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Abstract: This article focuses on how operator wellbeing can be assessed to ensure social sustainability
and operator performance at assembly stations. Rapid technological advances provide possibilities
for assessing wellbeing in real-time, and from an assembly system perspective, this could enable
the assessment of physiological data in real-time. While technology is available, it has not been
implemented or tested in industry. The aim of this paper was to investigate empirically how
concurrent physiological measurement technologies can be integrated into an industrial application,
in order to increase operator wellbeing and operator performance. A mixed method approach was
used, which included a literature study, two laboratory tests, two case studies and a workshop.
The results indicated that operator wellbeing could be assessed through electro-dermal activity, but
that the data is perceived as difficult to interpret. For an industrial application, operator perception
and data presentation are important and risks connected to personal integrity and IT-support need
to be addressed. Future work includes testing how a combination of physiological measures and
self-assessments can be used to assess operator wellbeing in an industrial context.
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1. Introduction

Rapid technological developments, such as Industry 4.0, have enabled smart measurement tools
to emerge, and during the last five years, the use of wearables, such as smart-phones, glasses and
bracelets, have increased [1,2]. These smart tools can collect data in real-time [3] and be analysed with
intelligent software [4]. Examples of such sensors are commercial and semi-commercial health and
fitness devices, which have big potential to assess wellbeing in industry, since they are capable and
inexpensive [5–7]. Wearable healthcare devices are one of the fastest growing markets of this decade
and since the technology is fast-growing, efforts are needed to ensure that wearable devices reach their
full potential [8].

This article focuses on how wearables can be used to assess operator wellbeing in a manufacturing
environment. This is difficult, since wellbeing at work is “a summative concept that characterizes
the quality of working lives, including occupational safety and health (OSH) aspects” [9], and a
survey of wellbeing at work (performed within the European Union) showed no consensus of what
wellbeing at work should include [10]. The most commonly used terms were job satisfaction, good/fair
working conditions, quality of work and health at work [10]. A common way to assess psycho-social
risks and ill-health is through self-report questionnaires [10,11]. When using self-assessments or
self-report questionnaires, it is important to report emotions close in time, and directly connected
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to, actual experiences—not in terms of a remembered utility (e.g., “how do you feel about what
just happened?”) [12]. This is because past experiences are often connected to systematic biases
(e.g., connected to a situation or a subjective reconstruction [13,14]). Schwarz et al. saw that when
making judgments of how happy and satisfied people were with their lives, they relied on momentary
affective states—if they felt positive or negative at that moment [15]. In addition, if they were
unhappy, they tried to explain their state more than those who were in pleasant affective states [16].
Capturing real-time data is one way to minimize biases [12,17]. Smart devices, therefore, have the
potential to increase job satisfaction, reduce complexity and errors, and influence behaviour by giving
visible hints to the operator and matching the job to the person [18]. These smart devices are not only
important from a wellbeing perspective; they can also be used to increase operator performance [19].
Psychological wellbeing and psychological health have been seen to correlate with performance
at work [20,21]. High performance has been connected to having both a high job satisfaction and
a high psychological wellbeing [22]. In addition, correlations between motivation and wellbeing
have been seen—such as competence, autonomy and relatedness—which affect intrinsic motivation,
self-regulation and wellbeing [23]. When these three are satisfied, they increase self-motivation and
mental health, but when not satisfied, they instead diminish both motivation and wellbeing. With an
increasingly diversified work force (due to demographic changes), it is important to further investigate
how operator wellbeing can be increased from an individual perspective [24–27]. Since individuals
have different knowledge and skills in their work situations, they will therefore often experience
work-related stress when the work demand is not matched with their own abilities [26,27]; for instance,
negative feelings such as boredom and under-stimulation affect operator performance [28].

Studies are needed to investigate how physiological measurements can be used in a manufacturing
context. According to the work environment act, “the work environment must be satisfactory with
regard to the nature of work and the social and technological developments in society ... Working
conditions must be adapted to people’s differing physical and mental aptitudes” (The Work
Environment Act 2:1, 2015). Today, few assembly workstations are however designed with principles
that support the operators’ mental capabilities [29–31], and self-assessments (NASA-TLX) have been
used to assess cognitive load [32,33]. Self-assessments can, however, be connected to biases and
take valuable time away from production, and cannot be used to support the operator in real-time.
Some examples of physiological measurements have been seen, e.g., the perceived stress of robots
in a shared working environment was assessed using Electro Dermal Activity (EDA) [34]. Also,
in an attempt to better assess physical load, electromyography (measuring the electric activity of
muscles) was used, together with body postures and movements [35]. EDA has also been proven
useful for studying user satisfaction, as well as real-time affect assessments of the Human–Automation
Interface [36].

This paper aims to investigate empirically how concurrent physiological measurements can be
integrated into an industrial application, in order to increase both operator wellbeing and productivity
of the operator. A big challenge lies in the industrial application and the visualization of the data; so
far only the vision of how that will be performed has been presented [37]. It is therefore important to
investigate conditions that are associated with the use of physiological measurements; this is done by
studying the following two questions:

(I) Which physiological measurements can be used to assess operator wellbeing in real-time?
(II) What risks and possibilities are connected to assessing operator wellbeing in real-time in industry?

2. Materials and Methods

A mixed method research approach was carried out to answer the two questions. This is useful
since the questions are complex in nature and because a combination of quantitative and qualitative
methods can be used to find deeper understanding of a phenomenon (how to assess operator wellbeing
in industry) [38,39]. Since physiological measures in industry are uncommon and new devices



Technologies 2017, 5, 61 3 of 15

are developed continuously, long-term studies are not possible and therefore a more exploratory
approach is suitable (such as mixed method). Triangulation is used to increase reliability, validity
and interpretation of data, through collecting different types of data (e.g., by combining interview
and laboratory results [39,40]). There are four basic types of triangulation that are used in this
paper: data triangulation (different types of data, at different times), method triangulation (different
methods), theory triangulation (a phenomenon is investigated using different research disciplines that
are assumed to have equal value) and investigator triangulation (multiple researchers involved in the
investigation) [41]. The mixed method design is presented in Table 1 and is connected to the research
questions respectively.

Table 1. Mixed method design used to answer research questions.

Research Question Method Triangulation Type Aim

Which physiological measurements
can be used to assess operator
wellbeing in real-time?

Literature study,
laboratory tests
and case studies

Data (literature and laboratory results),
method (quantitative and qualitative), theory
(different theories are combined in the
literature study) and investigator
triangulation (multiple researchers involved)

Physiological
measures are
identified and
tested

What risks and possibilities are
connected to assessing operator
wellbeing in real-time in industry?

Case studies and
workshop

Data (case study and workshop data),
method (two types of qualitative data) and
investigator triangulation (multiple
researchers involved)

Risks and
possibilities are
identified

The methods used are described in the following sections. First, the literature study on
physiological measures is presented.

2.1. Literature Study: Identifying Physiological Measures

In the introduction, several aspects were identified as important when assessing operator
wellbeing, e.g., job satisfaction, motivation and operator emotion. Operator wellbeing is defined as a
state characterised by job satisfaction and changes in motivation and operator emotion. This section
describes how changes in operator emotion and motivation have been assessed.

Individual difficulties in assessing and describing one’s own emotions have been noted by many
researchers [42]. These difficulties suggest that emotions lack distinctive borders, which makes it
hard for individuals to discriminate one emotion from another. However, correlations between
different emotions have been found [13] and a model of affect states, which includes two dimensions of
emotion—arousal and valence—has been suggested [43]. Here, arousal is connected to how activated
you are feeling and valence to whether you perceive the emotion as pleasant or unpleasant (positive or
negative). Even though it is hard to distinguish the valence of an emotion, this is often given by the
situation or can be included through self-report measures, such as rating scales [11]. Furthermore, some
researchers argue that a third dimension, dominance, is needed to describe affect [44,45]. Dominance is
defined as the extent to which an individual feels free to act [45]; this can be translated to autonomy in
the workplace, which was seen as an important connection to wellbeing and motivation [23].

Changes in emotion, motivation, habits and attitude have been successfully investigated by
studying changes in the sympathetic branch of the Autonomic Nervous System (ANS) [11,36]; the
sympathetic branch is connected to physical activity or mental work. Since ANS signals could be
due to reactions to a situation (noise in the background, people walking by) and not to the task itself,
differences in whether participants are passive or active during a measurement have been found [11,36].
If a person is active, like when giving a speech, the ANS results could be connected to the action
of giving a speech (e.g., physiological changes while talking, producing a higher voice) and not the
physiological response to the situation [11].

ANS have been assessed by measuring EDA, Heart Rate Variability (HRV) and respiratory
activities [46–49]. EDA is useful for assessing changes connected to emotional and cognitive states,
since it is not affected by parasympathetic activity (e.g., the body’s unconscious actions such as
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digestion and salivation [50]) and is measured through current in the skin (which increases when an
operator is producing sweat) [36,46]. As the sensors are both cheap and can be measured reliably [11],
EDA measures can also easily be conducted. HRV measures the time between heartbeats and is useful
since when a person is exposed to stress, the autoimmune nervous system triggers stress hormones
that change both the heart rate and HRV [51]. Studies show that HRV levels are high when a person
does not feel stressed, while low HRV levels are an indicator of a higher perceived stress level [52].
Respiratory factors are interesting since breathing has been connected to emotions—negative emotions,
such as anger, anxiety, disgust and surprise, as well as some positive emotions, such as contentment,
happiness and joy [49].

EDA, HRV and respiratory factors have been identified as physiological measures that can be
used to assess changes in operator emotion and motivation, Figure 1.

Figure 1. Model for assessing changes in motivation and operator emotion adapted from the
introduction, and ways to assess affect from Russell [43], Stamps [44], Mehrabian and Russel [45].

2.2. Devices Used to Assess Physiological Data

Devices that were used in the laboratory tests, case studies and the workshop are presented
in Table 2. These devices were chosen since they were easy to use and had software that could be
connected to either a mobile device or a computer that could show physiological data in real-time.

Table 2. Devices and physiological measurements used (connected to methods).

Device (Developed by Company Name) Physiological Measurement Used in Method

Qsensor (Affectiva) Electro Dermal Activity (EDA) and body
temperature Laboratory Tests A and B

Breathing activity device (Spire) Respiratory factors (by abdominal and
chest movements) Laboratory Test B

SmartBand 2 (Sony) Heart Rate Variability (HRV) Laboratory Test B

Activity bracelet E4 (Empatica *) HRV, Blood Volume Pulse (BVP), EDA
and body temperature

Laboratory Test B, workshop
and case studies A and B

* The Qsensor was discontinued and the technology was further developed in the company Empatica.

2.3. Laboratory Test Designs

Two laboratory tests were carried out to test how physiological measures found in the literature
study can be used to assess operator wellbeing. Details of the tests can be found in previous published
articles, e.g., in Li et al. [27], Söderberg et al. [53], Mattsson et al. [19] and Mattsson et al. [5]. At the
beginning of each test session, the participants were given a verbal description of the experimental
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proceedings and were asked for oral consent to participate. To set a baseline for the arousal assessment,
participants were asked to walk up and down a stair five times (as suggested in [11]).

Laboratory Test A was carried out in 2014 to investigate which physiological measurements
correlate with operator performance. Sixty participants were recruited primarily via campus message
boards at Chalmers University of Technology. Participation was voluntary and each participant was
studied separately (not studied in a group). Repeated experiments were performed, where participants
assembled five + five Lego gearboxes (named 1st and 2nd assembly) during two different assembly
times (A and B); A was 70 s long and B was 50 s long. To avoid experimental bias, they were divided
into two randomized groups: Group AB and Group BA. To avoid plausible alternative causes, all
other conditions were held constant. The assembly instructions were placed on a screen to the left,
and the time was on the right. The component shelf was optimized for picking order. Operator
emotion was assessed through EDA and subjectively-rated arousal, valence and dominance, using the
Self-Assessment Manikin (SAM) [54] with Likert scales ranging from 1 to 5. Relationships between
EDA, SAM and operator performance were assessed statistically with two-tailed Pearson’s tests, and
EDA was measured using the Qsensor (Table 1) and analysed by comparing the number of Non-Specific
Skin Conductance Responses (NSCR) per minute to operator performance [36]. Three types of NSCR
peaks were calculated: down peaks, flat peaks and up peaks (see Figure 2). In a pre-test, flat peaks
were seen when participants focused on their work, e.g., before assembling a new component or before
filling out a survey. Therefore, flat peaks were defined and introduced as part of the experiment’s data
collection. Flat peaks were defined as down peaks that were longer than 2 s. Operator performance
was assessed as the number of parts assembled correctly (the gear box had 12 parts). All calculations
involved multiple researchers to increase data reliability. After the assembly, an interview was carried
out to validate findings. Between the first and second assemblies, an interviewer asked the participants
how they perceived the assembly; this was also done after the second assembly (followed by other
questions regarding their performance). Participants were then shown their EDA graph, but their view
of the data was not captured. Therefore, a follow up test—Laboratory Test B—was designed.

Figure 2. The three types of Non-Specific Skin Conductance Responses (NSCR) peaks assessed in
Laboratory Test A: down peak, flat peak and up peak (from left to right in figure).

In Laboratory Test B, participants assembled eight Lego gearboxes (the same gearbox as in A).
The test was carried out at Chalmers Smart Industry lab in 2016. The aim was to test which was the
most and the least preferred device and why, to allow further investigation about the use of EDA as
a reliable measurement. Thirteen participants were recruited through email and wore three devices
during the assembly: the Qsensor, Breathing Activity Device and SmartBand 2 (presented in Table 1).
In the experiment, covariation between operator emotion and performance was investigated and the
number of flat peaks was also calculated; however, operators were not given a cycle time (half were
told to assemble with as high quality as possible and half were told to assemble as fast as possible).
The environment was also manipulated (randomized and structured) during the experiment, but no
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correlations between manipulation and choice of device were seen. Presentation of the device data
differed for the three devices; the presentation of the Qsensor was a graph, the Breathing Activity
Device had a label and a minute stamp and the SmartBand 2 was displayed as a graph connected to a
bar chart with three pre-defined bars (the pre-defined bars were low stress, average stress and high
stress levels). In addition, participants were asked how the assembly felt (after the assembly).

Participant data for the two designs are presented in Table 3.

Table 3. Participant data for Laboratory Tests A and B.

Laboratory Test A: Emotion Assessments B: Device Testing

Number of participants 60 13

Percentage Male/Female (no.) 52% male (31) 70% men (9)
48% female (29) 30% female (4)

Average age 22 years 35 years

Percentage education (no.) 86% Bachelor level (52), Masters level 10% (6),
Other 4% (2)

Over-graduate 85% (11), Under-graduate
15% (2)

Percentage experience in
assembling (category, no.)

56% novice (assembled Lego 8–15 years ago,
33), 18% average (1–7 years ago, 11) and 26%

experts (less than one year ago, 16)

38% novice (5), 31% average (4) and 31%
experts (4) in assembling that gearbox

2.4. Case Study Designs

Two case studies were carried out at two different industrial environments (two companies) with
five different operators. The aim was to assess how operators and company representatives perceived
the output data and to investigate how physiological data could be presented. Two data types, EDA
and Blood Volume Pulse (BVP), were analysed by studying the output graphs with the participants;
Figure 3 depicts an example graph.

Figure 3. Example graph showing the output data from the activity bracelet: Electro Dermal Activity
(EDA), Blood Volume Pulse (BVP), Heart Rate (HR), temperature and time (from top to bottom).

The assembly tasks were simple, with few components to assemble. In Case Study A, the
activity bracelet usefulness was tested in a manual assembly cell with five stations (which included
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small set-ups of machines, details in Korneliusson et al. [55]). Two participants with different
experience levels—an experienced operator, but novice with the specific product and an operator
with great experience with the product and assembly—participated in the study. In Case Study B,
the physiological aspects of a collaborative working environment between a human and a cobot
(co-existing robot) were studied (details in Jacobsson and Nilsson [56]). In the study, the cobot and a
human shared the station but did not assemble at the same time. The station contained ten tasks, of
which the robot performed four tasks and the human six. Three operators were studied with varied
levels of experience.

2.5. Workshop on Risks and Possibilities with a Prototype Assessing Operator Wellbeing in Real-Time

In order to understand how the device could be used in industry, a workshop was conducted
with participants from industry and academy. The activity bracelet (measuring HRV, EDA,
BVP and temperature, example in Figure 3) was built into a prototype and experts within the
“People in Production Systems” from the Swedish strategic innovation programme, Produktion2030
(Production2030 is a strategic innovation programme supported by VINNOVA, Swedish Energy
Agency and Formas), were invited to participate in a workshop to evaluate the prototype.
The workshop was held in 2016 with 15 participants (eight researchers, three company representatives
and four project participants). Workshop participants were divided into three groups to perform
a Strengths, Weaknesses, Opportunities and Threats (SWOT) analysis, based on Kotler [57] and
Osita et al. [58]. The prototype was an interface in which physiological data and four work
environmental measurements (temperature, carbon dioxide level, light and sound levels) were
presented in real-time (see Figure 4). The field below the work environment indicators was a comment
field, where suggestions were given to the operator if threshold limits had been exceeded, e.g., if the
temperature was above 23 degrees, a message was given together with a suggestion of what to change.

Figure 4. Prototype evaluated in workshop.

3. Results

First, findings regarding the physiological measurements that can be used to assess operator
wellbeing are presented; then risks and possibilities connected with a real-time assessment in industry
are given.

• Assessing operator wellbeing through physiological measurements

EDA, HRV, BVP and respiratory factors were identified as potential physiological measurements
that can be used to assess operator wellbeing. They were tested empirically in laboratory and case
studies. The usefulness of EDA, HRV and BVP were supported; findings are summarized in Table 4.
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Table 4. Summarized findings.

Physiological
Measurements Research Methods Findings Sources

EDA Literature Study EDA was identified as being useful for assessing
stress, changes in emotion and motivation Literature data

Laboratory Study A Weak correlation with operator performance
(significant correlation) Quantitative data

EDA and HRV Laboratory Study B 50% of the participants thought it was the most
reliable, 50% preferred HRV Qualitative data

EDA and HRV Case Study A Participants were positive about the graphs Qualitative

EDA and BVP Case Study B Project leader thought it was crucial for
understanding interaction Qualitative

In Laboratory Test A, a weak–moderate positive relationship was seen between operator
performance and the EDA flat peaks (r(45) = 0.43 (p < 0.01)) in the first assembly. Overall, it was
seen that the six top-performing participants had average of 688 flat peaks per minute while the six
bottom-performing participants had an average of 243 flat peaks per minute. This means that operators
who assembled with a high performance also had a higher number of flat peaks, and that operators
with lower performance rates, in general, had a lower number of flat peaks. No other significant
correlations were found (including interaction effects), i.e., the flat peaks were not dependent on
the cycle time (time A or B). The covariance results could be due to reactivation—the participants
in the first assembly had to concentrate, to be able to learn, and to handle the stressful situation
(thereby producing flat-peaks before reactivation). Because the reactivation of skin conductance has
been connected to increased stress [59,60], some support for this was seen in the interviews, where,
in general, the first assembly was perceived as stressful (40%) and difficult (28%) while the second
was seen as better (35%) and less stressful (22%). The cause of the relationship, however, could
not be seen in the experiment (e.g., the cause could be due to cognitive or physical reactivation).
Because a relationship between operator performance and flat peaks was found, EDA was identified
as a promising parameter that can be used in conjunction with other measurements to assess operators;
this was investigated further in Laboratory Test B.

In Laboratory Test B, 50% of the participants thought that EDA was the most reliable physiological
measurement and that HRV data was the least reliable. The other 50% thought that HRV data was
the most reliable and that the Breathing Activity Device and the EDA data were the least reliable.
Participants said that they preferred one device over the other based on their personal experiences, e.g.,
participants who did not sweat or who were very aware of their pulse thought that HRV was more
reliable, and participants who had a low pulse thought that EDA was more reliable. The participants
stated that the EDA data was reliable since it was detailed; however, they did not understand exactly
what it measured. One reason that the Breathing Activity Device was not perceived as reliable was
that its sample rate was too low (it did not show differences fast enough and could be more suitable for
long-term assessments). These results indicate that both EDA and HRV are needed to assess operator
wellbeing. In Laboratory Test B, no relationship between operator emotion and performance was
found (including a relationship between flat peaks and operator performance) which could be because
participants did not perceive the assembly as stressful or difficult. Fifty-four percent said that the
second assembly was better and 31% said that the first assembly was good. Twenty-three percent said
that it was stressful (in Laboratory Test A, 40% stated that it was stressful).

In the case studies, several physiological measurements were assessed (through the Empatica
device). In Case Study A, operators perceived the logging of the physiological data positively and in
Case Study B, the data was perceived as useful for the company, since it showed how the interaction
affected the operators. This type of assessment had not been possible before, and therefore the
physiological data could generate new insights (according to the project leader). The combined data
(EDA and HRV, EDA and BVP) was used to discuss differences between the operators’ experience



Technologies 2017, 5, 61 9 of 15

levels. The Case Study B results were used to start a new project that will assess operator emotion in
human–cobot collaboration.

In conclusion, the results indicated that EDA could be used in combination with HRV or BVP to
assess operator wellbeing.

• Risks and possibilities with assessing operator wellbeing in real-time in industry

Workshop participants identified risks and possibilities with the prototype, using a SWOT analysis
(assessing EDA, BVP, HRV, temperature and four environmental data). The main identified risks were
that the data was difficult to interpret and that there could be issues regarding personal integrity
that need to be considered, e.g., who should have access to the data and who should interpret it.
For instance, the assessments could be given to the company doctor (or similar) and not directly to
the team leader. The possibilities were that the prototype was flexible, mobile-based and could be
connected to many data types. It was considered to be the first step towards an increased awareness in
operator wellbeing at the workplace. The results are presented in Figure 5.

Figure 5. Results from the Strengths, Weaknesses, Opportunities and Threats (SWOT) analysis.

Further, risks connected to data presentation were seen in the case studies. One of the operators
thought that it would be inconvenient to see the data in real-time and that he would rather see the
data after the order was completed, or in his free time. If physiological measurements were used at
the station, operators thought that it should be voluntary to use them. Also, operators thought that
if they were aware of their own stress levels, this would contribute to additional stress. In addition,
they wanted notifications through either symbols or pre-selected text. Although the sample sizes
of the case studies were small, the feedback from the operators are important. To design a system
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according to what the operators think can improve interaction and operator performance [61,62] and
usability [63–68]. A number of questions were raised during the workshop, such as, who will support
the device interface and whether data from devices were enough to assess operator wellbeing.

4. Discussion

The aim of this article was to investigate empirically how concurrent physiological measurements
can be integrated in an industrial application, in order to increase both operator wellbeing and
the productivity of the operator. The following research question was first investigated—which
physiological measurements can be used to assess operator wellbeing in real-time? EDA was
considered reliable and useful for assessing operators’ wellbeing at work; this was seen both in
the experiments and the case studies. Although participants considered EDA to be reliable and
useful, interpretation of the data was perceived as difficult (by participants in Laboratory Test B
and the workshop). The EDA data is difficult to interpret since the physiological measures are
connected to several activities (both cognitive and physical) [11,36]. EDA does not measure one exact
emotion, but instead serves as a general indicator for arousal, attention, habituation, preferences
and cognitive effort [11,36]. However, although EDA is perceived as difficult to understand by
participants, the measurement is relevant because it can show otherwise hidden processes—such as
how people make decisions [11]—and provide information about an emotion before it is conscious to
the participant (thereby preceding a reaction) [69,70]. We suggest that EDA should be combined
with other physiological measurements, such as those exemplified in the case studies (BVP or
HRV), and that further studies are needed to identify the relationships between EDA, BVP, HRV
and operator performance. The advantages of combining different types of data have been seen in
several studies (e.g., EDA, HRV, self-ratings, behaviour and personality traits can be used to detect
anomalies [71–73]). Apart from the already suggested measurements (i.e., EDA, HRV, respiratory
factors and BVP), physiological measurements, such as eye-monitoring and/or pupil dilation could be
further investigated. To capture operator wellbeing assessments, real-time assessments should also be
combined with assessments of job satisfaction and motivation.

The second research question—What risks and possibilities are connected to assessing operator
wellbeing in real-time in industry—was investigated with a workshop and case studies. The main
risks were connected to data interpretation and personal integrity, which was identified in a similar
SWOT analysis, e.g., the use of smart wearables was connected to personal integrity and support of
the devices [8]. Regarding personal integrity, a technological solution, for an industrial application
would also need to be integrated with current systems, which need interoperability with industry
standards [74]. An Internet-centric solution, described by Li et al. [75], would be ideal for this type of
measurement. The next generation of cellular networks, 5G, promises several advantages and should
help solve many issues regarding mobility and security. The results showed that there are many
possibilities connected to physiological measurements in real-time (e.g., wearables could increase
health and safety as well as the attractiveness of the company (workshop results) [76]), which were also
supported by the case study findings. In comparison with the SWOT analysis of wearables, similar
findings in terms of opportunities were seen, (e.g., improved health and increased awareness [8]).

Although this research is exploratory, the findings are both relevant and useful for testing and
designing future industrial applications. The empirical tests of physiological data are relevant results
in themselves since today, operator wellbeing is often assessed through self-assessments (which takes
time and is connected with bias). The results presented are seen as a first step in finding a suitable way
to assess operator wellbeing in manufacturing. The data collection was carried out in a structured way
(i.e., it can be repeated) which increases the reliability of the findings [77,78]. Since triangulation was
used, the validity of the findings is increased [40,41,77].

The interpretation and combination of physiological data is an important topic for future research.
More studies are needed to investigate how real-time assessments should be designed and how
physiological data could be used in industry. Specifically, a social sustainability perspective that
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supports demography changes is needed, so that the developed smart technologies become efficient
and support the operators’ physical and cognitive abilities [79–81]. Also, to ensure that wearable
devices are implemented in a successful way, health regulations and standards are needed [8].
Future work includes further testing on how the activity bracelet can be combined with self-assessments
to assess operator emotions in industry.

5. Conclusions

This study shows that reliable data can be collected, and several data types can be combined,
to assess operator wellbeing in real-time. In this paper, EDA, BVP and HRV were identified as
promising physiological measurements for assessing operator wellbeing in an industrial context.
When implementing physiological measurements in industry, there are still many obstacles, e.g.,
standards and regulations are needed to ensure an efficient and secure implementation. Doing so
will enable more informed, aware and safe operators, e.g., in terms of improved wellbeing at work,
decreased cognitive load, increased social sustainability and increased operator performance.
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