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Abstract: This manuscript addresses the critical need for precise paint application to ensure product
durability and aesthetics. While manual work carries risks, robotic systems promise accuracy, yet
programming diverse product trajectories remains a challenge. This study aims to develop an
autonomous system capable of generating paint trajectories based on object geometries for user-
defined spraying processes. By emphasizing energy efficiency, process time, and coating thickness on
complex surfaces, a hybrid optimization technique enhances overall efficiency. Extensive hardware
and software development results in a robust robotic system leveraging the Robot Operating System
(ROS). Integrating a low-cost 3D scanner, calibrator, and trajectory optimizer creates an autonomous
painting system. Hardware components, including sensors, motors, and actuators, are seamlessly
integrated with a Python and ROS-based software framework, enabling the desired automation. A
web-based GUI, powered by JavaScript, allows user control over two robots, facilitating trajectory
dispatch, 3D scanning, and optimization. Specific nodes manage calibration, validation, process
settings, and real-time video feeds. The use of open-source software and an ROS ecosystem makes
it a good choice for industrial-scale implementation. The results indicate that the proposed system
can achieve the desired automation, contingent upon surface geometries, spraying processes, and
robot dynamics.
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1. Introduction

In modern manufacturing, industrial painting has gained significant importance.
Applying paint to a product’s surface not only enhances its appearance but also extends its
durability. Robotics are pivotal in these painting processes, boosting efficiency, productivity,
and the quality of the painted surface. Forecasts predict a rise in vehicle production
to 111.7 million units by 2023 [1]. Moreover, manual painting processes for industrial
parts pose challenges: inconsistent coating quality, prolonged production times, increased
environmental impact due to VOC emissions [2], and compromised worker safety [3].
This study aims to explore and implement specific solutions like automation, eco-friendly
coatings, and process streamlining to address these issues.

Automating spray painting requires an accurate understanding of object geometry,
spraying dynamics, and robot movement. An early 1980s system integrated a paint booth,
robot apparatus, and rail mechanism to streamline painting and cut down on wasted
paint [4]. Similarly, a software–hardware prototype of an integrated robotic painting
system has been developed [5]. The software manages part designs, process planning,
robot trajectory generation, and motion control, while the hardware components include
a work cell controller, motor drives, a robotic manipulator, a surface scanner, and paint
delivery units. Another integrated system utilizes an algorithm to model spray painting
and a computer program to simulate a robot for painting curved surfaces [6]. This program
optimizes spray painting parameters like gun velocity, distance, and multiple paint paths.
Hence, key components in automating painting with robots involve a 3D scanner to create
object geometry, a trajectory planner for optimized robot paths, and a robotic system to
execute the planned trajectories.
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Researchers have explored methods for digitizing geometric models of objects through
geometric reconstruction and 3D scanning [7]. Common techniques like CMMs (Coordinate
Measuring Machines), laser scanners, and CT (Computed Tomography) scanners serve
this purpose. A CMM, while slow due to single-point measurement, is inefficient and
uses traditional equipment, so it is unsuitable for swift scanning. Laser scanners, however,
offer rapid scanning [8–10]. Kinect Fusion, employing a low-cost depth camera, captures
indoor 3D scenes in varying lighting conditions in real time [11]. Metrics like per-vertex
Euclidean and angle errors gauge the accuracy of this method for 3D scenes [12]. Sparse
reconstruction techniques generate 3D environments from limited depth scans, capitalizing
on surface and edge regularity for high reconstruction accuracy [13]. Integrated 3D scan-
ning systems, comprising hardware like line-profile laser scanners, industrial robots, and
turntable mechanisms, capture physical object representations, converting them into CAD
models [14]. Robotic systems designed for contour tracing employ six-DOF robotic arms,
short-range laser scanners, and turntables [15]. Similarly, systems for large-scale object
scanning propose laser scanners, turntable mechanisms, and calibrated robots [16].

Gaining a geometric model enables surface trajectory planning, vital for unknown
parts’ spray trajectories. By employing a direct PFeatureDetector approach, this method
extracts basic geometries from range sensor data [17]. For spray painting robots, an
incremental trajectory generation approach utilizes surface, coating thickness, and spray
process models to plan painting paths [18]. Additionally, research explores Bezier curves
for planning paint spray paths [19]. The process models paint distribution on a circular area,
assuming consistent surface overlap. Using T-Bezier curves in trajectory planning ensures
efficient computation, mapping paths along the geometry’s U and V principal directions.
Recent research indicates using a point cloud slicing technique alongside a coating thickness
model to create paint trajectories [20]. These methods rely on object geometry obtained
from a laser sensor. Defining key geometric variables on a free-form surface establishes
a coating thickness model. Slicing the point cloud yields a specific portion, where a grid
projection algorithm extracts points for thickness computation. The optimal slice width
and paint gun velocity are determined using the golden section method. This process
iterates for all slices, covering the entire surface. Additionally, a new algorithm optimizes
transitional segments (straight lines and concave and convex arcs) within intermediate
triangular patches of a CAD model, forming a transitional segment trajectory [21].

Furthermore, the integration of components like a 3D sensor, robotic arm, and spray-
painting unit is pivotal for autonomy. Specialized robots like KUKA’s KR AGILUS KR
10 R1100 [22], FANUC’s P-250iB/15 [23], and ABB’s IRB 5500 Flex Painter [24] excel in
industrial painting. For instance, KUKA’s KR AGILUS KR 10 R1100, designed specifically
for paint applications, offers a 10 kg wrist payload, a reach of 1100 mm, and six axes.
Similarly, FANUC’s P-250iB/15, a larger robot, adapts to walls, floors, or narrow spaces.
ABB’s IRB 5500 Flex Painter is also proficient in industrial painting. Specialized soft-
ware enables simulation, providing a user-friendly interface for paint trajectory testing
and robot program development. This software includes CAD robot models, sample ob-
jects for trajectory testing, collision avoidance systems, axis limits, and postprocessors
for generating robot programs. Some commercial simulators for paint robots include
RoboDK [25], RobCad paint [26], Del f oi Paint [27], RobotStudio® Paint PowerPac [28],
OLP Automatic [29], and RoboGuide PaintPRO [30].

This paper extensively outlines the development process of ARSIP (automated robotic
system for industrial painting), building upon our prior work titled “A hybrid optimization
scheme for efficient trajectory planning of a spray-painting robot” [31]. The development
process involves integrating a 3D scanner, trajectory planner, and hardware and software
components, all discussed herein. Specifically, Section 2 covers system design prototyping
involving the 3D scanner, calibrator, trajectory planner, and their integration. Section 3
details the software framework, including the GUI (Graphical User Interface). The opti-
mization results for spray painting processes are outlined in Section 4, while Section 5
provides concluding remarks and future recommendations.
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2. System Design and Prototyping

To practically apply a 3D scanning system and trajectory optimizer, creating an in-
tegrated system with essential components is crucial for automating the process. This
system comprises both hardware and software working in tandem to establish an au-
tonomous robotic painting setup. The hardware elements encompass sensors and actuators,
responsible for the system functions’ sensing and control. This section will delve into the
comprehensive design and development phases of this integrated system, including the 3D
scanner and calibrator, the optimal trajectory planner, and a hardware breakdown of the
integrated system.

2.1. 3D Scanner and Calibrator

A combination of a rotating turntable mechanism paired with an Intel RealSense D435
sensor [32] captures an object’s geometric model, as shown in Figures 1 and 2. The use of an
RGBD sensor cuts costs significantly since industrial laser scanners are very expensive. The
turntable’s servomotor [33] allows precise control with a resolution of 1 degree. Positioning
the D435 sensor at 0.47 m from the object accommodates thicker objects, considering the
sensor’s minimum range of 0.3 m. The object undergoes 30-degree rotations, with RGB and
depth images stored for each angle. These images are then transformed into point clouds
using the camera projection matrix [34]. Applying a box filter isolates the region of interest,
effectively eliminating most of the noisy point cloud data, followed by statistical noise
reduction for further refinement [35]. Subsequently, raw alignment is employed to align the
3D scans, succeeded by ICP (Iterative Closest Point) registration [36]. The reference frame
of the 3D scanner and calibrator is the camera frame, {C}, which coincides with the origin of
the RGBD sensor. A single-point depth sensor with a reference frame {S} is situated directly
above the RGBD sensor to locate the real-time position of the axis of rotation. The frame
{S1} has the same orientation as the frame {S} and locates the origin of the axis of rotation.
To track the rotational angle of the object, another frame, {S1r}, is introduced, with its origin
coinciding with {S} and rotating with the object of interest. With a point cloud, PC(i), in the
camera frame, {C}, corresponding to a rotational angle θy(i), this cloud can be expressed in
the frame {S1r} through the following transformations:

PS1r(i) = S1r
C T PC(i) (1)

S1r
C T can be obtained using the following expression:

S1r
C T = S1r

S1
T S1

S T S
CT (2)

The transformations S1
CT and S

CT are derived through linear offsets along the z- and
y-axes within the frames {S1} and {S}, respectively. Meanwhile, S1r

S1
T is achieved by applying

a relative rotation matrix along the y-axis, as follows:

S1r
S1

T = Ry

(
−θy(i)

)
(3)

The point cloud in the frame {S1r} can be represented by combing Equations (1)–(3).

PS1r(i) = Ry

(
−θy(i)

)
S1
S T S

CT PC(i) (4)

The aligned point clouds are transformed back into the camera reference frame, {C},
using the transformation matrix C

S1
T :

PC(i)
aligned = C

S1
T PS1r(i) (5)
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These individual point clouds are subsequently merged into a single point cloud
by employing the optimal rotation matrix, R, and translation vector, t, acquired through
the ICP:

PC(i)
scan = RPC(i)

aligned + t (6)

The optimal rotation matrix, R, and translation vector, t, are acquired by minimizing
the objective functions in the point-to-point or point-to-plane ICP [36], as described below:

E(R, t) =
1

Npcd

Npcd

∑
i=1

∥qi − Rpi − t∥2 (7)

E(R, t) =
1

Npcd

Npcd

∑
i=1

∥∥ (q i − Rpi − t). nqi

∥∥2 (8)

Algorithm 1 describes the process of ICP fine alignment.

Algorithm 1: ICP fine alignment

Input: PC(i)
aligned (Raw aligned point clouds for each index i). N = ∑ i (# of point clouds)

Output: PC
scan (Merged point cloud in the frame {C})

1. Assign merged point cloud to the point cloud at index 0

PC
scan = PC(i)

aligned

For i in range (N − 1): (Perform step 2 to step 5)
2. Apply the point-to-point ICP and obtain optimal R and t

(R, t)p2p = p2pICP
(

PC
scan , PC(i+1)

aligned

)
3. Apply the point-to-plane ICP and obtain optimal R and t

(R, t)p2plane = p2planeICP
(

PC
scan , PC(i+1)

aligned

)
4. Compare fitness scores

i f
(

f itnessp2p ≥ f itnessp2plane

)
:

(R, t) = (R, t)p2p

else if
(

f itnessp2p < f itnessp2plane

)
:

(R, t) = (R, t)p2plane

5. Transform the source point cloud to the target and merge

PC
scan = merge

(
PC

scan , T(R,t)P
C(i+1)
aligned

)

If the ICP-registered point cloud (PC
scan ) has noise and missing details, the CAD model

can be used for trajectory planning instead. Given PC
scan and PCAD, representing the scan

point cloud in the frame {C} and the CAD point cloud in some arbitrary frame, their
transformations into an eigen coordinate system yield the following:

Peig
scan = uscan

(
PC

scan − cscan

)
(9)

Peig
CAD = uCAD(PCAD − cCAD) (10)

uscan and cscan represent the eigenvectors and principal center of the scan, while uCAD

and cCAD represent the eigenvectors and principal center of the CAD. Using the ICP, Peig
CAD
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is aligned in the reference frame of Peig
scan via the optimal rotation matrix, R, and translation

vector, t, such that:
Paligned

CAD = R Peig
CAD + t (11)

The aligned CAD model can then be represented in the frame {C} by applying the
following transformations:

PC
CAD = u−1

scan Paligned
CAD + cscan (12)

The fully calibrated CAD point cloud (PC
CAD) forms the basis for our trajectory planning

and optimization processes.
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2.2. Optimal Trajectory Planner

Optimal trajectory planning for spray painting involves modeling coating deposition,
robot dynamics, the spraying process, and an optimization scheme to obtain optimal paint
parameters. A trajectory planner that uses a hybrid objective function to obtain optimal
paint trajectories is considered [31]. This is our prior work, and the optimization variables
include the slice width (δ), slice speeds (v1, v2), slicing direction (θ), and inverse kinematic
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configuration (ikc f ) of the manipulator. The coating deposition employs a double-beta
distribution model since it has higher practicality for HVLP (high-volume low-pressure)
spray painting systems. It can be extended to other painting methods by modifying the
coating distribution function. The optimizer starts by slicing the surface of the calibrated
CAD (PC

CAD) at an arbitrary slicing angle using randomly assigned optimization variables.
Using the coating deposition and robot dynamic models, the mean robot energy, the mean
trajectory time, the coating deviation error, and the mean squared coating error for a
slice are computed. A genetic algorithm then changes the optimization variables through
crossover and mutation until convergence is achieved. This process is repeated for all slices
until the entire surface is covered. In this way, optimal trajectories are obtained for the
surface. A summary of the hybrid optimization scheme is presented in Figure 3.
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2.3. Integrated System

The integration of the designed 3D scanner and trajectory planner into a robotic system
is intended to accomplish seamless automation. The enclosure, measuring 1000 by 1000 by
600 mm, primarily employs aluminum railings, as depicted in Figure 4. A horizontal slider,
propelled by a stepper motor, facilitates the movement of the object of interest across the
3D scanner and the two installed robots. To enable 3D scanning (outlined in Section 2.1),
a servomotor is affixed to the horizontal slider, allowing for the rotation of the object.
Each of the two robots, mounted on vertical slides, possesses independent movement
capabilities to cover all facets of the object. For safety measures, the vertical slides are
regulated by linear actuators integrated with limit switches. TOF (Time of Flight) sensors,
positioned on both the horizontal and vertical slides, serve to acquire accurate position
feedback. Control over these components is managed through a Raspberry Pi controller
equipped with appropriate motor drivers housed in the electronics box. Furthermore, an
Arduino, connected to the Raspberry Pi, monitors the real-time power consumption of the
robots using current sensors. For trajectory execution, two Jetmax three-DOF manipulators
are employed due to their affordability. They are also compatible with the ROS (Robot
Operating System) ecosystem, making their integration into the system straightforward.
The trajectory planning scheme is not confined to this robot, as the planning is conducted
in task space and not joint space. A comprehensive breakdown of each component is
presented in Table 1. The dimensions of complete assembly are illustrated in Appendix A.
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Table 1. Breakdown of hardware components with component IDs.

ID Component Description CAD Model

1

Aluminum framing used for building the
structure of the entire system. It also contains
corner brackets, T-brackets, and gantries for
achieving smooth linear motion.
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Table 1. Cont.

ID Component Description CAD Model

2

Vertical sliding mechanism. It contains two
linear actuators, a support base for lifting the
robots, and a base mount plate for securing the
linear actuators. For position feedback,
VL53L0X sensors are installed. These actuators
are used for extended reach in case of large
objects.
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surface of a complex free-form surface (e.g., car
door). The choice of a Jetmax robot is due to its low
price and convenient integration with the ROS
ecosystem.  

4

Horizontal sliding mechanism. It contains a
threaded rod, two guide rails with linear
gantries, bearings and bearing supports for the
threaded rod, a stepper motor for driving the
mechanism, and a distance feedback sensor.
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Two 3-DOF Jetmax robots for controlling the x, y,
and z locations of the end effector [38]. The robot
combined with the vertical sliding mechanism gives
a total of 4 DOF for executing the trajectory over the
surface of a complex free-form surface (e.g., car
door). The choice of a Jetmax robot is due to its low
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5

Stepper motor [37] for moving the horizontal
slider. This motor is a suitable choice for the
system due to its easy availability, high torque
for a low price, and convenient integration
with the Raspberry Pi.
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Rotating servomechanism for 3D scanner. The
servomechanism [33] is connected to the object
via a gripper that can be tightened and
loosened. The object is a car door, as illustrated
in the CAD.
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Two 3-DOF Jetmax robots for controlling the x,
y, and z locations of the end effector [38]. The
robot combined with the vertical sliding
mechanism gives a total of 4 DOF for executing
the trajectory over the surface of a complex
free-form surface (e.g., car door). The choice of
a Jetmax robot is due to its low price and
convenient integration with the
ROS ecosystem.
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ecosystem.  



Technologies 2024, 12, 27 9 of 22

Table 1. Cont.

ID Component Description CAD Model

10 Position feedback platform for the linear
actuators with distance feedback sensor.
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VL53L0X sensor [39]. It is a time-of-flight
(TOF) sensor for measuring distance. It has a
measurement range of 3 cm to 2 m and an
accuracy of ±1 mm. These sensors are more
accurate and precise than SONAR (Sound
Navigation and Ranging) sensors, which
makes them a good choice for the
integrated system.
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3D scanning hardware, including an Intel Real
Sense D435 sensor [32] and a VL53L0X sensor
for axis calibration. These sensors are low-cost
compared to laser scanners, which makes them
a suitable choice for the integrated system.
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3. Software Development

Once the CAD modeling and fabrication of the system are complete, it becomes
crucial to design a software mechanism that effectively fulfills the autonomous system’s
intended functions. This software needs to establish seamless communication with the
hardware components and adeptly optimize trajectories across intricate, free-form surfaces.
Additionally, the incorporation of a user-friendly GUI becomes pivotal, enabling users to
interact with the system, adjust settings, and import CAD and trajectory files. Section 3
elaborates on the software development process involved in achieving these objectives.

3.1. Software Framework

Figure 5 illustrates the software breakdown and the GUI. The system’s core compo-
nents interconnect through the ROS ecosystem [41], facilitating smooth communication
among software scripts/nodes via topics and services. Within this ecosystem, the ROS
MASTER serves as the primary server, hosting essential nodes responsible for trajectory
optimization and 3D scanning. Meanwhile, another instance of ROS operates on the Rasp-
berry Pi controller, directly linked to the hardware. This hardware encompasses horizontal
and vertical sliding mechanisms, servomechanism, VLX sensors for distance monitoring,
and the D435 sensor for depth scanning. The Raspberry Pi is programmed to respond to
specific topics through ROS subscribers and publishers, allowing the MASTER node to
access any sensor data via subscription and effect real-time changes in actuator states by
publishing to the Raspberry Pi node.
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Figure 5. Schematic of the software framework for ARSIP.

The web-based GUI connects to the ROS MASTER and the two robots via web sockets
programmed in JS (JavaScript) [42]. HTML scripts form the web page’s foundation, while
CSS and JS elements from Bootstrap and jQuery [43] dictate its style. The integration of
the ROS ecosystem with JS is enabled through the ROSLIBJS script developed by [44].
Trajectory commands, presented as x, y, and z coordinates and a time-variable defining
speed, are dispatched to the two robots. Upon user request through the web GUI, the
3D scanner node initiates a 3D scanning process, saving the scan file locally in the scan
directory upon completion. Similarly, the trajectory optimizer node, triggered from the
GUI, performs trajectory optimization and stores results locally as a NumPy array in the
traj folder.
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Likewise, various nodes fulfill specific functions within the system: CAD calibration,
the validation of 3D scans, viewing trajectories, and managing process settings. A JSON
handler node is dedicated to storing and updating these process settings in a JSON file. This
node actively listens to a string topic and promptly updates the fields upon user requests
from the web page. Additionally, a USBCAM node is responsible for capturing video feeds
from a USB device and publishing them on a ROS topic, enabling real-time monitoring via
the webpage. In a separate setup, the Raspberry Pi is programmed to receive messages from
the ROS MASTER, controlling motors and actuators and publishing readings from the VLX
sensors and image streams captured by the RealSense D435 sensor. The Arduino facilitates
serial communication, transmitting current readings to the ROS ecosystem efficiently.

3.2. Graphical User Interface

The web-based GUI serves as an interface, facilitating communication between users
and the system’s software components. Its primary objective is to offer a user-friendly
platform for executing diverse system functions. This GUI incorporates a sidebar naviga-
tion menu housing interactive buttons, such as Camera, Sensors, 3D Scanner, Optimizer
Settings, Traj Optimizer, Upload Traj, Stop Traj, Validate, and Manual Control, enabling
seamless interaction with the system. Additionally, the top navigation bar contains four
buttons—CAD Files, Scan Files, CAD-CAL files, and Traj Files—managed by the JavaScript
node. Clicking these buttons triggers the execution of the respective functionalities. Figure 6
depicts the main page of the graphical user interface.
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The additional functionalities embedded within the GUI are illustrated in Figure 7.
The Traj Optimizer button is subdivided into two distinct buttons, one designated for
optimizing the trajectory and the other for visualizing the chosen trajectory. To initiate
trajectory optimization, the optimizer settings require the CAD/SCAN field to be set
to 0 or 1, representing CAD or SCAN, respectively. The backend utilizes the selected
CAD or SCAN file to plan the trajectory accordingly. Similarly, the Upload and Stop Traj
buttons activate the trajectory handler node, enabling the commencement or cancellation of
trajectory uploads to the robots at any given point. The Validate button encompasses three
subfields for assessing the 3D scan accuracy concerning the chosen CAD and SCAN files,
energy evaluation, and paint quality pertaining to the selected trajectory file. Additionally,
Figure 8 showcases the Camera field dropdown, facilitating the selection of a specific
camera feed, the Sensors dropdown for monitoring sensor readings, and the 3D scanner
button to initiate and observe the 3D scanning process.
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3.3. Circuit Connection Diagram

The integration of hardware and software is pivotal in realizing the intended objective
of the ARSIP. This integration involves connecting sensors, motors, and actuators to the
Raspberry Pi controller via GPIO pins, while the ACS712 current sensors interface with
Arduino’s analog pins. The motor drivers facilitate motor operation as the microcontroller
alone lacks sufficient power output. After establishing a wireless connection, the Raspberry
Pi links to the LINUX server through the ROS ecosystem. Furthermore, the VLX sensors
undergo multiplexing via a TCA9548 and are then connected to the Raspberry Pi’s i2C port.
A detailed depiction of the circuit connections, inclusive of pin numbering, is presented in
Figure 8.

4. Results and Discussions

The software framework is coded in Python [45], coupled with the ROS ecosystem.
Achieving the best trajectory planning involves several steps: conducting a 3D scan of
the object, calibrating the CAD within the camera’s reference frame, and optimizing the
objective functions detailed in Section 2. This section will cover and analyze the processes of
3D scanning and object calibration, as well as delving into the resulting optimal trajectories
within the integrated system. Three objects are considered for the analysis, including a car
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door, a hood, and a bumper. For reference, the fixed parameters utilized in the analysis can
be found in Table 2.

Table 2. Constant parameters used in the results analysis.

Parameter Description Value

Spraying process parameters
a Ellipse longer side for the coating model 15 mm
b Ellipse shorter side for the coating model 5.6 mm

βx Coating distribution beta along the X direction of ellipse 2.3
βy Coating distribution beta along the Y direction of ellipse 4.5

kmax Coating deposition rate 50.0 µm/s
dideal Desired coating thickness 20 µm
vmin Minimum speed of the spray gun 3 mm/s
vmax Maximum speed of the spray gun 15 mm/s

h Spray gun height from the surface 10 mm
Robot model parameters

dstroke Link 0 stroke length 254 mm
L1 Manipulator Link 1 length 92.54 mm
L2 Manipulator Link 2 length 128.4 mm
L3 Manipulator Link 3 length 144.8 mm
M Manipulator Link 0 mass 2.5 kg
m1 Manipulator Link 1 mass 0.5 kg
m2 Manipulator Link 2 mass 0.5 kg
m3 Manipulator Link 3 mass 0.5 kg

Optimizer Parameters
ω1 Scaling factor for mean-squared error 0.40
ω2 Scaling factor for coating deviation error 0.20
ω3 Scaling factor for mean energy consumption 0.20
ω4 Scaling factor for mean trajectory time 0.20
ϵ Hyper-parameter in the fitness function 1.0

rm Mutation rate in GA 0.1
ctype Crossover type in GA Two points
mtype Mutation type in GA Random

Nparents Number of mating parents in GA 2
Ngen Number of generations in GA 25
Nsol Number of solutions per population in GA 2

4.1. 3D Scanning and CAD Calibration

The 3D scanning system captures surface point clouds of the investigated object. These
point clouds, acquired at each rotational index (30◦), undergo filtering and initial alignment
using previously defined transformations from Section 2.1. Further alignment is achieved
using the ICP to merge the point clouds into a unified reference frame. Additionally, statisti-
cal noise removal is applied if any residual noise persists. The calibration involves scanning
these objects and aligning their CAD models with the camera’s reference frame, {C}, for
trajectory planning. Scanning accuracy is assessed using the D1 and D2 metrics [46]. Table 3
provides an overview of the scanned models and their calibrated CAD representations
within the camera frame, {C}. When compared with their CAD counterparts, the scanned
models unveil 95% accuracy for the car door, 93% for the car hood, and 92% for the car
bumper, as tabulated in Table 4. In Figure 9, the process of selecting and viewing a scan file
through the GUI is demonstrated, while Figure 10 depicts the calibration procedure within
the system’s GUI interface.
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Table 3. 3D scanned geometries and their corresponding calibrated CAD models.

Scanned Geometry in Frame {C} Calibrated CAD in Frame {C}
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Table 4. Similarity scores of the scanned and CAD models.

D1 Score D2 Score Avg Score

Car door 0.9639 0.9434 0.9536
Car hood 0.9524 0.9228 0.9376

Car bumper 0.9488 0.9082 0.9285

4.2. Optimal Trajectory Planning

After the CAD model is aligned with the scanned one to ensure accurate positioning in
both the camera and robot frames, the optimization algorithm is applied to generate efficient
trajectories for the painting process. The results reveal that achieving the desired coating
thickness depends on the spray parameters and robot model. The coating thickness varies
due to an object’s geometry, the paint gun speed, the slice width, and the slicing direction.
Equidistant slicing offers more uniformity, but non-equidistant slicing is more energy- and
time-efficient, covering surfaces with fewer slices. For a car door, the energy efficiency
peaks at 90◦ with non-equidistant slicing, 60% less than the least efficient. The optimal
time occurs at 30◦ with non-equidistant slicing, 33% faster than the slowest. Equidistant
slicing at 30◦ achieves a close thickness (19.21 µm), while non-equidistant slicing at the
same angle minimizes the coating error (14%) but yields a slightly thinner result (18.38 µm).
Figure 11 shows a few of the planned trajectories for three objects, while Figure 12 displays
the energy consumption, time, coating deviation, and relative coating error for each slicing
direction for a car door. The validity of the trajectory of energy consumption is confirmed
by measuring the actual energy used by the robots in real time. The total energy values
across all trajectory points are aggregated and then compared against the experimental
observations, detailed in Table 5, for comparison.
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Figure 11. (a) Planned trajectories for a car door at 0◦ and 90◦ slicing directions; (b) planned
trajectories for a car hood and bumper at a 90◦ slicing direction. Bright green color shows high
coating thickness values, and vice versa.
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Figure 12. (a) Total energy; (b) trajectory time; (c) coating deviation; (d) relative coating error vs.
slicing direction for a car door.
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Table 5. Experimental validation of energy consumption for selected trajectories.

Slicing Scheme θ
Experimental

Esum

Theoretical
Esav

Experimental
Esav

Car door Non-equidistant 90◦ 2085 J 60% 44%
Equidistant (ref.) 30◦ 3003 J 0% 0%

Car hood Non-equidistant 90◦ 1569 J 73% 51%
Equidistant (ref.) 0◦ 3212 J 0% 0%

Car bumper Non-equidistant 90◦ 1275 J 64% 33%
Equidistant (ref.) 0◦ 1894 J 0% 0%

4.3. Comparison with State of the-Art

The coating uniformity, trajectory time, and energy consumption in paint applications
depend on the object’s geometry, the dynamics of the spraying process, and the robot
executing the trajectory. These factors will vary based on the scenario presented in the
optimization process. The analysis of the results leads to the conclusion that the proposed
integrated system can generate efficient trajectories for a painting process. It not only
achieves coating uniformity, as indicated by low coating deviation and relative coating
errors, but also optimizes the energy consumption and trajectory time of the manipula-
tor, thereby enhancing the overall efficiency of the painting process. To the best of our
knowledge, the proposed system is the first of its kind, as the previous literature shows no
optimization with respect to robot energy and trajectory time. A summary of the results in
comparison with existing solutions is tabulated in Table 6.

Table 6. Results comparison summary with state of the art.

Article U-Direction
[19]

V-Direction
[19]

Equidistant
Slicing [20]

Non. Eq
Slicing [20]

Transitional-
Seg Opt [21]

Proposed
Scheme

Proposed
Scheme

Proposed
Scheme

Object of interest Oval Bucket Oval Bucket Motorcycle
spoiler

Motorcycle
spoiler

Aircraft
wing Car door Car hood Car

bumper
Desired coating

thickness 50 µm 50 µm 23 µm 23 µm 70 µm 20 µm 20 µm 20 µm

Mean coating
thickness 51.1 µm 52.2 µm 25.95 µm 22.27 µm 68.7 µm 19.21 µm 21.02 µm 21.02 µm

Standard
deviation 2.775 µm 3.8 µm 6.52 µm 5.71 µm 3.2 µm 3.41 µm 6.51 µm 5.35 µm

Mean coating
deviation error 5.43% 7.60% 25.12% 25.64% 4.60% 17.75% 29.4% 25.4%

Mean relative
coating error 2.2% 4.4% 12.83% 3.17% 1.86% 3.95% 5.1% 5.1%

Max time savings 17% 0% N/A N/A N/A 33% 14.18% 27.13%
Max energy

savings N/A N/A N/A N/A N/A 60% 73% 64%

Coating
mean-squared

error cost
Yes Yes Yes Yes Yes Yes Yes Yes

Coating
deviation cost No No No No No Yes Yes Yes

Energy cost No No No No No Yes Yes Yes
Process time cost No No No No No Yes Yes Yes

5. Conclusions and Future Work

This manuscript outlines the design and development of an automated robotic system
for industrial painting. A 3D scanner, employing a turntable mechanism and a low-
cost RGBD sensor, was designed. Additionally, a calibration mechanism was devised to
represent the CAD models in the camera frame, addressing incomplete point clouds. The
integration of an optimal trajectory planner into the system enhanced the efficiency of
the painting trajectories. Moreover, this study detailed the meticulous hardware–software
design of the ARSIP using open-source software: ROS and Python. A web-based graphical
interface was also developed to enhance user interaction with the system. The findings



Technologies 2024, 12, 27 19 of 22

ascertain that the integrated hardware–software system proposed can effectively automate
trajectory planning and execution, leading to energy-, time-, and coating-efficient spray
processes. The following are the key characteristics of the ARSIP:

• A low-cost 3D scanner and calibrator that capture complex free-form surfaces with
accuracies of up to 95%.

• An efficient trajectory planning scheme with energy savings of up to 73% and time
savings of up to 33%.

• A trajectory planner capable of achieving optimal coating quality with relative coating
errors as low as 5% and deviation errors as low as 17%.

• An easily scalable autonomous hardware–software framework using open-source
software such as ROS and Python.

• An interactive web-based graphical user interface providing user control over the sys-
tem and real-time monitoring of camera feeds, power consumption, and sensor states.

For future work, simulating the paint system using tools like Gazebo or MATLAB
is suggested to analyze optimal paint paths. Gazebo, requiring URDF for precise robot
modeling within an ROS, facilitates system evaluation on physical setups. Utilizing six-axis
robots with HVLP spray guns is advised for accurate paint application, compensating for
the orientation constraints of three-DOF robots. Moreover, the optimization scheme can be
extended to other types of spray-painting methods by modifying the coating deposition
function. For large-scale industrial use, a hybrid optimization approach in Python, paral-
lelization via hyperthreading, GPU processing for batch tasks, and Docker containers for
seamless software distribution are recommended.

6. Patents

The ARSIP, in contribution with Cherkam Industrial Ltd., is undergoing the process of
patent filing.
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