
Citation: Almeida, P.; Carvalho, V.;

Simões, A. Reinforcement Learning as

an Approach to Train Multiplayer

First-Person Shooter Game Agents.

Technologies 2024, 12, 34.

https://doi.org/10.3390/

technologies12030034

Received: 16 January 2024

Revised: 25 February 2024

Accepted: 28 February 2024

Published: 5 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

technologies

Article

Reinforcement Learning as an Approach to Train Multiplayer
First-Person Shooter Game Agents
Pedro Almeida 1,* , Vítor Carvalho 1,2,* and Alberto Simões 1

1 2Ai, School of Technology, Polytechnic University of Cávado and Ave, 4750-810 Barcelos, Portugal;
asimoes@ipca.pt

2 Algoritmi Research Centre, University of Minho, 4800-058 Guimaraes, Portugal
* Correspondence: a17564@alunos.ipca.pt (P.A.); vcarvalho@ipca.pt (V.C.)

Abstract: Artificial Intelligence bots are extensively used in multiplayer First-Person Shooter (FPS)
games. By using Machine Learning techniques, we can improve their performance and bring them
to human skill levels. In this work, we focused on comparing and combining two Reinforcement
Learning training architectures, Curriculum Learning and Behaviour Cloning, applied to an FPS
developed in the Unity Engine. We have created four teams of three agents each: one team for
Curriculum Learning, one for Behaviour Cloning, and another two for two different methods of
combining Curriculum Learning and Behaviour Cloning. After completing the training, each agent
was matched to battle against another agent of a different team until each pairing had five wins or
ten time-outs. In the end, results showed that the agents trained with Curriculum Learning achieved
better performance than the ones trained with Behaviour Cloning by a matter of 23.67% more average
victories in one case. In terms of the combination attempts, not only did the agents trained with both
devised methods had problems during training, but they also achieved insufficient results in the
battle, with an average of 0 wins.

Keywords: reinforcement learning; unity; first-person shooter games; curriculum learning;
behaviour cloning

1. Introduction

Recently, many breakthroughs have been made in the creation of Artificial Intelligence
(AI) agents powered by Reinforced Machine Learning [1]. New platforms have made
Reinforcement Learning (RL) more accessible [2], new algorithms trained agents more
capably, and new training architectures created new ways to train those agents.

Video games have always been used as a benchmark for testing new AI techniques,
and as the years pass, more and more games are solved by AI algorithms, as is the case
with the classic games of Go [3], Chess [4], and Shogi [4]. RL has proved to be developed
enough to play 2D arcade games such as Breakout, Pong, and Space Invaders at a human
level from scratch [5], but it is still being developed for facing complex 3D environments.
However, it has been proven that it is possible to apply RL to more simple First-Person
Shooter (FPS) games [1,6].

FPS games are one of the more popular genres for developing RL agents in these
3D environments due to its nature of placing the camera on the agent’s perspective, thus
facilitating the use of visual recognition, and more closely mimicking what a real-life robot
would require when functioning in a real environment [1].

From a systematic review conducted before this work [7], it was identified that no
previous research had been performed comparing the Curriculum Learning and Behaviour
Cloning training architectures for the purpose of training agents for FPS games. It is
unknown if the two can achieve significantly better results when placed together. We
saw this as a research opportunity and decided to compare and combine these training

Technologies 2024, 12, 34. https://doi.org/10.3390/technologies12030034 https://www.mdpi.com/journal/technologies

https://doi.org/10.3390/technologies12030034
https://doi.org/10.3390/technologies12030034
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/technologies
https://www.mdpi.com
https://orcid.org/0000-0003-1274-5045
https://orcid.org/0000-0003-4658-5844
https://orcid.org/0000-0001-6961-2660
https://doi.org/10.3390/technologies12030034
https://www.mdpi.com/journal/technologies
https://www.mdpi.com/article/10.3390/technologies12030034?type=check_update&version=1

Technologies 2024, 12, 34 2 of 20

architectures. The aim of this research is to further research RL applied to FPS games;
with that in mind and the previously stated problem, we have proposed the following
research questions:

• Can Behaviour Cloning yield trained agents with better performance than Curriculum
Learning in FPS games?

• Does combining Behaviour Cloning and Curriculum Learning bring better perfor-
mance in the design of bots for FPS games?

The main objective is to compare the Curriculum Learning and Behaviour Cloning
training architectures and see not only which one brings better results, but if combining
the two is feasible and can bring better results than just using one of them. We are using
Unity and the ML-agents toolkit as many other articles mostly use other platforms such as
ViZDoom, PAGOMUT, or Deepmind Lab. With Unity being one of the most largely used
platforms, this research becomes more easily reproducible and comparable to future ones.

The structure that is followed in this paper can be described as follows: Section 2
describes the background; Section 3 presents the state of the art of RL applied to FPS games;
Section 4 presents the implementation of the work; the results are presented in Section 5;
the discussion is presented in Section 6; and finally, the conclusion and future work are
shown in Section 7.

2. Background

In this section, we will cover relevant topics that the reader must consider in order to
understand the work, namely, from the genre of FPS to various Machine Learning (ML)
topics as well as to the Unity engine and the ML-agents Toolkit.

2.1. First-Person Shooters (FPS)

FPS games are a sub-genre of action games that are played from the first-person
point of view that usually involve one or more ranged weapons and allow the player to
fully navigate a 3D environment. The major focus of games like these are usually combat,
although they can also have narrative and puzzle elements to them. They allow the player
to freely control their character’s movement, aim, and shooting, often in fast-paced and
intense scenarios [8].

Many of the games in this genre have a multiplayer component, where players can
play against each other or against AI-controlled opponents in various formats such as duels,
free-for-all, or team-based modes.

Games in this genre include Doom (Id Software, 1993), Counter-Strike (Valve, 2000),
Halo (Bungie, 2001), and Call of Duty (Infinity Ward, 2003).

2.2. Machine Learning (ML)

The field of ML focuses on developing programs that learn how to perform a task, as
opposed to the traditional approach of developing programs with hardcoded rules on how
to perform a task. With ML techniques, a program can adapt to changes in its environment
without needing manual changes [9].

A good example of how ML thrives is in problems that are too complex for traditional
methods, such as the spam filter [10]. An ML program analyses words in emails flagged as
spam, finding patterns and learning by itself how to identify future spam mail. If the spam
filter was run through the traditional programming approach, the designers would have to
update the program each time the spam mail changed patterns.

2.2.1. Neural Networks

A neural network’s purpose is to simulate the mechanism of learning in biological
organisms [11]. Nervous systems contain cells referred to as “Neurons”, which are con-
nected to one another through axons and dendrites, and these connections are referred to
as synapses. The strength of the synapses changes in response to external stimulation, and
these changes are how learning takes place in living organisms.

Technologies 2024, 12, 34 3 of 20

This process is simulated in artificial neural networks, which also contain “neurons”,
in the form of computation units [12]. These neurons are organised into three main types
of layers: input, hidden, and output layers. Data are fed into the network through the
input layer, and they propagate through the hidden layers where computations occur. The
output layer then produces the network’s predictions or results [13].

In modern times, neural networks are becoming more and more popular in multiple
areas and many organisations are investing in them to solve their problems. Neural
networks can be found in a variety of places, which include computing, science, engineering,
medicine, environmental, agriculture, mining, technology, climate, business, arts, and
nanotechnology, among others [11].

2.2.2. Deep Learning

A subfield of ML, Deep Learning refers to the use of artificial neural networks with
multiple layers in their networks, which can better process high levels of raw inputs.
These Deep Learning neural networks can be commonly found being used in modern uses
of neural networks such as image processing programs like face recognition and image
generation, smart assistants such as Siri/Alexa, suggestion algorithms, and many more.
Most of these state-of-the-art programs require inputting large amounts of data into the
neural network, and as such, they are classified as Deep Learning [14].

2.3. Reinforcement Learning (RL)

RL is a subfield of ML that focuses on teaching an agent to make sequential decisions
in an environment to maximise its long-term rewards. It is inspired by how humans and
animals learn through interactions with the world. RL places an agent in an environment,
carrying sensors to check its state, and gives it a set of actions that it can perform, as seen in
Figure 1. The agent then tries out those actions by trial-and-error, so that it can develop its
control policy and maximise rewards based on its performed actions [15].

Technologies 2024, 12, x FOR PEER REVIEW 3 of 24

as synapses. The strength of the synapses changes in response to external stimulation, and
these changes are how learning takes place in living organisms.

This process is simulated in artificial neural networks, which also contain “neurons”,
in the form of computation units [12]. These neurons are organised into three main types
of layers: input, hidden, and output layers. Data are fed into the network through the
input layer, and they propagate through the hidden layers where computations occur. The
output layer then produces the network’s predictions or results [13].

In modern times, neural networks are becoming more and more popular in multiple
areas and many organisations are investing in them to solve their problems. Neural net-
works can be found in a variety of places, which include computing, science, engineering,
medicine, environmental, agriculture, mining, technology, climate, business, arts, and
nanotechnology, among others [11].

2.2.2. Deep Learning
A subfield of ML, Deep Learning refers to the use of artificial neural networks with

multiple layers in their networks, which can better process high levels of raw inputs. These
Deep Learning neural networks can be commonly found being used in modern uses of
neural networks such as image processing programs like face recognition and image gen-
eration, smart assistants such as Siri/Alexa, suggestion algorithms, and many more. Most
of these state-of-the-art programs require inputting large amounts of data into the neural
network, and as such, they are classified as Deep Learning [14].

2.3. Reinforcement Learning (RL)
RL is a subfield of ML that focuses on teaching an agent to make sequential decisions

in an environment to maximise its long-term rewards. It is inspired by how humans and
animals learn through interactions with the world. RL places an agent in an environment,
carrying sensors to check its state, and gives it a set of actions that it can perform, as seen
in Figure 1. The agent then tries out those actions by trial-and-error, so that it can develop
its control policy and maximise rewards based on its performed actions [15].

Figure 1. Agent interaction with the environment in RL [7].

RL is different from both Supervised and Unsupervised Learning, as it does not re-
ceive any pre-labelled data and it also is not trying to find a hidden structure, but instead
working its way to maximising the reward value [16].

RL is made up of several components such as the agent, the environment, the actions,
the policy, and the reward signal.

There is also a deep version of RL, called Deep Reinforcement Learning (DRL) [17].

Reinforcement Learning Components
When constructing an RL scenario, there are many components that one should keep

in mind [16]:
• RL Agent

The agent is the entity that is being trained on the environment, with various training
agents contributing to designing and refining the control policy. The agent monitors the
state of the environment and performs actions.

Figure 1. Agent interaction with the environment in RL [7].

RL is different from both Supervised and Unsupervised Learning, as it does not receive
any pre-labelled data and it also is not trying to find a hidden structure, but instead working
its way to maximising the reward value [16].

RL is made up of several components such as the agent, the environment, the actions,
the policy, and the reward signal.

There is also a deep version of RL, called Deep Reinforcement Learning (DRL) [17].

Reinforcement Learning Components

When constructing an RL scenario, there are many components that one should keep
in mind [16]:

• RL Agent

The agent is the entity that is being trained on the environment, with various training
agents contributing to designing and refining the control policy. The agent monitors the
state of the environment and performs actions.

• RL Environment

Technologies 2024, 12, 34 4 of 20

The environment is the space that the agent is in and can interact with and changes
according to the agent’s actions. It sends back feedback to the agent in the form of a
reward signal.

• Actions of the RL Agent

The actions are the choices available to the agent—the agent selects actions based on
the control policy, which influences the environment and generates a reward signal.

• RL Policy

The control policy is a map of the agent’s action selection—it represents the behaviour
or strategy of an agent in an environment. Moreover, it defines the mapping between states
and actions, indicating what action the agent should take when it is in a particular state.
The goal of RL is to find an optimal policy that maximises a notion of cumulative reward
signal or value over time.

• RL Reward Signal

The reward signal is a numeric value that defines the goal for the agent. When the
agent performs certain actions, reaches goals, or makes mistakes, the environment sends
the agent a reward value, which can be positive, negative, or zero. The sole objective of the
agent is, therefore, to maximise this value as much as possible over time during training.

2.4. Deep Reinforcement Learning (DRL)

DRL is achieved by combining Deep Learning techniques with RL. While RL considers
the problem of an agent learning to make decisions by trial-and-error, DRL incorporates
Deep Learning into the solution, which allows the input of large quantities of data, such
as all the pixels in a frame, and still manages to decide which action to perform [17]. In
Figure 2, we can see how the added Deep Neural Network (DNN) works with RL.

Technologies 2024, 12, x FOR PEER REVIEW 4 of 24

• RL Environment
The environment is the space that the agent is in and can interact with and changes

according to the agent’s actions. It sends back feedback to the agent in the form of a reward
signal.
• Actions of the RL Agent

The actions are the choices available to the agent—the agent selects actions based on
the control policy, which influences the environment and generates a reward signal.
• RL Policy

The control policy is a map of the agent’s action selection—it represents the behav-
iour or strategy of an agent in an environment. Moreover, it defines the mapping between
states and actions, indicating what action the agent should take when it is in a particular
state. The goal of RL is to find an optimal policy that maximises a notion of cumulative
reward signal or value over time.
• RL Reward Signal

The reward signal is a numeric value that defines the goal for the agent. When the
agent performs certain actions, reaches goals, or makes mistakes, the environment sends
the agent a reward value, which can be positive, negative, or zero. The sole objective of
the agent is, therefore, to maximise this value as much as possible over time during train-
ing.

2.4. Deep Reinforcement Learning (DRL)
DRL is achieved by combining Deep Learning techniques with RL. While RL consid-

ers the problem of an agent learning to make decisions by trial-and-error, DRL incorpo-
rates Deep Learning into the solution, which allows the input of large quantities of data,
such as all the pixels in a frame, and still manages to decide which action to perform [17].
In Figure 2, we can see how the added Deep Neural Network (DNN) works with RL.

Figure 2. DRL agent interaction with the environment [7].

2.5. Training Architectures
A training architecture is how the designer trains their agents; agents can be trained

alone versus traditional AI, against themselves, or even against or with other agents. They
can also be trained using Curriculum Learning [18] and with Behaviour Cloning [19]. We
will explain the various training architectures that are relevant for this work.

2.5.1. Single-Agent Reinforcement Learning
Single-Agent RL is a branch of ML that focuses on the interaction between an agent

and its environment. In single-agent RL environments, there is one agent learning by in-
teracting with either just the environment without AI or against traditional AI agents [20],
as is the case in [5], where the agent learns to play many Atari arcade games.

2.5.2. Multi-Agent Reinforcement Learning

Figure 2. DRL agent interaction with the environment [7].

2.5. Training Architectures

A training architecture is how the designer trains their agents; agents can be trained
alone versus traditional AI, against themselves, or even against or with other agents. They
can also be trained using Curriculum Learning [18] and with Behaviour Cloning [19]. We
will explain the various training architectures that are relevant for this work.

2.5.1. Single-Agent Reinforcement Learning

Single-Agent RL is a branch of ML that focuses on the interaction between an agent
and its environment. In single-agent RL environments, there is one agent learning by
interacting with either just the environment without AI or against traditional AI agents [20],
as is the case in [5], where the agent learns to play many Atari arcade games.

2.5.2. Multi-Agent Reinforcement Learning

Multi-agent RL focuses on scenarios where numerous agents learn and interact in
a shared environment. As shown in Figure 3, each agent is an autonomous entity that
observes the environment, takes actions, and receives rewards based on its own actions and
the actions of other agents. It can take the form of multiple scenarios, be cooperative with

Technologies 2024, 12, 34 5 of 20

each other or competitive with each other in a one-vs.−one scenario or a team-vs.-team
scenario [20].

Technologies 2024, 12, x FOR PEER REVIEW 5 of 24

Multi-agent RL focuses on scenarios where numerous agents learn and interact in a
shared environment. As shown in Figure 3, each agent is an autonomous entity that ob-
serves the environment, takes actions, and receives rewards based on its own actions and
the actions of other agents. It can take the form of multiple scenarios, be cooperative with
each other or competitive with each other in a one-vs.−one scenario or a team-vs.-team
scenario [20].

Figure 3. How multi-agent RL has multiple agents each controlling one player, acting independently
from each other but still contributing to the same policy [7].

2.5.3. Self-Play
Self-play is a technique often used in RL that involves having RL agents playing

against themselves to improve performance. As seen in Figure 4, a single agent acts as all
players, learning from the outcomes of its own actions. Self-play has been successfully
applied in [4], where researchers used this method to develop their Chess- and Shogi-
playing AI.

Figure 4. How self-play puts an agent in control of various players [7].

2.5.4. Behaviour Cloning
A form of imitation learning, Behaviour Cloning involves capturing the actions of a

human performer and inputting them into a learning program. The program will then
output rules that help agents reproduce the actions of the performer [19]. In video games,
this usually means having a human player play in the designed environment, where their
actions are recorded and then used to train the agent’s policy. The more diverse the re-
cording data, the better.

Figure 3. How multi-agent RL has multiple agents each controlling one player, acting independently
from each other but still contributing to the same policy [7].

2.5.3. Self-Play

Self-play is a technique often used in RL that involves having RL agents playing against
themselves to improve performance. As seen in Figure 4, a single agent acts as all players,
learning from the outcomes of its own actions. Self-play has been successfully applied
in [4], where researchers used this method to develop their Chess- and Shogi-playing AI.

Technologies 2024, 12, x FOR PEER REVIEW 5 of 24

Multi-agent RL focuses on scenarios where numerous agents learn and interact in a
shared environment. As shown in Figure 3, each agent is an autonomous entity that ob-
serves the environment, takes actions, and receives rewards based on its own actions and
the actions of other agents. It can take the form of multiple scenarios, be cooperative with
each other or competitive with each other in a one-vs.−one scenario or a team-vs.-team
scenario [20].

Figure 3. How multi-agent RL has multiple agents each controlling one player, acting independently
from each other but still contributing to the same policy [7].

2.5.3. Self-Play
Self-play is a technique often used in RL that involves having RL agents playing

against themselves to improve performance. As seen in Figure 4, a single agent acts as all
players, learning from the outcomes of its own actions. Self-play has been successfully
applied in [4], where researchers used this method to develop their Chess- and Shogi-
playing AI.

Figure 4. How self-play puts an agent in control of various players [7].

2.5.4. Behaviour Cloning
A form of imitation learning, Behaviour Cloning involves capturing the actions of a

human performer and inputting them into a learning program. The program will then
output rules that help agents reproduce the actions of the performer [19]. In video games,
this usually means having a human player play in the designed environment, where their
actions are recorded and then used to train the agent’s policy. The more diverse the re-
cording data, the better.

Figure 4. How self-play puts an agent in control of various players [7].

2.5.4. Behaviour Cloning

A form of imitation learning, Behaviour Cloning involves capturing the actions of a
human performer and inputting them into a learning program. The program will then
output rules that help agents reproduce the actions of the performer [19]. In video games,
this usually means having a human player play in the designed environment, where
their actions are recorded and then used to train the agent’s policy. The more diverse the
recording data, the better.

2.5.5. Curriculum Learning

Curriculum Learning architecture mimics human training by gradually increasing
training difficulty. In Supervised Learning, this means increasing the complexity of training
datasets; while in RL, it means increasing the complexity of the environment and task that
the agent is required to perform [18].

In practical terms, this means that, for example, if one is training an agent on how to
jump over a wall, they might want to start by having a wall with no height, and as the agent
accumulates reward, the wall starts getting taller, as shown in Figure 5 [7,21,22]. At the
beginning of the training, the agent has no prior knowledge of the task, so it starts exploring
the environment to learn a policy and randomly tries out things. It will eventually reach

Technologies 2024, 12, 34 6 of 20

the goal, understand its objective, and progressively improve at jumping over higher and
higher walls [21].

Technologies 2024, 12, x FOR PEER REVIEW 6 of 24

2.5.5. Curriculum Learning
Curriculum Learning architecture mimics human training by gradually increasing

training difficulty. In Supervised Learning, this means increasing the complexity of train-
ing datasets; while in RL, it means increasing the complexity of the environment and task
that the agent is required to perform [18].

In practical terms, this means that, for example, if one is training an agent on how to
jump over a wall, they might want to start by having a wall with no height, and as the
agent accumulates reward, the wall starts getting taller, as shown in Figure 5 [7,21, 22]. At
the beginning of the training, the agent has no prior knowledge of the task, so it starts
exploring the environment to learn a policy and randomly tries out things. It will eventu-
ally reach the goal, understand its objective, and progressively improve at jumping over
higher and higher walls [21].

Figure 5. A Curriculum Learning environment where the agent must jump over a progressively
higher wall; blue and orange objects are 2 agents, the grey object is the wall, and in green is the
agents’ target [7].

2.6. Unity
The Unity engine is a cross-platform multimedia platform made for creating 3D and

2D games, simulations, and other experiences [23,24]. Unlike other previously mentioned
platforms, Unity is a standalone general platform, meaning that users can freely create
their own environments with many more customised parameters than the alternatives.
Unity contains its own physics engine and dedicated tools to create commercial 3D and
2D games, as well as a tool to create RL agents—the ML-agents toolkit [2]. Furthermore,
the Unity’s in-engine editor is easy and fast to use, allowing for quick prototyping and
development of environments [24].

2.6.1. Unity’s Features
Nvidia PhysX engine integration—Unity comes out of the box integrated with the

PhysX physics software created by Nvidia allowing users to simulate complex state-of-
the-art physics, mimicking real world interactions [24].

Simple to use, yet flexible—compared to alternative AI research platforms such as
ViZDoom and DeepMind Lab [24], Unity’s interface is simpler and easier to use. As seen
in Figure 6, it allows the user to control all the environment’s aspects either through its
menus or programmatically. As Unity is a standalone engine meant for game develop-
ment instead of a modified open-source engine such as ViZDoom, it allows much better
control of its game environment [24].

Figure 5. A Curriculum Learning environment where the agent must jump over a progressively
higher wall; blue and orange objects are 2 agents, the grey object is the wall, and in green is the agents’
target [7].

2.6. Unity

The Unity engine is a cross-platform multimedia platform made for creating 3D and
2D games, simulations, and other experiences [23,24]. Unlike other previously mentioned
platforms, Unity is a standalone general platform, meaning that users can freely create their
own environments with many more customised parameters than the alternatives. Unity
contains its own physics engine and dedicated tools to create commercial 3D and 2D games,
as well as a tool to create RL agents—the ML-agents toolkit [2]. Furthermore, the Unity’s
in-engine editor is easy and fast to use, allowing for quick prototyping and development of
environments [24].

2.6.1. Unity’s Features

Nvidia PhysX engine integration—Unity comes out of the box integrated with the
PhysX physics software created by Nvidia allowing users to simulate complex state-of-the-
art physics, mimicking real world interactions [24].

Simple to use, yet flexible—compared to alternative AI research platforms such as
ViZDoom and DeepMind Lab [24], Unity’s interface is simpler and easier to use. As seen
in Figure 6, it allows the user to control all the environment’s aspects either through its
menus or programmatically. As Unity is a standalone engine meant for game development
instead of a modified open-source engine such as ViZDoom, it allows much better control
of its game environment [24].

Technologies 2024, 12, x FOR PEER REVIEW 7 of 24

Figure 6. The Unity engine’s interface, with a scene being worked on. On the right is the selected
object’s properties, on the left, the list of objects in the scene, and below, the list of assets in the whole
project.

2.6.2. ML-Agents Toolkit
The ML-agents toolkit is an open-source project that allows researchers and develop-

ers to use environments created in the Unity engine as training grounds for ML agents by
connecting via a Python API [2]. The toolkit features support training single-agent, multi-
agent cooperative, and multi-agent competitive scenarios with the use of several RL algo-
rithms such as Proximal Policy Optimization (PPO) and Soft Actor-Critic (SAC) [2].

2.7. Proximal Policy Optimization Algorithm
The PPO is a model-free RL algorithm developed by OpenAI. It is used to train a

policy function that maps the state of the environment to an action. It alternates between
sampling data through environment interaction and optimises a surrogate objective func-
tion using stochastic gradient ascent. The PPO algorithm has some of the benefits of the
Trust Region Policy Optimization (TRPO) algorithm but is much simpler to implement,
more general, and has a better sample complexity [25].

PPO tends to have better generalisation properties compared to TRPO. TRPO is de-
signed specifically for policy optimisation with continuous actions and imposes con-
straints on the policy update based on a trust region. PPO, on the other hand, is more
flexible and can handle both continuous and discrete action spaces. PPO offers improved
sample complexity compared to TRPO [25]. The surrogate objective approximates the ex-
pected reward based on the collected trajectories. Stochastic gradient ascent optimization
is used to maximise this surrogate objective. The surrogate objective in PPO is a combina-
tion of two terms: a policy ratio term and a clipping term. The policy ratio compares the
probabilities of the actions under the old and updated policies. It measures how much the
new policy deviates from the old policy. Equation (1) shows the PPO’s objective function
that is not typically found in other algorithms [25]:

Figure 6. The Unity engine’s interface, with a scene being worked on. On the right is the selected
object’s properties, on the left, the list of objects in the scene, and below, the list of assets in the
whole project.

Technologies 2024, 12, 34 7 of 20

2.6.2. ML-Agents Toolkit

The ML-agents toolkit is an open-source project that allows researchers and develop-
ers to use environments created in the Unity engine as training grounds for ML agents
by connecting via a Python API [2]. The toolkit features support training single-agent,
multi-agent cooperative, and multi-agent competitive scenarios with the use of several RL
algorithms such as Proximal Policy Optimization (PPO) and Soft Actor-Critic (SAC) [2].

2.7. Proximal Policy Optimization Algorithm

The PPO is a model-free RL algorithm developed by OpenAI. It is used to train a policy
function that maps the state of the environment to an action. It alternates between sampling
data through environment interaction and optimises a surrogate objective function using
stochastic gradient ascent. The PPO algorithm has some of the benefits of the Trust Region
Policy Optimization (TRPO) algorithm but is much simpler to implement, more general,
and has a better sample complexity [25].

PPO tends to have better generalisation properties compared to TRPO. TRPO is de-
signed specifically for policy optimisation with continuous actions and imposes constraints
on the policy update based on a trust region. PPO, on the other hand, is more flexible
and can handle both continuous and discrete action spaces. PPO offers improved sample
complexity compared to TRPO [25]. The surrogate objective approximates the expected
reward based on the collected trajectories. Stochastic gradient ascent optimization is used to
maximise this surrogate objective. The surrogate objective in PPO is a combination of two
terms: a policy ratio term and a clipping term. The policy ratio compares the probabilities
of the actions under the old and updated policies. It measures how much the new policy
deviates from the old policy. Equation (1) shows the PPO’s objective function that is not
typically found in other algorithms [25]:

LCLIP(θ) = Êt

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât

)]
(1)

where θ is the policy parameter, t denotes the empirical expectation over timesteps, rt is
the ratio of the probability under the new and old policies, respectively, Ât is the estimated
advantage at time t, and ε is a hyperparameter, usually 0.1 or 0.2. In Algorithm 1, we see
how a PPO algorithm that uses fixed-length trajectory segments works in pseudocode [25]:

Algorithm 1 PPO, Actor-Critic Style.

for iteration = 1, 2, . . . do
for actor = 1, 2, . . ., N do

Run policy πθold
in environment for T timesteps

Compute advantage estimates Â1, . . ., ÂT
end for
Optimize surrogate L wrt θ, with K epochs and minibatch size M ≤ NT
θold ← θ

end for

With each iteration of the algorithm, each of the N parallel actors collects T timesteps
of data, then we design the surrogate loss on those NT timesteps of data and optimise it
with minibatch SGD, for K epochs.

The PPO algorithm is one of the algorithms that can be used by Unity’s ML-agents
toolkit and sees much use in papers that use this toolkit such as [21,26].

3. State of the Art

Before starting this work, we first conducted a systematic review of RL applied to AI
bots in FPS games [7], where we looked at numerous related articles. In this systematic
review, we evaluated multiple algorithms, training methods, and platforms. In the end,

Technologies 2024, 12, 34 8 of 20

we thought about how AI performs against humans and how AI bots are bringing better
gameplay and enjoyability to games and talked about future work possibilities.

In the systematic review, we concluded that training agents with the self-play or
multi-agent training architecture proved much more efficient than using single-agent
environments and that training designers should first incorporate Curriculum Learning or
Behaviour Cloning into their training regime.

Furthermore, we can now look at older works and compare them to newer ones. We
start with [1], which in 2011 applied a Sarsa (λ) RL algorithm to a purposely built FPS game.
They used RL to make agents learn the tasks of navigation, item collection, and combat
with results showing “that the RL algorithm was able to learn a satisfactory strategy for
navigation control, but not to the quality of the industry standard pathfinding algorithm”.

Again in 2011, Tastan, B. [27] examined the problem of teaching agents to play in a
human-like manner in FPS games. They use pre-recorded data to make agents learn attack,
exploration, and targeting policies in unreal tournament 2004 with POGAMUT.

Later, in 2017, Lample, G. [28] presented a model that combines both visual information
input and game variable information input to make RL agents play FPS games to tackle
3D environments. By using ViZDoom with agents trained using a Deep Recurrent Q-
Learning (DRQN) algorithm, they achieved agents that could win against humans by
directly inputting information on whether an enemy was on screen or not.

We can already see from these three previous examples that older papers focus more
on comparing and trying out algorithms, as opposed to more modern papers that focus
more on training techniques.

One recent important paper that we found contains a competition in the ViZDoom
platform with various participants competing with the goal of creating the best RL agent
player [29]. They held two editions, one in 2016 and one in 2017: in 2016, victory went to a
participant that used TensorFlow with a Direct Future Prediction (DFP) algorithm; in 2017,
the victor also used TensorFlow but this time with a A3C algorithm and Behaviour Cloning.

Another great example are the experiments conducted by DeepMind in the DeepMind
lab platform [30], where they used a multi-agent scenario and trained their agents for 450 k
games with their inhouse developed For the Win (FTW) algorithm. The results from this
research showed that their agents could beat strong human opponents at around the 200 k
games mark.

A Q-Learning algorithm with a Naïve Bayes (QNBB) approach was used to train a
RL state machine in playing as a simple enemy in a custom-made game [31]. This agent
could learn from previous games, called “stages”. They then conducted a survey where
twenty participants played five games each for four stages of the agents, where the enemy
is randomly the Q-Learning agent or a Greedy-Like Behaviour (GLB) algorithm agent.
Participants were asked to rate both agents per stage in believability, overall game difficulty,
and level of playability. Results showed that while the first stage of the QNBB was rated
worse than the GLB one, subsequent stages were always the opposite and that the QNBB
algorithm always got better with more experience.

Looking now at works performed using Unity, we start with one that used TensorFlow
connected to Unity via an API [26]. They used a PPO algorithm to train RL agents to play a
team-based survival shooter, where the map was a randomly generated maze. The objective
was to train agents that could navigate the maze while dealing with enemy agents. The final
results showed that continuous action spaces with no visual observations and no recuring
neural network was the best option. The agents that incorporated visual observations had
problems recognising their enemies and performed erratically.

Finally, we have two cases that use the ML-agents toolkit in Unity. The first case in [32]
used the ML-agents toolkit with the objective of creating RL agents that can participate in
competitive FPS matches by training them with Behaviour Cloning. To get results, they
conducted a survey with eighteen participants who were asked to identify the ML agent in
a multiplayer match. Out of the eighteen participants, 61% correctly guessed the agent and
many of those noted that the agent had problems with navigation.

Technologies 2024, 12, 34 9 of 20

The second case is [21], where the ML-agents toolkit is used to compare one agent
trained with Curriculum Learning to another agent trained without Curriculum Training.
The curriculum agent not only was able to achieve higher rewards, but also achieve high
rewards faster, with the final results showing that agents trained with Curriculum Learning
have a significantly better performance than ones trained without it.

When comparing the older papers with the new ones, we can see a shift in research
objectives. While the older papers focused more on comparing algorithms, the newer
papers focus more on comparing training architectures.

One thing to note is that even in more modern papers, the resulting trained agents
still do not perform much better than traditional agents. Such is the case in [31], where the
ML agents did not score much higher than more traditional AI in terms of believability,
difficulty, and playability. ML is still in an early phase, and the quality of the AI seems to
correlate with the number of resources available to the creators; this means that as rule
of thumb, we should expect most AI created by individuals to not perform as well as AI
created by large teams.

4. Implementation

In this section, we will explain to the reader this work’s implementation and the
various design choices that were made.

By using the Unity engine, we hoped to create agents that receive game information
such as the agent’s health, agent’s position, rotation, and their weapon’s fire readiness
state for comparison and then combine the Curriculum Learning and Behaviour Cloning
training architectures. We used a simple environment with four obstacles to train each
agent for one hundred million steps and in the end made the agents fight each other to
draw results.

Development, training, and testing of this project were conducted over the course of
a period of 4 months. We first conducted a testing period, where we tried to find values
that we thought made sense to use in terms of training steps and hyperparameters, and
then moved on to training. Because of the limited time we had to conduct this research, we
could only spend 1 month in development, 1 month in testing, and 1 month in training and
result taking.

4.1. Why Unity?

The Unity engine was considered because it allows for efficient environment creation.
It allows us to design a much better Curriculum Learning environment for the agents to
be trained on. It is also the platform with which we have the most experience working
with, meaning that we were able to attain better results than if we were to work with other
platforms, such as, for example, ViZDoom or DeepMind Lab.

For the ML solution within Unity, we used ML agents with the PPO algorithm, because
it allows us to easily set up and train agents with much more speed than if we were to
create our own ML scripts.

4.2. Why Use Game Information without Visual Information?

As many other works such as [20,28,30] have used visual information, we decided to
try and use game information only, in order to create more lightweight agents. By only
using game information, we can input much fewer values to the neural networks, making it
much smaller and much lighter computationally. The use of these lighter networks allows
us to have multiple agents in the environment at the same time on slower hardware even
on Unity, which is an intensive game engine resource when compared to others such as
ViZDoom and DeepMind lab.

4.3. Hardware Used for Training

The training and testing process was conducted on a personal laptop with the follow-
ing specs:

Technologies 2024, 12, 34 10 of 20

• CPU: Intel core i7-7700HQ @ 2.80 GHz, Intel (Santa Clara, CA, USA);
• RAM: 16 GB;
• GPU: NVIDIA GeForce 1050 @ 4 GB VRAM, Nvidia (Santa Clara, CA, USA).

4.4. Training and Testing

To test which training architecture achieved the best results, we trained several agents
to play a simple deathmatch FPS game, where the agents faced each other in square
shaped one-vs.−one arenas with four obstacles. We trained four teams of three agents:
one team of three agents trained only with Curriculum learning; one team of three agents
trained with only Behaviour Cloning; and two other teams of three agents trained with
a combination of Curriculum Learning and Behaviour Cloning—each using different
methods of combination. Each agent was trained for one hundred million steps, a value
that we found was feasible, as it translated into 2 days of training and was the minimum
time required to produce agents that could reliably complete their task. We can see a
resume of the agents in Table 1. When training of all the agents was completed, we pitched
them against each other, making each one fight a match against the nine agents of the other
teams five times each.

Table 1. Details of each training type.

Training Type Nr. of Agents Nr. of Steps Description

Curriculum Learning 3 One hundred million Used an 8-stage Curriculum Learning to teach the
agent how to move, aim, and shoot.

Behaviour Cloning 3 One hundred million
Inputted previously recorded data into the agent and

made them fight themselves (using Generative
Adversarial Imitation Learning—GAIL [33]).

Combination Type 1 3 One hundred million Inputted the recorded data and made the agents play
the Curriculum Learning phases.

Combination type 2 3 One hundred million Inputted different recorded data and made the agents
play through the Curriculum Learning phases.

4.5. Agents

Agents receive input in the form of variable input only. We developed a rudimentary
way to simulate sound and sight, so that the agents know the opponent’s location from
simulated sound or by rotating to face them.

The agents navigate the environment with the help of the sensors provided by the
Unity ML-agents toolkit; these sensors raycast in multiple directions, telling the agent
where obstacles are.

4.5.1. Agent Sound

While moving, spawning, and with every shooting action, the location of the agent or
target will be transmitted to the other agents in the environment. The agents are inputted
with the latest received “sound”; there is no limit on distance and these data are transmitted
to the others regardless of position.

4.5.2. Agent Sight

Agents will raycast each step to the opponent; if the raycast succeeds, then the angle
of the impact vector will be compared to the agent’s forward vector. If the angle is less than
45◦, then the enemy is being seen by the agent, giving it a set reward. If the angle is less
than 15◦, the reward is increased.

4.5.3. Weapon

The agent’s weapon is a hit scan weapon with infinite ammo that can shoot once every
five hundred milliseconds, meaning that after shooting, the player must wait five hundred

Technologies 2024, 12, 34 11 of 20

milliseconds before shooting it again. Each shot does twenty-five damage, meaning that
the targets and agents, who all have one hundred health, are destroyed in four shots.

4.5.4. Inputs

The agents have a total of seven observation inputs, totalling at twelve float values:

• Agent Position (3 floats)—the agent’s current 3D coordinates;
• Agent’s Rotation in degrees (1 float)—the agent’s current y Euler angle;
• Last seen Enemy Position (3 floats)—the 3D coordinates of the last seen enemy;
• Last non-self-made sound Position (3 floats)—the last sound heard that was not

produced by this agent;
• Can shoot (1 float)—if weapon is ready to fire;
• Current Health difference to max health (1 float).

In addition to these, the agent receives inputs from the 3D ray perception sensors,
which are sensors included in Unity’s ML-agents toolkits—the agent’s sensors have the
following set settings, as seen in Table 2.

Table 2. Agent’s sensor’s settings.

Description Value

Rays per direction 6

Max ray degrees 170

Sphere cast radius 0.5

Ray length (unity units) 20

Stacked raycasts 1

Start vertical offset 0

End vertical offset 0

We reached these values from the default ones after testing by adjusting the values
until we found something that the agents could use to reliably complete their tasks.

4.5.5. Navigation

To improve the agent’s learning of navigation, we added a sphere collider (Figure 7)
to each agent’s body that only collided with the obstacles and walls. When this collider
collided with any of them, the agent would start receiving a negative reward. This method
somewhat improved the agent’s path finding, but they still had the tendency of getting
stuck in the obstacles or walls.

Technologies 2024, 12, x FOR PEER REVIEW 15 of 24

4.5.5. Navigation
To improve the agent’s learning of navigation, we added a sphere collider (Figure 7)

to each agent’s body that only collided with the obstacles and walls. When this collider
collided with any of them, the agent would start receiving a negative reward. This method
somewhat improved the agent’s path finding, but they still had the tendency of getting
stuck in the obstacles or walls.

Figure 7. The collider (around the agent) (radius of 0.5 units) that tells the agent (in green) if they
are near an obstacle (in white).

4.6. Environment
The environment in which the agents were trained is a very simple square environ-

ment surrounded by walls, with four cubes serving as obstacles, as seen in Figure 8. The
environment was purposely made simple to shorten training time, as a more complex one
requires the brain to learn more complex navigation, which would imply more steps.

During the Curriculum Learning program, the environment changes to suit the needs
of the various phases. With each episode or game, the first agent is randomly placed in
one of the eight “spawn point” (as seen in Figure 8), and then the enemy is placed in the
one furthest away. These spawn points were purposely placed, so that the two partici-
pants will always spawn at the edge of the arena and most of the time with something
hiding them from the opponent.

Figure 8. Environment in which the agents were trained on and the eight spawn points scatted
around the arena.

Figure 7. The collider (around the agent) (radius of 0.5 units) that tells the agent (in green) if they are
near an obstacle (in white).

Technologies 2024, 12, 34 12 of 20

4.6. Environment

The environment in which the agents were trained is a very simple square environment
surrounded by walls, with four cubes serving as obstacles, as seen in Figure 8. The
environment was purposely made simple to shorten training time, as a more complex one
requires the brain to learn more complex navigation, which would imply more steps.

Technologies 2024, 12, x FOR PEER REVIEW 15 of 24

4.5.5. Navigation
To improve the agent’s learning of navigation, we added a sphere collider (Figure 7)

to each agent’s body that only collided with the obstacles and walls. When this collider
collided with any of them, the agent would start receiving a negative reward. This method
somewhat improved the agent’s path finding, but they still had the tendency of getting
stuck in the obstacles or walls.

Figure 7. The collider (around the agent) (radius of 0.5 units) that tells the agent (in green) if they
are near an obstacle (in white).

4.6. Environment
The environment in which the agents were trained is a very simple square environ-

ment surrounded by walls, with four cubes serving as obstacles, as seen in Figure 8. The
environment was purposely made simple to shorten training time, as a more complex one
requires the brain to learn more complex navigation, which would imply more steps.

During the Curriculum Learning program, the environment changes to suit the needs
of the various phases. With each episode or game, the first agent is randomly placed in
one of the eight “spawn point” (as seen in Figure 8), and then the enemy is placed in the
one furthest away. These spawn points were purposely placed, so that the two partici-
pants will always spawn at the edge of the arena and most of the time with something
hiding them from the opponent.

Figure 8. Environment in which the agents were trained on and the eight spawn points scatted
around the arena.

Figure 8. Environment in which the agents were trained on and the eight spawn points scatted
around the arena.

During the Curriculum Learning program, the environment changes to suit the needs
of the various phases. With each episode or game, the first agent is randomly placed in one
of the eight “spawn point” (as seen in Figure 8), and then the enemy is placed in the one
furthest away. These spawn points were purposely placed, so that the two participants will
always spawn at the edge of the arena and most of the time with something hiding them
from the opponent.

4.7. Parallel Training

To make use of each training “step” more efficiently, we have the option to train agents
in parallel, this means having multiple environments running side by side with agents
performing the same tasks, as seen in Figure 9. Each environment’s agents contribute
and draw decisions from the same brain. We used six environments in parallel training,
meaning that with self-play, there were eight agents in the scene at each time while in
the last phase of Curriculum Learning or during Behaviour Cloning. Due to hardware
limitations, we could not increase the number of environments, as this is something that
vastly increases the required processing power.

Technologies 2024, 12, x FOR PEER REVIEW 16 of 24

4.7. Parallel Training
To make use of each training “step” more efficiently, we have the option to train

agents in parallel, this means having multiple environments running side by side with
agents performing the same tasks, as seen in Figure 9. Each environment’s agents contrib-
ute and draw decisions from the same brain. We used six environments in parallel train-
ing, meaning that with self-play, there were eight agents in the scene at each time while
in the last phase of Curriculum Learning or during Behaviour Cloning. Due to hardware
limitations, we could not increase the number of environments, as this is something that
vastly increases the required processing power.

Figure 9. Example of parallel training with six copies of the same environment; each copy needs to
be the exact same.

4.8. Training
The following sub-sections describe the multiple types of training that were con-

ducted during this research.

4.8.1. Curriculum Learning Training
Curriculum Learning was split into eight phases. We distributed the tasks between

them, making each phase harder than the previous; the objective was to teach the agents
the various things they needed to learn such as enemy detection, aiming, and navigation.

During the eight phases, the agents find three types of targets, Immobile, Wandering,
and Mobile, all of them having one hundred health. In the final phase of the curriculum,
the agent fights against itself. The wandering target wanders around its spawn position,
while the mobile target moves around the arena with a system of waypoints.

During phase 1 through 4, the arena does not have the obstacles shown in Figure 8;
the eight phases of the curriculum are as follows:
• Phase one—Destroy the target directly in front:

In this phase, the agent spawns on the centre of the arena, the immobile target then
placed right in front of them. The agent’s objective is to destroy the target by shooting it.
The objective of this phase is simply to teach the agent to look and shoot at the enemy.
• Phase two—Destroy the target that is slightly off-centred at the front of the agent:

During this phase, the agent spawns on the centre of the arena; the target is placed in
front of them, but off-centred in a circle. The agent’s objective is to destroy the target by
shooting it. The objective of this phase to teach the agent to aim at an enemy in front of
them.
• Phase three—Destroy the target that spawns randomly around the agent:

In this phase, the agent spawns in the centre of the arena. The target is placed ran-
domly in one of the thirty-five preplaced points around the agent. The agent needs to look
around for the target and then destroy it.

Figure 9. Example of parallel training with six copies of the same environment; each copy needs to
be the exact same.

Technologies 2024, 12, 34 13 of 20

4.8. Training

The following sub-sections describe the multiple types of training that were conducted
during this research.

4.8.1. Curriculum Learning Training

Curriculum Learning was split into eight phases. We distributed the tasks between
them, making each phase harder than the previous; the objective was to teach the agents
the various things they needed to learn such as enemy detection, aiming, and navigation.

During the eight phases, the agents find three types of targets, Immobile, Wandering,
and Mobile, all of them having one hundred health. In the final phase of the curriculum,
the agent fights against itself. The wandering target wanders around its spawn position,
while the mobile target moves around the arena with a system of waypoints.

During phase 1 through 4, the arena does not have the obstacles shown in Figure 8;
the eight phases of the curriculum are as follows:

• Phase one—Destroy the target directly in front:

In this phase, the agent spawns on the centre of the arena, the immobile target then
placed right in front of them. The agent’s objective is to destroy the target by shooting it.
The objective of this phase is simply to teach the agent to look and shoot at the enemy.

• Phase two—Destroy the target that is slightly off-centred at the front of the agent:

During this phase, the agent spawns on the centre of the arena; the target is placed
in front of them, but off-centred in a circle. The agent’s objective is to destroy the target
by shooting it. The objective of this phase to teach the agent to aim at an enemy in front
of them.

• Phase three—Destroy the target that spawns randomly around the agent:

In this phase, the agent spawns in the centre of the arena. The target is placed randomly
in one of the thirty-five preplaced points around the agent. The agent needs to look around
for the target and then destroy it.

• Phase four—Destroy the target that spawns randomly around the agent and moves
around:

During this phase, the agent will once again spawn at the centre of the arena. The
target is placed randomly in one of the many preplaced points around the agent just like in
phase three; but this time, the target is the wandering target, meaning it has a wandering
behaviour that makes it move around. The objective of this phase is to teach the agent to
aim at a moving enemy.

• Phase five—Find and destroy target in arena with obstacles while spawning in the
middle:

The arena now has four cube obstacles as seen previously in Figure 8. The agent
spawns in the centre of the arena, while a wandering target is placed randomly in one
of the eight spawn points placed at the edge of the arena. This phase is the first step in
teaching navigation to the agent by forcing it to move and search for the enemy.

• Phase six—Find and destroy target in the arena:

During this phase, the agent now spawns in one of the eight spawn points; after
that, a wandering target is placed in the furthest spawn point. This phase requires the
agent to destroy the target twice, respawning the target in a random spawn point after it
is destroyed. This phase is the second step in teaching navigation to the agent, as well as
extending the time that it stays in battle, forcing it to train how to search for an enemy that
has respawned.

• Phase seven—Find and destroy a target that moves in the arena:

Technologies 2024, 12, 34 14 of 20

This phase is the exact same as phase six, except the target now has a moving behaviour,
meaning that instead of wandering around, it moves towards the many AI waypoints
placed around the arena. When the target reaches its destination, it calculates the new
furthest waypoint and start moving again. The agent’s objective is still to navigate the area,
find the target, and destroy it by shooting it.

• Phase eight (final)—Agent fights against itself:

In this final phase, the agent spawns at random in one of the eight spawn points
scattered around the edge of the arena; after that, another agent is spawned in the furthest
available spawn point. The objective of these agents is to find and destroy each other by
shooting. Each agent has one hundred health and must be destroyed twice for the episode
to end. When an agent is destroyed, they are respawned in a randomly picked spawn point
from the available eight. This phase’s arena has its obstacles enabled as seen in Figure 8.

4.8.2. Behaviour Cloning Training

To train the agents using Behaviour Cloning, we first recorded a demonstration file
by playing games until they achieved one hundred victories in Curriculum Learning’s
phase eight’s environment. This file was then inputted into each one of the new Behaviour
Cloning agents, which then fought against themselves, also in curriculum learning’s phase
eight’s environment.

To train the agents with Behaviour Cloning, we used GAIL, one of the types of
imitation learning available in ML agents.

The training setup of the Behaviour Cloning agents is the exact same as of phase eight
of the Curriculum Learning training. The agents started with just the knowledge they
developed from the demo, and each one of the three agents trained against their own clone
for one hundred million steps each.

4.8.3. Combination of Curriculum Learning and Behaviour Cloning

To train the agents using a combination of Curriculum Learning and Behaviour
Cloning, the agents were inputted the previously recorded demo file via configuration file
and then started training from phase one of Curriculum Learning.

Two sets of teams of three agents were created as we tried to find an effective way to
combine the two architectures. We called these teams the “Duel-type Combination” and
“Basics-type Combination”.

4.8.4. Duel-Type Combination

In this combination type, the demo file used in the Behaviour Cloning method was
inputted to the agents via the configuration hyperparameters. A team of three duel-type
agents were trained for one hundred million steps each.

4.8.5. Basics-Type Combination

For this attempt, we recorded a new demo file, this time with fifty episodes throughout
the Curriculum Learning method’s stage one through four. We then inputted this file to the
agents via the configuration hyperparameters.

For both types, after the demo files were input, they started training from phase one
of the Curriculum Learning, trying to clear each stage to reach the final eight stage. Each
one of the three agents trained for one hundred million steps.

4.9. The Testing System

To test the agents against each other we made each one of them battle against all the
different types of agents, meaning that each agent must fight the nine agents from the three
opposing teams. To do this, we devised a matchmaking system that picks an agent, then
makes them battle each agent of the opposing type until they have accumulated either five
finished battles or ten time-outs against that agent. Note that two agents of same type will

Technologies 2024, 12, 34 15 of 20

never battle each other (example: agent trained in Curriculum Learning vs. agent trained
in Curriculum Learning), as we want to compare the different training architectures.

The battles use the same exact mechanics as phase eight of the of the curriculum
training program. Each participant spawns opposite each other and then must destroy
their opponent two times to achieve victory. A finished battle is declared when one of the
agents destroys its opponent twice.

Because the agents are not perfect players, we implemented a time-out system for each
battle. After a battle starts, the agents have two minutes to destroy their opponent before
the battle resets. After an agent destroys their opponent, the timer resets, and they once
again have two minutes to continue the match before a time-out happens. This system is in
place to prevent cases where the agents get stuck and cannot find their opponents during
large amounts of time.

To get the results, we saved the following parameters from the battles per agent such
as the total number of battles won, total number of battles lost, total number of successful
battles, total number of battles that timed-out, total number of battles, total number of shots
missed, total number of shots hit, total number of enemies destroyed, and total number of
times destroyed.

We ran this testing environment twice, once with obstacles enabled and once without
because we wanted to evaluate with and without the need for map navigation and see how
the results differed. In the results section, we will present the results from these tests.

4.10. Metrics and Performance Measurement

Performance is measured through the parameters obtained in battle by the agents.
Each parameter is a number that we use to measure the agent’s performance, with wins,
successes, hits, and kills being better the more there are and losses, time-outs, total games,
misses, and deaths being better the less there are.

When we mention an agent having better or worse performance, we are talking about
these metrics and numbers being better or worse when compared to their peers.

We picked these metrics as they are the metrics most found in commercial Deathmatch
player-vs.-player FPS games to rank and measure player performance. While in team-
based games, there is also the use of “score” due to a more varied range of actions, our
research focuses specifically in creating agents for deathmatch games, and as such, we
believe that using kill-to-death ratios and win percentages makes the most sense, as our
goal is to compare the performance in deathmatch games of agents created with different
training methods.

5. Results

In this section, we present the results obtained from the testing system.

5.1. Tables of Results with Obstacles

In Table 3, we find the recorded stats of the performance of the multiple agents
during the testing with obstacles. In this test, the obstacles that we see in Figure 8 are
enabled, meaning that the agents must find paths around them. The table is ordered by the
agent’s ID.

As we can see, the curriculum agents were the best performers, with the three of them
achieving over 95% wins. The cloning agents won against the combination ones but still
lost against the curriculum. Meanwhile the combination agents failed to ever achieve one
win and ended up timing out when playing against each other. The kill-to-death ratio
shows that the curriculum agents outperform others by far.

Technologies 2024, 12, 34 16 of 20

Table 3. Raw results of tests ran with obstacles enabled.

ID Training Type Team Wins Losses Successes Time
Outs

Total
Games Misses Hits Kills Deaths

1 Curriculum1 1 42 3 45 17 62 6946 394 93 9

2 Curriculum2 1 42 3 45 20 65 5752 366 89 9

3 Curriculum3 1 45 0 45 18 63 5786 370 90 7

4 Cloning1 2 25 10 35 78 113 4349 380 73 26

5 Cloning2 2 17 14 31 96 127 5594 339 58 32

6 Cloning3 2 9 15 24 102 126 4308 189 26 34

7 Combination1 3 0 26 26 84 110 9380 84 7 63

8 Combination2 3 0 20 20 90 110 9298 31 0 50

9 Combination3 3 0 25 25 88 113 8431 57 2 57

10 Phase1Combination1 4 0 19 19 98 117 5184 23 1 48

11 Phase1Combination2 4 0 25 25 101 126 354 1 0 54

12 Phase1Combination3 4 0 20 20 100 120 4101 13 0 50

5.2. Results without Obstacles

Now, we show in the following Table 4 the results of the tests when ran without
obstacles, meaning that the agents did not need to find paths around the four objects placed
in the arena.

Table 4. Raw results of tests ran without obstacles.

ID Training Type Team Wins Losses Successes Time
Outs

Total
Games Misses Hits Kills Deaths

1 Curriculum1 1 40 5 45 7 52 4789 371 88 16

2 Curriculum2 1 42 3 45 4 49 2768 348 86 15

3 Curriculum3 1 44 1 45 2 47 3465 360 88 12

4 Cloning1 2 31 11 42 45 87 3684 393 84 29

5 Cloning2 2 25 13 38 52 90 4211 369 67 30

6 Cloning3 2 29 13 42 69 111 4484 436 79 29

7 Combination1 3 1 24 25 74 99 9964 107 9 56

8 Combination2 3 0 22 22 95 117 11,263 65 3 50

9 Combination3 3 1 30 31 82 113 10,797 131 12 73

10 Phase1Combination1 4 0 30 30 69 99 5806 19 0 67

11 Phase1Combination2 4 0 31 31 56 87 689 12 0 71

12 Phase1Combination3 4 0 30 30 73 103 2848 6 0 68

The results without obstacles are more balanced—we see that the cloning agents
performed better but still lost to the curriculum ones. There were less timed-out battles
and more deaths in general, meaning that the agents were able to find their opponents
more easily.

Overall, the performance is better, but the results remain the same, with the Curriculum
Learning agents being the best, followed by the Behaviour Cloning ones, and then the
combination ones.

Technologies 2024, 12, 34 17 of 20

5.3. Observations

In this section, we will describe the observations made during training and testing.

5.3.1. Curriculum Learning Agents

The curriculum agents were all able to complete the whole curriculum. One thing to
note is that as they learned to be constantly shooting, which lead to them having many
missed shots. Other than that, there were no notable problems or anomalies.

5.3.2. Behaviour Cloning Agents

The Behaviour Cloning agents did not constantly shoot like the Curriculum Learning
team. These agents were much less aggressive than the curriculum ones and did not explore
the map as much. As a result, they timed-out due to not being able to find their opponents
multiple times.

5.3.3. Duel-Type Combination

The first combination team was never able to progress beyond phase one of the
curriculum. They performed very poorly in both training and in battle when compared to
the Curriculum Learning and Behaviour Cloning agents.

5.3.4. Basics-Type Combination

The second combination team was able to reach phase four of the curriculum but was
unable to progress any further. Just like the first combination team, they performed very
poorly in battle.

5.3.5. Overall

In general, all the teams had issues with pathfinding and often found themselves
getting stuck on the obstacles. Another issue was that they were not aggressive enough
and many times would just stay doing circles in the area where they spawned, trying to
find the enemy.

The combination teams when pitched against each other had a very hard time finishing
the match, as they either could not find each other or could not hit each other—this meant
that most of their matches ended in time-outs.

6. Discussion

In this section, we will discuss the results and answer the research questions that
were proposed.

6.1. Comparing Curriculum Learning and Behaviour Cloning

The first proposed research question was to compare the Curriculum Learning and
Behaviour Cloning training architectures and see which one yielded the best results. To
investigate this, we used as metrics the number of wins, kills, deaths and shots hit after we
made all agents battle each other.

The agents trained with the Curriculum Learning method obtained the best results
with and without obstacles: with a max of 45 obstacle arena wins and a max of 44 wins
in the arena without obstacles, least time-outs, and an average kill-to-death ratio score in
the obstacle arena of 11.02—they were the ones most capable of finding and destroying
their opponents.

Meanwhile, the agents trained with Behaviour Cloning, although able to beat the
combination agents, could not beat the Curriculum Learning ones, as the Curriculum
Learning agents barely have any loses, maxing out at 5 for curriculum1 in the arena without
obstacles. They also exhibit many time-outs, with a minimum of 45 for Cloning1 in the
area without obstacles, meaning that they were not aggressive enough and failed to find
their opponent.

Technologies 2024, 12, 34 18 of 20

The only place where we can say that the Behaviour Cloning agents are on par with
the Curriculum Learning ones is the accuracy, most likely because unlike the Curriculum
Learning agents which were constantly shooting, the Behaviour Cloning agents would try
to shoot only when the enemy was in their field of vision thanks to the data from the demo.

Even though without obstacles, the agents could more easily find their enemies, this
still did not change the outcome where the Curriculum Learning agents come out on top.

With these results, we reach the conclusion that the Curriculum Learning method that
we developed achieves much better results than using Behaviour Cloning. We believe this
is because the Behaviour Cloning agents become so focused on the provided demo data
that they cannot develop new strategies during training; this led them to lose almost all
battles against the Curriculum Learning agents who learned from zero on how to achieve
the best results.

6.2. Combining Curriculum Learning and Behaviour Cloning

The second proposed question was about combining the training architectures of
the Curriculum Learning and Behaviour Cloning and see whether this combination was
viable and created a significant improvement in the agent’s performance. Once again, the
metrics are the exact same as in the previous question. For this, we tried two methods
of combination.

The first method never managed to go beyond the first curriculum stage, failing to
ever destroy the very first immobile target, and while the second method was looking
promising during training, it stalled and failed to go beyond the fourth stage.

Both teams failed to achieve any meaningful results, having both failed to even
reach the end of the Curriculum Learning program during training. Even with GAIL, the
agents relied too much on the provided demos and failed to adapt to any difference in the
environment.

During testing, they were repeatedly destroyed by their opponents, and when facing
each other, they almost always ended the battle in a time-out. Looking at the concrete
results, we see that these agents were a complete failure, with the second method not
achieving one single win while the second method only managed to win three matches.
Almost all their success matches ended in defeat, and even their hit percentages are abysmal
compared to the Curriculum Learning and Behaviour Cloning agents, with the max hit
percentage being by Phase1Combination2 in the arena without obstacles with 1.71% of
all shots hit, while the minimum we see from the non-combination was 4.2% from the
Cloning3 in the arena with obstacles.

With these results, we conclude that Curriculum Learning and Behaviour Cloning are
incompatible, as the demonstration data interfere with the curriculum’s progression system.

The explanation for these results seems to be that the agents are so focused on the data
created by the demo that they fail to adapt to any environment that is not the exact same
as the one from the demo. The second method saw some success in reaching the fourth
stage of the curriculum because the environment was only very slightly different from the
provided demo, but the moment the target started moving, the agent could no longer aim
at it and failed to progress any further.

7. Conclusions and Future Work

In this study, we aimed to compare two training architectures of Machine Learning,
Curriculum Learning and Behaviour Cloning, and then to see if it was viable to combine
them. To do this, we used the Unity platform with the ML-agents toolkit and trained
various agents to get results through testing in the form of battles between them. We started
by creating a curriculum that the agents could progress through and then created teams of
three agents to represent Curriculum Learning, Behaviour Cloning, and two methods of
combining the two training architectures. The agents of each team trained for one hundred
million steps each, and after all training was conducted, we set them up to matchmake and

Technologies 2024, 12, 34 19 of 20

fight against other agents of the other teams until each possible pairing had achieved five
successful battles or ten time-outs against each possible opponent.

In the end, the program output two record files with various values that we could use
to draw results from: one for battles with obstacles enabled and one for battles without
obstacles enabled. These results showed us that the Curriculum Learning training architec-
ture creates agents that perform much better than the Behaviour Cloning ones, achieving
better win percentage, reliability, and kill-to-death ratio.

However, we also arrived at the conclusion that the two training architectures are
not compatible, as the agents that were created from them struggled to even perform the
Curriculum Learning course and had many problems performing in battle against the
single architecture agents.

Considering further developments and just like we had previously stated in [7], we
believe that a good path to take would be to incorporate Transfer Learning, multi-agent RL,
and formal methods in the making of AI for videogames.

With the emergence of new AI technologies, new research possibilities also open. We
believe that technologies such as generative AI can be well implemented in videogames to
complement many old technologies, not just in the area of agent AI but also in the area of
procedural generation.

Of course, in Reinforcement Learning, there are still many research opportunities.
While we conducted this research without visual data, it is also worth conducting more
testing on visual data vs. no visual data. Another path that researchers can take is to
compare the Proximal Policy Optimization and Soft Actor-Critic algorithms, something that
had not been extensively researched in terms of creating agents for FPS games. Furthermore,
we plan to extend the study to other types of games. As a limitation to Reinforcement
Learning approaches, considering its computational effort, it might limit the scalability to
larger and more complex game environments and/or real-world scenarios.

However, we must never forget the ethical issues in conducting AI research; just as we
had previously stated in [7], we should always ensure transparency in how our Machine
Learning algorithms work, should always take care of our data handling to ensure data
privacy, and, most important of all, should work towards creating AI that does not harm
others, not just in the literal sense, but also in a way that AI is used to aid humans and not
replace them.

Author Contributions: Conceptualization, P.A.; methodology, P.A.; software, P.A.; validation, P.A.,
V.C. and A.S.; formal analysis, P.A.; investigation, P.A.; resources, P.A.; data curation, P.A.; writing—
original draft preparation, P.A.; writing—review and editing, P.A., V.C. and A.S.; visualization, P.A.;
supervision, V.C. and A.S.; project administration, P.A.; funding acquisition, V.C. and A.S. All authors
have read and agreed to the published version of the manuscript.

Funding: This paper was funded by national funds (PIDDAC), through the FCT—Fundação para
a Ciência e a Tecnologia and FCT/MCTES under the scope of the projects UIDB/05549/2020 and
UIDP/05549/2020.

Data Availability Statement: No new data were created or analysed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. McPartland, M.; Gallagher, M. Reinforcement Learning in First Person Shooter Games. IEEE Trans. Comput. Intell. AI Games 2011,

3, 43–56. [CrossRef]
2. Unity Team. The ML-Agent’s Github Page. Available online: https://github.com/Unity-Technologies/ml-agents (accessed on 20

June 2023).
3. Silver, D.; Huang, A.; Maddison, C.; Guez, A.; Sifre, L.; Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam, V.;

Lanctot, M.; et al. Mastering the game of Go with deep neural networks and tree search. Nature 2016, 529, 484–489. [CrossRef]
[PubMed]

https://doi.org/10.1109/TCIAIG.2010.2100395
https://github.com/Unity-Technologies/ml-agents
https://doi.org/10.1038/nature16961
https://www.ncbi.nlm.nih.gov/pubmed/26819042

Technologies 2024, 12, 34 20 of 20

4. Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai, M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel, T.; et al.
Mastering chess and shogi by self-play with a general reinforcement learning algorithm. Science 2018, 362, 1140–1144. [CrossRef]
[PubMed]

5. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.; Veness, J.; Bellemare, M.; Graves, A.; Riedmiller, M.; Fidjeland, A.; Ostrovski, G.;
et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef] [PubMed]

6. Glavin, F.; Madden, M. Learning to Shoot in First Person Shooter Games by Stabilizing Actions and Clustering Rewards for
Reinforcement Learning. In Proceedings of the 2015 IEEE Conference on Computational Intelligence and Games (CIG), Tainan,
Taiwan, 31 August–2 September 2015; pp. 344–351. [CrossRef]

7. Almeida, P.; Carvalho, V.; Simões, A. Reinforcement Learning Applied to AI Bots in First-Person Shooters: A Systematic Review.
Algorithms 2023, 16, 323. [CrossRef]

8. Elias, H. First person shooter: The subjective cyberspace. In Proceedings of the ISEA2008, Singapore, 25 July–3 August 2008.
9. Marsland, S. Machine Learning: An Algorithmic Perspective, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2014.
10. Géron, A. Hands-On Machine Learning with Scikit-Learn and TensorFlow Concepts, Tools, and Techniques to Build Intelligent Systems;

O’Reilly Media, Inc.: Sebastopol, CA, USA, 2017.
11. Abiodun, O.; Jantan, A.; Omolara, A.; Dada, K.; Mohamed, N.; Arshad, H. State-of-the-art in artificial neural network applications:

A survey. Heliyon 2018, 4, e00938. [CrossRef] [PubMed]
12. Aggarwal, C. Neural Networks and Deep Learning: A Textbook, 1st ed.; Springer: Cham, Switzerland, 2018. [CrossRef]
13. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
14. Ketkar, N.; Moolayil, J. Deep Learning with Python: Learn Best Practices of Deep Learning Models with PyTorch, 2nd ed.; Apress:

Berkeley, CA, USA, 2021. [CrossRef]
15. Mitchel, T. Machine Learning; McGraw-Hill: New York, NY, USA, 1997.
16. Sutton, R.; Barto, A. Reinforcement Learning—An Introduction, 2nd ed.; The MIT Press: Cambridge, MA, USA, 2018.
17. François-Lavet, V.; Henderson, P.; Islam, R.; Bellemare, M.; Pineau, J. An introduction to deep reinforcement learning. Found.

Trends®Mach. Learn. 2018, 11, 219–354. [CrossRef]
18. Soviany, P.; Ionescu, R.; Rota, P.; Sebe, N. Curriculum Learning: A Survey. arXiv 2022, arXiv:2101.10382. [CrossRef]
19. Sammut, C. Behavioral Cloning. In Encyclopedia of Machine Learning and Data Mining, 2nd ed.; Sammut, C., Webb, G., Eds.;

Springer: Boston, MA, USA, 2017; pp. 120–124.
20. Serafim, P.; Nogueira, Y.; Vidal, C.; Neto, J. Evaluating competition in training of Deep Reinforcement Learning agents in

First-Person Shooter games. In Proceedings of the 17th Brazilian Symposium on Computer Games and Digital Entertainment
(SBGames), Foz do Iguaçu, Brazil, 29 October–1 November 2018; pp. 117–11709. [CrossRef]

21. Adamsson, M. Curriculum Learning for Increasing the Performance of a Reinforcement Learning Agent in a Static First-Person
Shooter Game. Master’s Thesis, KTH University, Stockholm, Sweden, 2018.

22. Juliani, A. Introducing ML-Agents Toolkit v0.2: Curriculum Learning, New Environments, and More—Unity blog. 8 De-
cember 2018. Available online: https://blog.unity.com/community/introducing-ml-agents-v0-2-curriculum-learning-new-
environments-and-more (accessed on 20 June 2023).

23. Unity Team. Unity Engine’s Official Site. Available online: https://unity.com/ (accessed on 20 June 2023).
24. Juliani, A.; Berges, V.; Teng, E.; Cohen, A.; Harper, J.; Elion, C.; Goy, C.; Gao, Y.; Henry, H.; Mattar, M.; et al. Unity: A General

Platform for Intelligent Agents. arXiv 2020, arXiv:1809.02627. [CrossRef]
25. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal Policy Optimization Algorithms. arXiv 2017,

arXiv:1707.06347. [CrossRef]
26. Piergigli, D.; Ripamonti, L.; Maggiorini, D.; Gadia, D. Deep Reinforcement Learning to train agents in a multiplayer First Person

Shooter some preliminary results. In Proceedings of the IEEE Conference on Games (CoG), London, UK, 20–23 August 2019; pp. 1–8.
27. Tastan, B.; Sukthankar, G. Learning Policies for First Person Shooter Games Using Inverse Reinforcement Learning. Proc. AAAI

Conf. Artif. Intell. Interact. Digit. Entertain. 2011, 7, 85–90. [CrossRef]
28. Lample, G.; Chaplot, S. Playing FPS Games with Deep Reinforcement Learning. Proc. AAAI Conf. Artif. Intell. 2017, 31, 10827. [CrossRef]
29. Wydmuch, M.; Kempka, M.; Jasjiwski, W. ViZDoom Competitions Playing Doom from Pixels. arXiv 2018, arXiv:1809.03470.

[CrossRef]
30. Jaderberg, M.; Czarnecki, W.; Dunning, I.; Marris, L.; Lever, G.; Castaneda, A.; Beattie, C.; Rabinowitz, N.; Morcos, A.; Ruderman,

A.; et al. Human-level performance in first-person multiplayer. arXiv 2018, arXiv:1807.01281. [CrossRef]
31. Yilmaz, O.; Celikcan, U. Q-learning with Naïve Bayes Approach Towards More Engaging Game Agents. In Proceedings of the

2018 International Conference on Artificial Intelligence and Data Processing (IDAP), Malatya, Turkey, 28–30 September 2018;
pp. 1–6. [CrossRef]

32. Hagen, J. Agent Participation in First Person Shooter Games Using Reinforcement Learning and Behaviour Cloning. Master’s
Thesis, Breda University, Breda, The Netherlands, 2022. [CrossRef]

33. Ho, J.; Ermon, S. Generative Adversarial Imitation Learning. arXiv 2016, arXiv:1606.03476. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1126/science.aar6404
https://www.ncbi.nlm.nih.gov/pubmed/30523106
https://doi.org/10.1038/nature14236
https://www.ncbi.nlm.nih.gov/pubmed/25719670
https://doi.org/10.1109/CIG.2015.7317928
https://doi.org/10.3390/a16070323
https://doi.org/10.1016/j.heliyon.2018.e00938
https://www.ncbi.nlm.nih.gov/pubmed/30519653
https://doi.org/10.1007/978-3-319-94463-0
https://doi.org/10.1007/978-1-4842-5364-9
https://doi.org/10.1561/2200000071
https://doi.org/10.1007/s11263-022-01611-x
https://doi.org/10.1109/SBGAMES.2018.00023
https://blog.unity.com/community/introducing-ml-agents-v0-2-curriculum-learning-new-environments-and-more
https://blog.unity.com/community/introducing-ml-agents-v0-2-curriculum-learning-new-environments-and-more
https://unity.com/
https://doi.org/10.48550/arXiv.1809.02627
https://doi.org/10.48550/arXiv.1707.06347
https://doi.org/10.1609/aiide.v7i1.12430
https://doi.org/10.1609/aaai.v31i1.10827
https://doi.org/10.1109/TG.2018.2877047
https://doi.org/10.48550/arXiv.1807.01281
https://doi.org/10.1109/IDAP.2018.8620897
https://doi.org/10.13140/RG.2.2.12534.27200
https://doi.org/10.48550/arXiv.1606.03476

	Introduction
	Background
	First-Person Shooters (FPS)
	Machine Learning (ML)
	Neural Networks
	Deep Learning

	Reinforcement Learning (RL)
	Deep Reinforcement Learning (DRL)
	Training Architectures
	Single-Agent Reinforcement Learning
	Multi-Agent Reinforcement Learning
	Self-Play
	Behaviour Cloning
	Curriculum Learning

	Unity
	Unity’s Features
	ML-Agents Toolkit

	Proximal Policy Optimization Algorithm

	State of the Art
	Implementation
	Why Unity?
	Why Use Game Information without Visual Information?
	Hardware Used for Training
	Training and Testing
	Agents
	Agent Sound
	Agent Sight
	Weapon
	Inputs
	Navigation

	Environment
	Parallel Training
	Training
	Curriculum Learning Training
	Behaviour Cloning Training
	Combination of Curriculum Learning and Behaviour Cloning
	Duel-Type Combination
	Basics-Type Combination

	The Testing System
	Metrics and Performance Measurement

	Results
	Tables of Results with Obstacles
	Results without Obstacles
	Observations
	Curriculum Learning Agents
	Behaviour Cloning Agents
	Duel-Type Combination
	Basics-Type Combination
	Overall

	Discussion
	Comparing Curriculum Learning and Behaviour Cloning
	Combining Curriculum Learning and Behaviour Cloning

	Conclusions and Future Work
	References

