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Abstract: Currently, anatomically consistent segmentation of vascular trees acquired with 

magnetic resonance imaging requires the use of multiple image processing steps, which, in 

turn, depend on manual intervention. In effect, segmentation of vascular trees from medical 

images is time consuming and error prone due to the tortuous geometry and weak signal in 

small blood vessels. To overcome errors and accelerate the image processing time, we 

introduce an automatic image processing pipeline for constructing subject specific 

computational meshes for entire cerebral vasculature, including segmentation of ancillary 

structures; the grey and white matter, cerebrospinal fluid space, skull, and scalp. To 

demonstrate the validity of the new pipeline, we segmented the entire intracranial 

compartment with special attention of the angioarchitecture from magnetic resonance 

imaging acquired for two healthy volunteers. The raw images were processed through our 

pipeline for automatic segmentation and mesh generation. Due to partial volume effect and 

finite resolution, the computational meshes intersect with each other at respective interfaces. 

To eliminate anatomically inconsistent overlap, we utilized morphological operations to 

separate the structures with a physiologically sound gap spaces. The resulting meshes exhibit 

anatomically correct spatial extent and relative positions without intersections. For 

validation, we computed critical biometrics of the angioarchitecture, the cortical surfaces, 

ventricular system, and cerebrospinal fluid (CSF) spaces and compared against literature 
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values. Volumina and surface areas of the computational mesh were found to be in 

physiological ranges. In conclusion, we present an automatic image processing pipeline to 

automate the segmentation of the main intracranial compartments including a subject-specific 

vascular trees. These computational meshes can be used in 3D immersive visualization for 

diagnosis, surgery planning with haptics control in virtual reality. Subject-specific 

computational meshes are also a prerequisite for computer simulations of cerebral 

hemodynamics and the effects of traumatic brain injury. 
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1. Introduction 

Medical imaging is widely used for visualizing the interior of the body non-invasively for clinical 

diagnosis [1–4]. The two most common imaging techniques are computed tomography (CT) and magnetic 

resonance imaging (MRI). CT uses ionizing radiation and measures the radiation attenuation which  

is proportional to the image intensity. Dense structures, such as bones, have high attenuation thus high 

intensity. Soft structures, such as the brain, have low attenuation and thus low intensity. MRI uses radio 

frequencies to resonate hydrogen atoms, and detects the difference of signal recovery under influence of 

designed pulse sequence. It shows contrast between soft tissues. The MR imaging protocol can be 

customized to adjust image intensity based on desired features, such as flow phenomenon. Both imaging 

techniques output gray scale intensity maps for distinguishing diseased and normal tissue. 

In addition to clinical diagnosis, medical images are also used for constructing meshes for 

computational modeling in simulation studies, including hemodynamic studies [5–8], traumatic brain 

injury [9–11], and cerebrospinal fluid flow studies [12–18]. Simulations with anatomical meshes and 

computational modeling provide results for experiments that are not easily performed, such as in vivo 

human experiments. It also provides results within a short amount of time compared to hands on experiments. 

There also exists mesh-free techniques for simulation [19]. 

Anatomical meshes are a necessary source for surgical planning with haptics control in virtual  

reality [20–23]. By assigning different physical properties to individual mesh structures, one can emulate 

the impact upon contact to better understand the spatial and physical relationships of the anatomical 

structures. This allows surgeons to simulate and practice surgeries to better assess and adjust the procedures 

to reduce the risks involved in invasive surgery.  

The meshes also allow better visualization of the anatomy using cutting edge immersive 3D  

displays [21,22,24]. Current visualization of medical images are confined to 2D display, which shows 

the image slices sequentially. Segmentation algorithms are used to extract certain features for surface 

and volumetric rendering. However, the interaction and display is still presented in a planar screen. By 

combining volume rendering of original medical images with displaying volumetric meshes in an 

immersive environment, one can explore and interact with the anatomical structures in a global sense to 

better understand and diagnose the diseased situation, such as intracranial stenosis. 

Nevertheless, finite resolution of the medical images lead to uncertainty in identifying the structures 

for mesh construction. Intensity threshold algorithms may encounter difficulties in identifying voxels 
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around interfaces between structures especially in imaging studies of the brain. Several groups use 

manual input on top of image processing to better identify the interfaces. Pons proposed Delaunay-based 

technique for generating watertight surface and volume meshes [25]. The Cerefy atlas [26–28] exhibits 

a detailed whole brain segmentation for one subject using various image processing algorithms with 

manual modification. Adams [29] uses image processing with manual modification to reconstruct the 

cerebrospinal fluid (CSF) space. Manual segmentation requires anatomical knowledge with extensive 

man hours (>20 h) and is highly operator dependent. To date, there exists no fully automatic image 

segmentation for the whole brain. 

In this paper, we propose an automatic image processing pipeline that takes multiple MRI studies and 

generates computational meshes for major compartments of the brain, composed of grey and white 

matter, cerebrospinal fluid space, skull and scalp, and arteries and veins. We first describe the imaging 

protocols that were used to acquire the images. Then, discuss various image processing algorithms that 

were used to segment the different structures. In results, we demonstrate our proposed pipeline with 

image data for two volunteers. Finally, we analyze the mesh quality and limitations of the algorithms 

and discuss possible improvements. 

2. Experimental Section 

2.1. Image Acquisition 

Two healthy human subjects with no known cerebral vascular disease were recruited and underwent 

MR imaging studies on a General Electric 3T MR750 scanner using a 32 channel phased array coil 

(Nova Medical, Inc., Wilmington, MA, USA). MR imaging studies were acquired under Institutional 

Review Board approval. For MR angiography (MRA), a 3D time-of-flight pulse sequence was used with 

the following parameters: TR = 26 ms, TE = 3.4 ms, NEX = 1, Flip Angle = 18°, acceleration factor = 

2, number of slab = 4, magnetization transfer = on, matrix size = 512 × 512 × 408, voxel size = 0.39 × 

0.39 × 0.3 mm3. MR venography (MRV) was performed using a 2D INHANCE pulse sequence with the 

imaging protocol: TR = 18.5 ms, TE = 5.65 ms, NEX = 1, Flip Angle = 8°, matrix size = 512 × 248 × 512, 

voxel size = 0.47 × 1.6 × 0.47 mm3. T1 was conducted with a 3D Axial SPGR sequence with the 

following parameters: TR = 13.4 ms, TE = 4.23 ms, NEX = 1, Echo Train Length = 1; Flip Angle = 25°, 

matrix size = 512 × 512 × 120, voxel size = 0.43 × 0.43 × 1.5 mm3. T2 was conducted with an Axial T2 

Propeller sequence with the following parameters: TR = 1176 ms, TE = 100.04 ms, NEX = 2, Echo Train 

Length = 26; Flip Angle = 142°, matrix size = 512 × 512 × 100, voxel size = 0.43 × 0.43 × 1.5 mm3. 

T1 provides contrast for the grey and white matter, skull, and scalp. T2 provided the cerebrospinal 

fluid space. The MRA and MRV captured major branches of the cerebral arterial and venous systems. 

This allows us to reconstruct the arterial and venous networks, grey and white matter surface, skull and 

scalp, and cerebrospinal fluid space for each subject. Automatic rigid coregistration of the MRA, MRV, 

T1, and T2 using one plus one evolutionary optimizer and Mattes mutual information metrics was 

performed to compensate for the different resolution settings and motion artifact. The image processing 

pipeline is illustrated in Figure 1 and discussed in details below.  
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Figure 1. Proposed image processing pipeline for automatic reconstruction of  

subject-specific computational meshes. All medical images were convolved with a Gaussian 

operator for removal of inhomogeneity. Magnetic resonance angiography and venography is 

filtered for removal of non-vascular tissues and enhancement of vascular tissues. The filtered 

image is processed with marching cubes algorithm for capturing Cartesian coordinates of the 

vessel wall and maximal inscribed sphere is used to determine the centerline and diameter 

of the vascular network. T1 images are inputted into Freesurfer for segmentation of the grey 

and white matter as binary image matrices along with an image mask of skull and scalp. The 

image mask is processed with morphological operations to delineate contiguous surfaces of 

skull and scalp. CSF is identified using automatic thresholding and subtraction of other 

identified tissues. 

2.2. Surface Segmentation 

FreeSurfer was used to extract the brain from the T1 MR image set [30–33]. The brain extraction 

process removes the skull, scalp and neck from the dataset using a deformable model that is initialized 

in the center of the brain and then expands to the surface using a functional that weighs an expansion 

driving internal force and an image derived external force that slows the front at feature boundaries. The 

gray and white matter is classified by image thresholding and a priori geometric information. 

2.3. Skull and Scalp Segmentation 

Skull and scalp segmentation was performed using a procedure described by Dogdas [34]. The 

algorithm employs a series of morphological operations and masking using the segmented binary brain 

image and original T1 image in order to produce binary maps of the scalp and the skull. The algorithm 

segments the scalp first by using the brain mask from the T1 image with autothresholding for initial 

decision for distinguishing skull and scalp with a binary map. The binary map was then dilated and eroded 

to close the cavities. The largest connected region was then determined to be the outer border of the 
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scalp. The skull segmentation was performed by first employing an automatic threshold for the skull for 

a binary map. This binary map was expanded by finding the union with a dilated brain mask. The largest 

component of the intersection between the expanded mask and the scalp was selected to be the base of 

the outer skull, which was dilated and eroded for closing the cavity. The inner skull was determined by 

first intersecting the original image with the outer skull followed by an automatic thresholding for a binary 

map. This binary map was then united with a dilated brain map for the base of the inner skull. The base 

was then eroded and dilated for the inner skull. 

2.4. Cerebrospinal Fluid Space Segmentation 

T2 images were used to delineate the cerebrospinal fluid space through the following steps. We use 

automatic multilevel threshold with Otsu’s method [35,36] to categorize the voxels in four levels.  

A closing operation was performed to fill holes and maintain connectivity. Finally we isolate the largest 

connected component as our cerebrospinal fluid space. 

2.5. Mesh Generation 

The binary images for the cerebrospinal fluid space, grey and white matter, skull and scalp, were 

processed with the marching cubes algorithm [37,38] to find the Cartesian coordinates of the surfaces. 

The outputs are triangular surface meshes.  

2.6. Cerebral Vasculature Segmentation 

To identify and segment the vessels from the soft tissues, we utilized our in-house Hessian-based 

vessel filter [39–42]. Our filter outputs an image where each voxel intensity is proportional to the 

probability it belongs to the vascular network. At the vessel centerline, the image intensity assumes a 

local maximum. The centerline of the vascular network is the locus to the maxima in the filtered image, 

which forms a three dimensional space curve. The filtered image is then used for the vessel mesh 

generation procedure. 

2.7. Vessel Mesh Generation 

Due to the natural round shape of the vessels, we segmented the vessels based on centerlines and 

diameter information. The filtered images were processed to create a distance map between the vessel 

centerlines and the vessel wall, where a zero level set corresponds to vessel walls. The fast marching 

algorithm was used to detect the network connectivity by solving the Eikonal equation [43]. The connected 

domain serves as the initial deformable model for the levelset geodesic active contour to compute the 

distances of each point to the nearest vessel wall. Then, the marching cubes algorithm is applied to track 

the physical coordinates of the vessel walls and to construct a connected surface mesh of the vascular 

network. Using the maximal inscribed spheres method [44], the centerline trajectory and the corresponding 

vessel radius are precisely tracked. The centerline space curve representation and diameters can be used 

for generation of unstructured volumetric meshes [6].  

Additionally, we developed an automatic parametric meshing algorithm to construct structured 

parametric volumetric meshes for the cerebral vasculature [45]. Our parametric meshing algorithm uses 
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Bezier splines for approximation and smoothing of the vessel centerline. The control points of the splines 

are then used to define the geometrical separation planes for creating a continuous and smooth volumetric 

mesh. The parameterized volumetric mesh allows us to define the vessel lumen and vessel walls of the 

cerebral vasculature for detailed hemodynamic simulation. 

3. Results and Discussion 

Figure 2 exhibits the MR imaging studies from both subjects in axial, sagittal and coronal views 

respectively. The maximum intensity projection is used for the MRA to better delineate the vessels. The 

imaging protocols inherently brighten grey and white matter in T1, cerebrospinal fluid space in T2, 

arteries in MRA, and veins in MRV. The scalp exhibits high intensity in both T1 and T2. The skull does 

not exhibit any signal in all imaging studies. Image registration was performed to compensate for the 

different resolution and slice settings in each imaging protocol. Figure 3 shows the registered and segmented 

results with red being arteries, dark blue being veins, dark grey for grey matter, light grey for white 

matter, light blue for cerebrospinal fluid space, white for skull, and flesh color for scalp. Figure 3 shows 

that the coregistration successfully aligned the different structures together. 

 

Figure 2. MRI images from two healthy subjects. T1 provides distinction of grey and white 

matter, skull and scalp. T2 provides cerebrospinal fluid space and contrast between gray and 

white matter. MRA enhances the intensity of vessels using flow phenomenon. The maximum 

intensity projection (MIP) provides better distinction of vasculature compared to the raw 

image. Due to the pulse sequence design, the brain tissue was removed from the MRV, showing 

only the signals from the vein. 
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Figure 3. Image co-registration of the T1, T2, MRA, and MRV. The registered image is used 

in the pipeline for segmentation of the scalp (flesh color), skull (white), CSF (light blue), 

arteries (red), grey matter (dark grey), white matter (light grey), and veins (dark blue). 

3.1. Cortex Surface Segmentation 

The T1 and T2 images in Figure 2 show clear delineation between the grey matter, white matter, and 

cerebrospinal fluid space. Figure 4 shows the segmented grey and white matter for the two subjects. The 

mesh vertices and faces are shown in Table 1. The meshes are generated with marching cubes along with 

binary images depicting the respective soft tissues. These images are used as input for skull and scalp 

segmentation. 

 

Figure 4. Computational meshes constructed from image segmentation of the two subjects. 

(A) Scalp from morphological operations of T1; (B) Skull from morphological operations of 

T1; (C) CSF from auto thresholding of T2; (D) Arteries from vessel filtering and segmentation 

of MRA; (E) Veins from vessel filtering and segmentation of MRV; (F) Grey matter from 

surface segmentation; (G) White matter from surface segmentation. 
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Table 1. Mesh properties of each individual structures for two subjects. 

Structure Subject 1 Subject 2 Reported Values 

Arteries Volume (mL) 35.8 36.4 45 

Veins Volume (mL) 36.1 38.6 70 

CSF Volume (mL) 

SAS 35 25 30 

Lateral Ventricles 13.2 21.6 16.4 

Third Ventricle 0.8 0.8 0.9 

Fourth Ventricle 1.4 1.7 1.8 

Spinal CSF - 112.6 103 

Scalp Surface Area (cm2) 580 590 600 

Grey Matter Volume (mL) 758.6 720.4 710–980 

Grey Matter Surface Area (cm2) 2471.4 2436.9 2400.0 

White Matter Volume (mL) 546.7 538.6 260–600 

3.2. Skull and Scalp Segmentation 

The brain mask is used to first determine the scalp mesh by removing the brain on the T1 image and 

thresholding. The skull is determined by removing the scalp and brain on the T1 image and another 

thresholding. The marching cubes algorithm is utilized to construct the meshes of skull and scalp of the 

two subjects as shown in Figure 4. The scalp exhibits high intensity outside at the exterior of the head in 

T1 and T2 images. The skull does not exhibit any signal and is hard to detect in all images. Thus, the 

morphological operation performed between the brain and scalp is used for approximating the skull. The 

skull is underestimated due to lack of signal by limitation of the imaging modality. CT can be used to 

achieve a better recognition of the skull with the tradeoff of exposure to ionizing  

radiation [46]. As pointed out by Dogdas et al. [34], the morphological operations and automatic 

thresholding might produce holes and it can be fixed by manually adjusting the threshold value. In our 

data sets, we did not find holes in our reconstructed meshes. 

3.3. Cerebrospinal Fluid Space Segmentation 

We compute four thresholds using Otsu’s method using the T2 image. The first threshold separates 

the background from other signals. The second threshold contains tissues with low intensity such as gray 

and white matter. All voxels above the second threshold are categorized as candidates for the cerebrospinal 

fluid space. The eyes also appears bright in T2 due to the aqueous humour in the eye. To exclude the 

eye, we look for the largest connected component and produced a binary image for mesh generation 

shown in Figure 4.  
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3.4. Vessel Segmentation 

Figure 5 exhibits the MRA and MRV along with the filtered images. The MRA has high intensity in 

the large vessels, but the small vessels have similar intensity to the grey matter. After filtering, all vessels 

appear brighter which facilitates automatic vessel segmentation. The MRV imaging protocol was designed 

to remove non-vascular tissues inherently but the small veins are still difficult to detect. After filtering, 

all veins have high intensity and the filtered image is used for segmentation. The MRA imaging protocol 

was designed to enhance intensity for high flow areas which also includes signals from the superior 

sagittal sinus. The contamination from the vein was removed by excluding common voxels between 

MRA and MRV. After applying our vessel filter, it is shown that the non-vascular tissues were suppressed 

and small vessels are enhanced. The filter images then served as input for the centerline and diameter 

extraction. The vessel mesh was reconstructed using the diameter and centerline information shown in 

Figure 4. 

 

Figure 5. Filtered MRA for vessel segmentation. Hessian-based filters were implemented 

for suppressing signals from non-vascular tissues and enhancing vascular tissues. The vessel 

enhancement allows all vessels to exhibit high intensity values and facilitates automatic 

vessel segmentation. 

3.5. Whole Brain Mesh Generation 

Figure 4 displays the individual meshes reconstructed from the proposed pipeline for the two subjects. 

Mesh metrics are evaluated in Table 1 and compared with physiological values [47–52]. The grey matter 

volume for both subject falls within the reported range of 710–980 mL. The white matter volume also 

for both subjects are also within reported values of 260–600 mL. The arterial and venous volume are 

slightly lower than reported values due to limited image resolution. The CSF volumes for both subjects 
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in the lateral ventricles, third ventricles are fourth ventricles are all comparable to reported values. The 

scalp surface area for both subjects are approximately 10% higher than the reported value of 600 cm2. It 

demonstrates the ability of our pipeline to process image signals to reconstruct meshes for display and 

simulation. However, due to limited resolution and partial volume effect, the meshes intersect with each 

other at the boundaries which is not anatomically accurate. This inaccuracy appears mostly at the deep 

gyri, in which the small vessels are embedded with the cerebrospinal fluid. To compensate for the 

hardware limitations, we used the binary images to detect for intersections and excluded common voxels. 

One can also pursue Pons’s method to produce watertight meshes [25].  

3.6. Parametric Meshing 

In addition to constructing cylinder meshes with diameter and centerline information, we also developed 

an automatic parametric meshing algorithm using cubic Bezier models to generate structured hexahedral 

meshes as shown in Figure 6. The parametric meshing algorithm takes in the diameter and length 

information form the vessel segmentation and groups the segments into bifurcation, bifurcation to 

bifurcation, and bifurcation to terminal. For each group, separation points and planes are computed to 

define the connection between the different groups. The parametric meshing allows us to control the 

meshes quality and define regions for vessel wall and vessel lumens for hemodynamic simulations. The 

surface meshes can be improved be adapting parameterized surfaces such as Bezier surface,  

B-spline surface, and NURBS [53–56]. 

3.7. Cerebral Hemodynamics Simulation 

The computational meshes can be used for computational fluid dynamics simulations. Detailed 

hemodynamic simulation can be achieved by using commercial software solving the 3D Navier-Stokes 

equation as shown in Figure 6. The meshes are loaded into the software and assigned with boundary 

conditions. Our 3D simulation demonstrates velocity field, pressure gradient, and dye convection with a 

pulsatile boundary condition. Figure 6 also shows preliminary hemodynamic simulations for blood flow 

rate and blood pressure using the cylinder mesh and simplified flow principle equations. The computational 

time for these simulations are less than one minute. Additionally, we also performed dye convection 

simulation with time step = 0.1 s for 10 s duration to produce artificial dynamic angiography in Figure 6. The 

computational time for dye convection is dependent on the step size and in this case it took less than five 

minutes. The simulation results demonstrate the use of our image processing pipeline for rapid simulation to 

aid clinical diagnosis. In addition to cerebral hemodynamics, we also acquired images for full body CSF 

reconstruction along with phase contrast MRI for CSF flow measurements as shown in Figure 7. The 

CSF model allows us to study full body CSF dynamics [14,17]. Combined with the whole brain model, 

we can investigate the relationship between cerebral hemodynamics and CSF dynamics. 
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Figure 6. Parametric meshing of the cerebral vasculature for 3D hemodynamic simulations. 

(A) Cross section of the parametric meshing of the segmented cerebral vasculature; (B) 

Parametric mesh at the bifurcations; (C) 3D hemodynamic simulation of the cerebral 

vasculature with pulsatile boundary conditions showing velocity fields, pressure fields, and 

dye convection at three time frames, 0.25 s, 0.45 s, 0.65 s; (D) Volumetric blood flow rate 

for each individual segment; (E) Blood pressure estimation for the entire tree; (F) Dynamic 

contrast agent distribution for three time frames 0.25 s, 0.45 s, 0.65 s after injection of a 

contrast agent. Inlet boundary conditions are provided in C for velocity and outlet boundary 

conditions are static pressure. 
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Figure 7. CSF imaging for the entire central nervous system. T2 images are acquired for the 

brain, cervical-thoracic region, thoracic-lumbar region, lumbar-sacral region. Image stitching 

algorithms were utilized to construct a contiguous image of the entire CSF space. The image 

is segmented to provide a continuous computational mesh of the entire CSF space. 

4. Conclusions 

In this paper, we combined several image processing algorithms to construct an image processing 

pipeline for automatic generation of subject specific computational meshes. The imaging protocols used 

are provided by the hardware company which does not require additional modification or optimization. 

Currently, commercial software does not provide specific tools for individual structures, but only generic 

processing algorithms. Generic processing algorithms are inadequate for segmentation of vessels and 

smooth extraction of the cortex surface. This limits the accuracy of the reconstruction of the meshes since 

the algorithms are not specifically designed for different signals and characteristics of the structures. It 

also requires manual intervention and modification which hinders the reconstruction of subject-specific 

meshes. Our pipeline is designed to automatically segment individual structures based on their geometry 

and signal characteristics. By introducing the proposed imaging processing procedures, we hope to 

reduce the difficulty of reconstructing subject specific computational meshes. 

Acknowledgments 

The authors would like to gratefully partial support of this project by NSF grants CBET-0756154  

and CBET-1301198.  

Author Contributions 

Chih-Yang Hsu and Ben Schneller are responsible for the image processing work in this study under 

the supervision of Andreas Linninger as a part of Chih-Yang Hsu’s PhD thesis with collaboration with 

Ali Alaraj. Mahsa Ghaffari is responsible for the meshing and simulation work in this paper as a part of 



Technologies 2015, 3 138 

 

 

her PhD thesis under the supervision of Andreas Linninger. All authors have read and approved the  

final manuscript. 

Conflicts of Interest 

The authors declare no conflict of interest.  

References 

1. Doi, K. Computer-aided diagnosis in medical imaging: Historical review, current status and future 

potential. Comput. Med. Imaging Graph. 2007, 31, 198–211. 

2. Sundgren, P.C.; Dong, Q.; Gómez-Hassan, D.; Mukherji, S.K.; Maly, P.; Welsh, R. Diffusion tensor 

imaging of the brain: Review of clinical applications. Neuroradiology 2004, 46, 339–350. 

3. Wardlaw, J.M.; Mielke, O. Early Signs of Brain Infarction at CT: Observer Reliability and Outcome 

after Thrombolytic Treatment—Systematic Review. Radiology 2005, 235, 444–453. 

4. Duncan, J.S.; Ayache, N. Medical image analysis: Progress over two decades and the challenges ahead. 

IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 85–106. 

5. Milner, J.S.; Moore, J.A.; Rutt, B.K.; Steinman, D.A. Hemodynamics of human carotid artery 

bifurcations: Computational studies with models reconstructed from magnetic resonance imaging 

of normal subjects. J. Vasc. Surg. 1998, 28, 143–156. 

6. Spiegel, M.; Redel, T.; Zhang, Y.J.; Struffert, T.; Hornegger, J.; Grossman, R.G.; Doerfler, A.; 

Karmonik, C. Tetrahedral vs. polyhedral mesh size evaluation on flow velocity and wall shear stress 

for cerebral hemodynamic simulation. Comput. Methods Biomech. Biomed. Engin. 2011, 14, 9–22. 

7. Oshima, M.; Torii, R.; Kobayashi, T.; Taniguchi, N.; Takagi, K. Finite element simulation of blood 

flow in the cerebral artery. Comput. Methods Appl. Mech. Eng. 2001, 191, 661–671. 

8. Cebral, J.R.; Castro, M.A.; Appanaboyina, S.; Putman, C.M.; Millan, D.; Frangi, A.F. Efficient 

pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics: Technique 

and sensitivity. IEEE Trans. Med. Imaging 2005, 24, 457–467. 

9. Ho, J.; Kleiven, S. Can sulci protect the brain from traumatic injury? J. Biomech. 2009, 42,  

2074–2080. 

10. Ghaffari, M.; Zoghi, M.; Rostami, M.; Abolfathi, N. Fluid Structure Interaction of Traumatic Brain 

Injury: Effects of Material Properties on SAS Trabeculae. Int. J. Mod. Eng. 2014, 14, 54–62. 

11. Takahashi, T.; Kato, K.; Ishikawa, R.; Watanabe, T.; Kubo, M.; Uzuka, T.; Fujii, Y.; Takahashi, H. 

3-D finite element analysis and experimental study on brain injury mechanism. In Proceedings of 

2007 29th Annual International Conference of the IEEE on Engineering in Medicine and Biology 

Society (EMBS), Lyon, France, 22–26 Auguest 2007; pp. 3613–3616.  

12. Linninger, A.A.; Tsakiris, C.; Zhu, D.C.; Xenos, M.; Roycewicz, P.; Danziger, Z.; Penn, R. Pulsatile 

cerebrospinal fluid dynamics in the human brain. IEEE Trans. Biomed. Eng. 2005, 52, 557–565. 

13. Linninger, A.A.; Xenos, M.; Zhu, D.C.; Somayaji, M.R.; Kondapalli, S.; Penn, R.D. Cerebrospinal 

Fluid Flow in the Normal and Hydrocephalic Human Brain. IEEE Trans. Biomed. Eng. 2007, 54, 

291–302. 

14. Linninger, A.A.; Xenos, M.; Sweetman, B.; Ponkshe, S.; Guo, X.; Penn, R. A mathematical model 

of blood, cerebrospinal fluid and brain dynamics. J. Math. Biol. 2009, 59, 729–759. 



Technologies 2015, 3 139 

 

 

15. Linninger, A.A.; Sweetman, B.; Penn, R. Normal and Hydrocephalic Brain Dynamics: The Role of 

Reduced Cerebrospinal Fluid Reabsorption in Ventricular Enlargement. Ann. Biomed. Eng. 2009, 

37, 1434–1447. 

16. Penn, R.D.; Lee, M.C.; Linninger, A.A.; Miesel, K.; Lu, S.N.; Stylos, L. Pressure gradients in the 

brain in an experimental model of hydrocephalus. Collections 2009, 116, 1069–1075. 

17. Sweetman, B.; Linninger, A.A. Cerebrospinal Fluid Flow Dynamics in the Central Nervous System. 

Ann. Biomed. Eng. 2010, 39, 484–496. 

18. Zhu, D.C.; Xenos, M.; Linninger, A.A.; Penn, R.D. Dynamics of lateral ventricle and cerebrospinal 

fluid in normal and hydrocephalic brains. J. Magn. Reson. Imaging 2006, 24, 756–770. 

19. Zhang, J.Y.; Joldes, G.R.; Wittek, A.; Miller, K. Patient-specific computational biomechanics  

of the brain without segmentation and meshing. Int. J. Numer. Meth. Biomed. Engng. 2013, 29, 

293–308. 

20. Alaraj, A.; Luciano, C.J.; Bailey, D.P.; Elsenousi, A.; Roitberg, B.Z.; Bernardo, A.; Banerjee, P.P.; 

Charbel, F.T. Virtual reality cerebral aneurysm clipping simulation with real-time haptic feedback. 

Neurosurgery 2015, 11, 52–58. 

21. Alaraj, A.; Charbel, F.T.; Birk, D.; Tobin, M.; Luciano, C.; Banerjee, P.P.; Rizzi, S.; Sorenson, J.; 

Foley, K.; Slavin, K.; et al. Role of Cranial and Spinal Virtual and Augmented Reality Simulation 

Using Immersive Touch Modules in Neurosurgical Training. Neurosurgery 2013, 72, 115–123. 

22. Alaraj, A.; Lemole, M.G.; Finkle, J.H.; Yudkowsky, R.; Wallace, A.; Luciano, C.; Banerjee, P.P.; 

Rizzi, S.H.; Charbel, F.T. Virtual reality training in neurosurgery: Review of current status and 

future applications. Surg. Neurol. Int. 2011, 2, doi:10.4103/2152-7806.80117. 

23. Yudkowsky, R.; Luciano, C.; Banerjee, P.; Schwartz, A.; Alaraj, A.; Lemole, G.M.; Charbel, F.; 

Smith, K.; Rizzi, S.; Byrne, R.; et al. Practice on an Augmented Reality/Haptic Simulator and 

Library of Virtual Brains Improves Residents’ Ability to Perform a Ventriculostomy. Simul. Healthc. 

J. Soc. Simul. Healthc. 2013, 8, 25–31. 

24. Alaraj, A.; Tobin, M.K.; Birk, D.M.; Charbel, F.T. Simulation in Neurosurgery and Neurosurgical 

Procedures. In The Comprehensive Textbook of Healthcare Simulation; Levine, A.I., DeMaria, S., Jr., 

Schwartz, A.D., Sim, A.J., Eds.; Springer: New York, NY, USA, 2013; pp. 415–423. 

25. Pons, J.P.; Ségonne, E.; Boissonnat, J.D.; Rineau, L.; Yvinec, M.; Keriven, R. High-quality 

consistent meshing of multi-label datasets. Inf. Process Med. Imaging 2007, 20, 198–210. 

26. Nowinski, W.L.; Belov, D. The Cerefy Neuroradiology Atlas: A Talairach–Tournoux atlas-based 

tool for analysis of neuroimages available over the internet. NeuroImage 2003, 20, 50–57. 

27. Nowinski, W.L. The cerefy brain atlases. Neuroinformatics 2005, 3, 293–300. 

28. Nowinski, W.L. From research to clinical practice: A Cerefy brain atlas story. Int. Congr. Ser. 2003, 

1256, 75–81. 

29. Adams, C.M.; Wilson, T.D. Virtual cerebral ventricular system: An MR-based three-dimensional 

computer model. Anat. Sci. Educ. 2011, 4, 340–347. 

30. Dale, A.M.; Fischl, B.; Sereno, M.I. Cortical surface-based analysis. I. Segmentation and surface 

reconstruction. NeuroImage 1999, 9, 179–194. 

31. Fischl, B.; Salat, D.H.; Busa, E.; Albert, M.; Dieterich, M.; Haselgrove, C.; van der Kouwe, A.; 

Killiany, R.; Kennedy, D.; Klaveness, S.; et al. Whole brain segmentation: Automated labeling of 

neuroanatomical structures in the human brain. Neuron 2002, 33, 341–355. 



Technologies 2015, 3 140 

 

 

32. Fischl, B.; Liu, A.; Dale, A.M. Automated manifold surgery: Constructing geometrically accurate 

and topologically correct models of the human cerebral cortex. IEEE Trans. Med. Imaging 2001, 

20, 70–80. 

33. Fischl, B.; Salat, D.H.; van der Kouwe, A.J.W.; Makris, N.; Ségonne, F.; Quinn, B.T.; Dale, A.M. 

Sequence-independent segmentation of magnetic resonance images. NeuroImage 2004, 23, S69–S84. 

34. Dogdas, B.; Shattuck, D.W.; Leahy, R.M. Segmentation of skull and scalp in 3-D human MRI using 

mathematical morphology. Hum. Brain Mapp. 2005, 26, 273–285. 

35. Liao, P.; Chen, T.; Chung, P. A fast algorithm for multilevel thresholding. J. Inf. Sci. Eng. 2001, 

17, 713–727. 

36. Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 

1979, 9, 62–66. 

37. Lorensen, W.E.; Cline, H.E. Marching Cubes: A High Resolution 3D Surface Construction 

Algorithm. In Proceedings of the 14th Annual Conference on Computer Graphics and Interactive 

Techniques, SIGGRAPH ’87, Anaheim, CA, USA, 27–31 July 1987; ACM: New York, NY, USA, 

1987; pp. 163–169. 

38. Nielson, G.M.; Hamann, B. The Asymptotic Decider: Resolving the Ambiguity in Marching Cubes. 

In Proceedings of the 2nd Conference on Visualization ’91 (VIS ’91), San Diego, CA, USA, 22–25 

October 1991; IEEE Computer Society Press: Los Alamitos, CA, USA, 1991; pp. 83–91. 

39. Frangi, A.F.; Niessen, W.J.; Vincken, K.L.; Viergever, M.A. Multiscale vessel enhancement 

filtering. In Medical Image Computing and Computer-Assisted Interventation—MICCAI’98; 

Lecture Notes in Computer Science; Wells, W.M., Colchester, A., Delp, S., Eds.; Springer: 

Berlin/Heidelberg, Germany, 1998; pp. 130–137. 

40. Shikata, H.; Hoffman, E.A.; Sonka, M. Automated segmentation of pulmonary vascular tree from 

3D CT images. In Proceedings of the SPIE 5369, Medical Imaging 2004: Physiology, Function, and 

Structure from Medical Images, San Diego, CA, USA, 30 April 2004; Volume 5369,  

pp. 107–116. 

41. Erdt, M.; Raspe, M.; Suehling, M. Automatic Hepatic Vessel Segmentation Using Graphics 

Hardware. In Medical Imaging and Augmented Reality; Lecture Notes in Computer Science;  

Dohi, T., Sakuma, I., Liao, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 403–412. 

42. Sato, Y.; Nakajima, S.; Shiraga, N.; Atsumi, H.; Yoshida, S.; Koller, T.; Gerig, G.; Kikinis, R. 

Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures 

in medical images. Med. Image Anal. 1998, 2, 143–168. 

43. Sethian, J.A. A fast marching level set method for monotonically advancing fronts. Proc. Natl. 

Acad. Sci. USA 1996, 93, 1591–1595. 

44. Antiga, L.; Piccinelli, M.; Botti, L.; Ene-Iordache, B.; Remuzzi, A.; Steinman, D.A. An image-based 

modeling framework for patient-specific computational hemodynamics. Med. Biol. Eng. Comput. 

2008, 46, 1097–1112. 

45. Ghaffari, M.; Hsu, C.-Y.; Linninger, A.A. Automatic reconstruction and generation of structured 

hexahedral mesh for non-planar bifurcations in vascular network. Comput. Aided Chem. Eng. 2015, 

in press. 



Technologies 2015, 3 141 

 

 

46. Nowinski, W.L.; Thaung, T.S.L.; Chua, B.C.; Yi, S.H.W.; Ngai, V.; Yang, Y.; Chrzan, R.; Urbanik, A. 

Three-dimensional stereotactic atlas of the adult human skull correlated with the brain, cranial 

nerves, and intracranial vasculature. J. Neurosci. Methods 2015, 246, 65–74. 

47. Ito, H.; Kanno, I.; Iida, H.; Hatazawa, J.; Shimosegawa, E.; Tamura, H.; Okudera, T. Arterial 

fraction of cerebral blood volume in humans measured by positron emission tomography.  

Ann. Nucl. Med. 2001, 15, 111–116. 

48. Lauwers, F.; Cassot, F.; Lauwers-Cances, V.; Puwanarajah, P.; Duvernoy, H. Morphometry of the 

human cerebral cortex microcirculation: General characteristics and space-related profiles. 

NeuroImage 2008, 39, 936–948. 

49. Risser, L.; Plouraboué, F.; Cloetens, P.; Fonta, C. A 3D-investigation shows that angiogenesis in primate 

cerebral cortex mainly occurs at capillary level. Int. J. Dev. Neurosci. 2009, 27, 185–196. 

50. Reichold, J.; Stampanoni, M.; Keller, A.L.; Buck, A.; Jenny, P.; Weber, B. Vascular graph model 

to simulate the cerebral blood flow in realistic vascular networks. J. Cereb. Blood Flow Metab. 

2009, 29, 1429–1443. 

51. Lüders, E.; Steinmetz, H.; Jäncke, L. Brain size and grey matter volume in the healthy human brain. 

Neuroreport 2002, 13, 2371–2374. 

52. Grant, R.; Condon, B.; Lawrence, A.; Hadley, D.M.; Patterson, J.; Bone, I.; Teasdale, G.M. Human 

cranial CSF volumes measured by MRI: Sex and age influences. Magn. Reson. Imaging 1987, 5, 

465–468. 

53. Borouchaki, H.; Laug, P.; George, P.-L. Parametric surface meshing using a combined  

advancing-front generalized Delaunay approach. Int. J. Numer. Methods Eng. 2000, 49, 233–259. 

54. Meegama, R.G.N.; Rajapakse, J.C. NURBS-Based Segmentation of the Brain in Medical Images. 

Int. J. Pattern Recognit. Artif. Intell. 2003, 17, 995–1009. 

55. Zhu, D.; Li, K.; Guo, L.; Liu, T. Bezier Control Points image: A novel shape representation 

approach for medical imaging. In Proceedings of the 2009 Conference Record of the Forty-Third 

Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 1–4 November 

2009; pp. 1094–1098. 

56. Lim, S.P.; Haron, H. Surface reconstruction techniques: A review. Artif. Intell. Rev. 2012, 42, 59–78. 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


