarcity problem. Therefore, in this study, we propose an efficient and
effective network using data augmentation that can accurately classify and localize BC in
mammographic images. The detailed explanation of the proposed network is discussed in
the subsequent section.

3. The Proposed Methodology

This section presents a detailed explanation of a novel framework that leverages mod-
ified SE-ResNet50 and InceptionV3 networks for feature extraction and attention modules,
including CA and SA and dominant feature selection, as presented in Figure 1. In this
study, the proposed framework comprises two main phases, including data preprocessing
and model training/testing, aimed at effective BC classification.

Initially, a preprocessing strategy is employed, involving data augmentation techniques
such as rotation, horizontal flip, contrast stretching, and scaling, aiming to enhance the size of
the publicly available datasets for achieving high performance. In addition, the input data are
then processed to an ensembled technique, utilizing modified SE-ResNet50 and InceptionV3
networks for meaningful feature selection. Subsequently, the outputs from both networks
are then fused and passed to the CA and SA modules for dominant feature selection. Finally,
we incorporated two fully connected and a classification layer with Softmax as an activation
function for final classification. Detailed explanations about the ensemble technique and
attention modules are provided in the subsequent sections.
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Figure 1. A high-level framework of the ECS-A-Net for accurate BC classification.

3.1. The SE-ResNet50 Network

The Squeeze-and-Excitation Residual Network 50 (SE-ResNet50) is a pre-trained deep
neural network (DNN) with 50 layers and is considered a tiny network among other
versions of residual networks. The SE-ResNet50 has an extra identity mapping capability
compared to other DP learning algorithms. This network is based on delta, which is
essential to access the final prediction from layer one to the next layers [49–51]; in addition,
it also plays a vital role in resolving the vanishing gradient problem during training of
a network. The internal design of SE-ResNet50 enables the network to acquire complex
patterns and also enhances the network performance for image recognition tasks. Similarly,
the utilization of identity mapping in ResNet architecture allows the network to avoid
irrelevant CNN weight layers, which helps in overfitting problems to the training set.

The SE block is a novel approach in ResNet50, allowing networks to improve the
quality representation of the features produced by the network [52]. The SE block is
incorporated in the internal architecture of the current ResNet50 network by placing it after
the nonlinearity following each convolution. In this modification, SE block transformation
serves as the non-identity branch of a residual module. Similarly, this block also enhances
channel interdependencies with minimal computational cost overhead, leading to optimal
performance. The internal mechanism of ResNet50 and the incorporation of SE-block
within ResNet50 are shown in Figure 2.
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3.2. InceptionV3 Architecture for BC Classification

The Google research team aims to reduce the time complexity of CNNs without
compromising on its producible results. Therefore, Christian et al. developed a new
module in CNN models named the Inception module, which includes 1 × 1, 3 × 3, and
5 × 5 convolutional filters. These layers are used in parallel in the network and the sub-
sampling (pooling) layers in each block to decrease the time complexity. The Google
research team has also developed several more complex models, but in this, InceptionV3
attains good results. InceptionV3 consists of nine inception module blocks that include
different convolution filters, as mentioned above. In InceptionV3, there is a total of four
max-pool layers, one average pool, one fully connected, and one SoftMax layer, as depicted
in Figure 3.
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3.3. Channel Attention Module

Various studies have highlighted the importance of attention modules in human
perception [54–57]. In recent decades, attention modules have played a significant role in
the computer vision domain and have become essential components across diverse tasks.
Significantly, CA modules have been integrated into different computer vision applications
to enhance the generalization capability of the proposed network [58].

In the recent literature, the deep learning approaches in the visual domain have begun
to significantly involve basic convolution operations. Therefore, these approaches lead
to the loss of global patterns, and they are only capable of extracting local patterns from
input data. To cope with these issues, in this study, we incorporated a channel module to
highlight the relevant features before passing it to the SA module, as presented in Figure 4a.
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In the attention module, Global Average Pooling (GAP) enables the network to extract
channel-wise statistical information. For every channel within an input feature map, the
statistical characteristic of the channel is acquired through the following equation:

zc = GAP(xc) = 1/(H × W)
H

∑
i=1

W

∑
j=1

xc(i, j) (1)

In the above equation, zc indicates the statistical information of a channel; similarly,
xc represents the input features map. In addition, H and W demonstrate the height and
width of the input features map, respectively, while i and j indicate the spatial coordinates
of the input feature map. It is observed that the Channel Attention module utilizing GAP
is equivalent to the squeeze-and-excitation (SE) block [52].

The obtained information, represented as z, can be utilized to assess interconnections
among channels using a combination of two fully connected layers with ReLU activation
and the Softmax nonlinear activation function.

s = σ(W2δ(W1z)) (2)

In the given equation, σ and δ indicate Sigmoid and ReLU nonlinear activation func-
tions, respectively. Similarly, W1 ∈ RC×C/r and W2 ∈ RC/r×C are considered the weights of
dense layers. We employ a reduction ratio r to decrease the node count in W1 and enhance
the feature map count by C in W2. Specifically, in this case, a channel reduction factor of
16 is used. The scaling factors, determined through the above equation, are then multiplied
with the input feature map for each channel.

x̂c = sc × xc (3)

Here, sc represents the c-th channel of the scaling factors, and x̂c denotes the rescaled
feature map’s c-th channel. In our study, the channel module plays a significant role in
controlling global information within the ensemble technique.

3.4. Spatial Attention Module

In the internal architecture of the proposed network, we incorporated the Spatial At-
tention (SA) module to further evaluate the intermediate pattern of the ensemble technique.
Generally, spatial maps are created by analyzing the inter-spatial relationship within the
features. Unlike CA, the SA module significantly emphasizes the dominant elements within
spatial areas. In this study, the internal architecture of the SA module is focused on a paral-
lel integration of max pooling and average pooling layers, as presented in Figure 4b. The
outputs of both layers are then significantly concatenated to produce an effective feature
descriptor. The utilization of pooling operations has given priority to relevant or critical
regions within features, resulting in the enhancement of the model generalization capability.
The parallel incorporation of max pooling and average operations is an effective way to
emphasize the relevant information within the features. The mathematical calculation of
max and average pooling is given in Equations (1) and (2).

ΩMa ∑ = avg − P( f ) (4)

ΩMaλ = max − P( f ) (5)

In the above equations, ∑ indicates avg pooling and another notation, while λ indicates
max. In addition, the output feature maps of both pooling operations are fused by addition
operations and passed to the convolution layer, followed by a ReLU activation function,
which is responsible for making a two-dimensional SA feature map. The mathematical
process is given below:

MaP( f ) =
(
×
(

f 1×1
(
×
(

f 3×3ΩMa ∑+ΩMaλ
)))

(6)
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In this equation, f demonstrates the size of the filter within the convolution layers
of the SA module. The MSA map represented as MaP( f )GAP is obtained by performing
the Global Average Pooling (GAP) operation on the feature maps of MaP( f ). Afterward,
the result of the GAP operation is combined with the output of the function f through
concatenation, as presented in Equations (7) and (8).

MaP( f )GAP = GAP( f ) (7)

fs pa f = ×[MaP( f )GAP, f ] (8)

After the concatenation step, the generated feature maps referred to as fs pa f are sub-
jected to batch normalization. Subsequently, these normalized feature maps are integrated
with Ω to produce fspaf.

fs pa f = ×[BatchNormalization, Ω] (9)

Finally, the output of SA is transferred to three fully connected layers, with 64, 32, and
2 numbers of neurons, respectively. In this study, we utilized a SoftMax activation function
to categorize the input images based on their corresponding classes, as shown in Figure 4.

3.5. The Proposed Model

The proposed model is focused on a parallel connection of DL-based pre-trained
networks as a backbone for meaningful feature extraction from the input data, followed
by CA and SA modules in a serial manner to further emphasize the dominant features for
effective BC classification. In this study, the proposed ECS-A-Net is based on modified
SE-ResNet50 and InceptionV3, where SE-ResNet50 is employed to capture intricate pat-
terns within the input data of BC images. This involved a careful modification process that
included the exclusion of certain layers deemed less relevant to our task. This selective
modification enhances the network’s ability to discern subtle features crucial for accurate
BC classification. Leveraging the power of residual connections and channel-wise feature
recalibration, our modified SE-ResNet50 ensures the effective learning of hierarchical fea-
tures, thereby significantly improving the model’s discrimination capabilities. InceptionV3,
on the other hand, is another advanced CNN architecture characterized by its inception
modules. These modules employ multiple convolutions with different kernel sizes in
parallel, enabling the network to capture features at various scales. InceptionV3 exhibits at
capturing both fine-grained details and global patterns within the images. The utilization of
InceptionV3 into our framework enables the proposed network to understand the diverse
texture, shapes, and structure of cancer within input data, and it plays a significant role in
further boosting the model performance for classification tasks, especially in the medical
domain. Within InceptionV3, specific layers were excluded to streamline the architecture
for BC classification. This adjustment optimizes the model’s ability to capture diverse
textures, shapes, and structures indicative of cancer within input data. InceptionV3’s ad-
vanced architecture, characterized by inception modules employing multiple convolutions
in parallel, is harnessed more effectively after these modifications.

To fuse the distinctive features captured by SE-ResNet50 and InceptionV3, their out-
puts are concatenated. Subsequently, this concatenated feature map undergoes a two-step
refinement process. First, the CA module is applied to dynamically recalibrate channel-wise
patterns, emphasizing crucial features and suppressing less relevant ones. Additionally, we
then incorporated the SA module to selectively highlight significant spatial regions, refining
the feature map further. By incorporating these modules, the proposed ECS-A-Net not only
benefits from the diverse capabilities of SE-ResNet50 and InceptionV3 but also fine-tunes
the feature representation to focus on the most relevant information for accurate breast
cancer classification. Lastly, the proposed ECS-A-Net incorporates fully connected layers,
enabling the network to learn complex relationships among the extracted features. These
layers perform the final classification, mapping the learned features to specific BC classes.
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The combination of SE-ResNet50 and InceptionV3, along with the attention mechanisms
and fully connected layers, allows the network to learn both local and global features
within the input data.

The step-by-step procedure of implementation is highlighted in Algorithm 1, which
is significantly proposed for the ECS-A-Net. Initially, we applied various augmentation
techniques on publicly available datasets to enhance the size of the data, resulting in optimal
performance. We then categorized the augmented data into training, validation, and testing
sets and passed them into an ensemble network, which leverages InceptionV3 and SE-
ResNet50 parallelly as a backbone for feature extraction. The output of both the networks is
then fed to attention-based modules; these modules include CA and SA in a serial manner
for further dominant pattern selection. Lastly, we incorporated a fully connected layer for
the final effective BC classification. The proposed model was determined using different
evaluation metrics, such as precision, recall, F1-score, and accuracy. In conclusion, this
comprehensive analysis facilitates precise and reliable BC classification, making our model
more robust and well suited for medical diagnosis and decision making.

Algorithm 1: Training and Testing Procedure of ECS-A-Net

1: Start
2: Load the dataset D from repository, split ζ, Flipping F , Scaling S , Rotation R
3: Channel Attention c, Spatial Attention s

4: ⌈ = data preprocessing [Flipping F [D], Scaling S [D], Rotation R [D]]
5: Load pre-trained weights = InceptionV3 and SE-ResNet50
6: ECS-A-Net = InceptionV3 + SE-ResNet50 +c + s

7: Initialization: C =(ECS-A-Net, ζ[0.7, 2.0, 0.1]), parameter = {epochs =30, (optimizer = SGD,
learning rate= 0.001, momentum = 0.9, validation = per epoch, batch size = 32)}
8: [training data: J⌈, validation data: V⌈, testing data: T⌈]

9:
(
J⌈, V⌈, T⌈

)
= (ζ[0], ζ[1], ζ[2])

10: J⌈ = random (⌈, J⌈)
11: V⌈ = random (⌈, V⌈)
12: T⌈ = random (⌈, T⌈)
13: Return J⌈, V⌈, T⌈
14: [⌉, ↕,E] = C

(
V⌈, T⌈, parameter

)
15: [precision, recall, F1 − score, accuracy] = ⌉(T⌈)
16: Output [precision, recall, F1 − score, accuracy]
17: End

4. Results

This section provides a detailed explanation of the experimental setup, performance
parameters, dataset, and a comparison between SOTA techniques to validate the general-
ization capability of the proposed network. In this work, we performed all the experiments
on NVidia GPU GTX 2060 GPU with 16 GB, 2.8 GHz processor, and 512 GB memory space;
similarly, we utilized a DL framework Keras with backend TensorFlow 2.8.0 and python
version 3.7.0, as detailed in Table 1.

Table 1. Software specification for the proposed framework.

Name Configuration

Operating System Window 10
Integrated Development Environment Jupyter Notebook, Python 3.7.2

Libraries Matplotlib, Keras, TensorFlow, NumPy
Imaging Libraries Scikit-Image, Scikit-Learn, OpenCV

To fairly determine the performance of the proposed ECS-A-Net, in this work, we
performed extensive experiments between different SOTA techniques using three var-
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ious evaluation metrics, including accuracy, sensitivity, and specificity, collecting from
a confusion matrix, which is based on four parameters such as true positive (TP), true
negative (TN), false positive (FP), and false negative (FN). Additionally, the mathemat-
ical formulation of accuracy, precision, recall/sensitivity, and specificity can be seen in
Equations (10)–(12), and detailed explanation is given in [59–62].

Accuracy =

(
Number o f accurate classi f ication

Total number o f classi f ication

)
(10)

Precision =

(
TP

TP + FP

)
(11)

Recall/Sensitivity =

(
TP

TP + FN

)
(12)

4.1. Datasets Description

In this work, we used two publicly available benchmarks, including DDSM and MIAS.
The DDSM was taken from the University of South Florida, maintaining the accessibility
of the dataset on the web. The dataset contains 55,890 total images and includes three
different classes, for instance benign, malignant, and normal, as shown in Figure 5. For
the experimental results, we utilized a small version of the DDSM [40] for classification.
Similarly, the MIAS [40] dataset contains three different classes, including normal, benign,
and malignant, where it contains 209, 62, and 51 numbers of images for each class, respec-
tively. This dataset also represents details for ground-truth information in the mammogram
images, for instance, abnormality center coordinates, background tissue, tumor type, and
approximate radius for enclosing the abnormality circle. The visualization samples of the
MIAS datasets are presented in Figure 6. In the training phase, we utilized both datasets
with a ratio of 70% for training, 20% for validation, and 10% for testing.
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4.2. Results and Discussion

In this section, we provided the experimental results of the proposed model perfor-
mance using two benchmarks, focusing on the accuracy, loss graphs, and confusion matrix.
For a fair evaluation of both datasets, we trained the proposed network for 30 epochs with
batch size and learning rate momentum set at 32, 0.001, and 0.9, respectively.

4.2.1. Comparative Analysis of DDSM Dataset

In Figure 7a,b, the horizontal axis represents the number of epochs, while the vertical
axis reflects the corresponding accuracy and loss ratios. The blue color shows training
accuracy and the orange color indicates validation accuracy; notably, our model achieved a
training accuracy of 0.99 and a validation accuracy of 0.97. In Figure 7c, we provide the
confusion matrix, which offers insights into the model’s accurate and erroneous predictions.
The confusion matrix provides a class-wise classification report of the proposed model
using a test set from the DDSM dataset, as depicted in Figure 7c. Here, we observe that
the benign class achieves an accuracy level of 0.98, the malignant class 0.97, while the
normal class obtains an accuracy of 0.95. In addition, the model performance for each class
individually over DDSM is presented in Table 2.
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Table 2. Classification report of the proposed network using DDSM dataset.

Class Precision Recall F1-Score

1 0.98 0.97 0.98
2 0.97 0.96 0.97
3 0.95 0.97 0.96

To determine the generalization capability of the proposed network, we provided
a detailed comparison among various deep learning models, including DBM [38], DL
and Ensemble Learning [63], CapsNet [64], CNN [31], CNN-Multi feature extractor [30],
Ensemble-classifier [40], and the proposed model. As shown in Table 3, the CapsNet [64]
and CNN-Multi feature extractor [30] attained the worst performance in terms of accuracy
for BC classification, which are 77.78% and 91.70%, respectively. Similarly, DL and Ensemble
Learning [63] and CNN [31] are considered the second best classifiers for BC classification;
both of the models achieved 96.0% on average in terms of accuracy. Compared to the
proposed model, named Ensemble, with an attention mechanism, it achieved 96.50%
accuracy using DDSM; our model surpassed the second-best model by obtaining a 0.50
higher value for average accuracy.

Table 3. Comparison of the proposed network between different classifiers using DDSM dataset.

S: No Ref Classes Methods Accuracy

1 [38] Normal, Benign,
Malignant DBM 92.86

2 [63] Normal, Benign,
Malignant DL and Ensemble Learning 96.00

3 [64] Normal, Benign,
Malignant CapsNet 77.78

4 [31] Normal, Benign,
Malignant CNN 96.00

5 [30] Normal, Benign,
Malignant CNN-Multi feature extractor 91.70

6 [40] Normal, Benign,
Malignant Ensemble-classifier 93.26

7 ECS-A-Net Normal, Benign,
Malignant Ensemble-CNN with Attention mechanism 96.50

In short, the proposed network demonstrates superior performance in terms of accu-
racy, when it is compared with different classifiers using DDSM, as tabulated in Table 3.
Additionally, the experimental results validate the proposed network’s robustness and
generalization, affirming its suitability for highly effective breast cancer classification.

4.2.2. Comparative Analysis of MIAS Dataset

In this subsequent section, the proposed model is evaluated using the MIAS dataset. In
Figure 8a, the model achieved a training accuracy of 0.96 and a validation accuracy of 0.95.
Similarly, Figure 8b shows the loss graphs; our model reached the minimum training and
validation loss up to 0.2 and 0.1, respectively. The confusion matrix provides a class-wise
classification report of the proposed model using a test set from the MIAS dataset as shown
in Figure 8c. Here, we observe that the benign class achieves an accuracy level of 0.98, the
malignant class 0.95, and the normal class 0.93. Moreover, the ECS-A-Net also achieved a
better performance for each class individually, as tabulated in Table 4.
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Table 4. Classification report of the proposed network over MIAS.

Class Precision Recall F1-Score

1 0.98 0.96 0.97
2 0.95 0.94 0.95
3 0.93 0.96 0.94

In Table 5, a comprehensive comparison between our model and state-of-the-art
methods is presented. It is evident that the CNN-Multi feature extractor [30] obtained
the lowest performance, while the proposed model outperformed all others, obtaining
the highest performance. Notably, the proposed model surpassed the second-ranked
model [63] and the third-ranked model [40] by achieving higher accuracy rates of 0.33
and 4.33%, respectively. These results demonstrate that our model exhibits promising
performance in comparison to the benchmark models, establishing it as a viable and
accurate choice for the specific task at hand.

Table 5. Comparison of the proposed network between different classifiers using the MIAS dataset.

S: No Ref Classes Classifier Accuracy

1 [44] Normal, Benign,
Malignant CNN 90.50

2 [63] Normal, Benign,
Malignant DL and Ensemble Learning 95.00

3 [30] Normal, Benign,
Malignant CNN-Multi feature extractor 89.90

4 [40] Normal, Benign,
Malignant Ensemble-classifier 91.00

5 [31] Normal, Benign,
Malignant CNN 94.00

6 ECS-A-Net Normal, Benign,
Malignant Ensemble-CNN with Attention mechanism 95.33

4.3. Ablation Study

This section provides a detailed ablation analysis between the proposed ECS-A-Net
and various pre-trained architectures with and without attention mechanisms in terms
of evaluation accuracy over DDSM and MIAS. As given in Table 6, the Resnet50 with
CA and SA mechanisms exhibited better performance when compared to the Resnet50,
ResNet50 with CA, and ResNet50 with SA mechanism. Similarly, the InceptionV3 network
with CA and SA modules outperformed among plain InceptionV3, InceptionV3-CA, and
InceptionV3-SA, and it also surpassed ResNet50-CA and SA mechanisms and is considered
the second-best model among others, where it attained 94.08% accuracy using DIAS and
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93.13% accuracy using MIAS datasets, as tabulated in Table 6. Similarly, we followed the
same strategies for the proposed network as well. The proposed ECS-A-Net is trained
with and without an attention module and compared with the ResNet50 and InceptionV2
network over the DDSM dataset, where the experimental results determined that the
proposed ensemble network with CA and SA modules achieved optimal results among
others. As demonstrated in Table 6, the plain Ensemble achieved 94.45% and 93.70%
accuracy using DDSM and MIAS datasets, respectively; similarly, Ensemble with CA
further improved the performance, where it achieved 95.89% performance using DDSM
and 94.30% performance using the MIAS dataset. In addition, Ensemble-SA exhibited
98.77% and 94.23% performance in terms of accuracy for the DDSM and MIAS datasets,
respectively. The Ensemble-CA and SA modules outperformed compared to others and
attained the highest accuracy for both DDSM and MIAS datasets, which is 96.50% and
95.33%. Hence, the extensive and thorough analysis of the results demonstrates the efficacy
of the ECS-A-Net ensemble-based network for accurate BC classification, particularly in
dealing with complex data. Through this comprehensive evaluation, it becomes evident
that the developed Ensemble model with attention modules exhibits an ability to generalize,
making it a robust solution for addressing the challenges posed by complex data in the
realm of BC classification.

Table 6. Detailed comparative analysis of each module used in the proposed network using DDSM
and MIAS datasets. × indicate the module is not included whereas the ✓indicated the module
is used.

S: No Model Channel Attention Spatial Attention
Accuracy

DDSM MIAS

1

Resnet50

× × 92.65 91.00
2 ✓ × 93.89 92.50
3 × ✓ 93.67 92.33
4 ✓ ✓ 94.08 93.13

5

InceptionV3

× × 93.15 92.21
6 ✓ × 94.42 93.00
7 × ✓ 94.28 92.90
8 ✓ ✓ 95.03 93.55

9

Ensemble

× × 94.45 93.70
10 ✓ × 95.89 94.30
11 × ✓ 98.77 94.23
12 ✓ ✓ 96.50 95.33

4.4. Model Parameter Investigation

In the realm of computer vision, the real-time implementation of deep learning (DL)-
based networks is pivotal across diverse domains such as healthcare, surveillance, and
driver distraction analysis. Given the critical role of real-time processing in these applica-
tions, a comparison between the proposed Enhanced Cancer Screening Attention Network
(ECS-A-Net) and other competitive networks becomes essential, particularly focusing on
the model’s parameters and size.

Our comprehensive analysis, as given in Table 7, reveals findings about the efficiency
and resource requirements of various competitive models. Notably, the approaches pub-
lished in [45,46] are considered a heavyweight model, with a number of parameters of
145.05 and 138.4, respectively. Similarly, the model sizes of both approaches are large. In con-
trast, InceptionResNetv2 [48] exhibits a more streamlined architecture with 55.9 parameters
and a model size of 215, which is the second-ranking model in our comparison. However,
our model has 6.4 million lower parameters and 53 megabytes of reduced size. Similarly,
ResNet152V2 has 60.4 million parameters and a model size of 232. Additionally, the pro-
posed ECS-A-Net is considered to be the best, with 49.5 million parameters and a model
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size of 162. This efficiency in parameter and model size positions the ECS-A-Net favorably
against competitive networks, demonstrating its capacity to obtain robust performance.

Table 7. Comparison between the proposed ECS-A-Net and other networks in terms of parameters
and model size.

References Methods Number of Parameters
(Million) Model Size (Mega Byte)

[45] Hybrid-VGG-16 145.05 529
[46] VGG-16 138.4 528
[48] InceptionResNetv2 55.9 215
[65] ResNet152V2 60.4 232

Proposed ECS-A-Net 49.5 162

The justification for these findings extends beyond mere numerical values. The pro-
posed ECS-A-Net’s streamlined architecture not only optimizes computational resources
but also showcases its potential for real-time implementation on edge devices. This strategic
balance between model complexity and efficiency underscores the generalizability and
practical applicability of the ECS-A-Net in real-world scenarios, affirming its suitability for
resource-constrained environments and demanding real-time decision-making tasks.

5. Conclusions and Future Work

BC remains a serious global health concern and a leading cause of mortality among
women. The challenge lies in the elusive nature of symptoms during the early stages,
resulting in a staggering 80% of diagnoses happening at an advanced stage. Recently,
researchers have developed various methods for BC classification; however, their limited
performance and the large number of learning parameters hinder these models from
implementation. To cope with this, we introduced an innovative framework named the ECS-
A-Net, designed for proficient BC classification and detection. The proposed framework
contains two different phases, preprocessing and model training. In the first phase, the
preprocessing strategy, called data augmentation, was applied to enhance the size of the
input data. Meanwhile, in the second phase, we incorporated a modified SE-ResNet50
and InceptionV3 parallelly as a backbone for feature extractions, followed by a CA and SA
module to further evaluate the task-related features. We performed a detailed experimental
study to validate the performance of the proposed network and also compared it with SOTA
techniques over benchmark datasets. The ECS-A-Net network revealed high performance
for all datasets in terms of accuracy, precision, recall, and F1-measure. Thus, the proposed
model is an effective solution for early BC classification with the capability to lower model
complexity and size.

In the future, we will use different object detection algorithms such as FastRCNN,
FasterRCNN, MaskRCNN, etc., to detect the exact location of the tumors. Furthermore, we
also aim to use the knowledge distillation concept to train the larger model as a teacher
and recall their knowledge in the student (lightweight) model for the generation of more
efficient results.
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