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Abstract: Despite recent advances in prosthetics and assistive robotics in general, robust simultaneous
and proportional control of dexterous prosthetic devices remains an unsolved problem, mainly
because of inadequate sensorization. In this paper, we study the application of regression to muscle
activity, detected using a flexible tactile sensor recording muscle bulging in the forearm (tactile
myography—TMG). The sensor is made of 320 highly sensitive cells organized in an array forming
a bracelet. We propose the use of Gaussian process regression to improve the prediction of wrist,
hand and single-finger activation, using TMG, surface electromyography (sEMG; the traditional
approach in the field), and a combination of the two. We prove the effectiveness of the approach for
different levels of activations in a real-time goal-reaching experiment using tactile data. Furthermore,
we performed a batch comparison between the different forms of sensorization, using a Gaussian
process with different kernel distances.

Keywords: prosthetic hands; surface electromyography; tactile myography; multimodal regression;
Gaussian processes; assistive robotics

1. Introduction

Most of the clinically available non-invasive externally-powered hand prostheses are
controlled by identifying myoelectric signals corresponding to finger, hand and wrist activations.
Surface electromyography (sEMG) sensors allow for capturing the electrical activity of the muscles
of the forearm, which is used to estimate the user intent using machine learning methods [1].
Most research efforts in this area have focused on myoelectric prostheses, by exploring the control of
one, two or multiple degrees of freedom (DOFs) [2–4] or by exploiting hand synergies [5,6]. Even by
means of this technology, simultaneous and proportional control of multiple DOFs remains a major
challenge [7]; the problem is that even when state-of-the-art machine learning algorithms are used
to interpret sEMG data, robust (reliable) hand activity detection is not yet possible in daily living
activities with a small number of sEMG sensors.

In order to try to provide a solution to this problem, we propose the exploiting of tactile myography
(TMG) to detect hand and wrist movements as a complementary source of information to augment the
traditional sEMG sensors. TMG is high-resolution pressure information, related to the deformations
induced by muscle activity in the body [8,9]. In [10], a shape-conformable tactile bracelet was developed,
comprising 320 sensors (taxels) measuring the bulging of the muscles around the full circumference of
the forearm. A preliminary comparison between TMG and sEMG during a real-time target-reaching
experiment showed that detection using linear regression applied directly to the data of the bracelet
tends to outperform detection using sEMG [11]. In this work specifically, we propose the use of Gaussian
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process regression (GPR) [12] to improve the intent detection with TMG data and to combine information
of the two sources. The choice of GPR is motivated by the fact that only a limited number of samples
is needed to train the method. Despite that the data contains the typical type of patterns that could
be treated by deep learning strategies, the use of such an approach would require a large training
dataset to be efficient. Such a dataset would require many hours of data collection with each amputee,
which would result in a non-user-friendly system. As TMG data have a matrix form, we aim to exploit
the data structure to learn a controller from few examples. This is achieved using a tensor Gaussian
process [13,14], which is an extension of the Gaussian process to matrix data (or data organized as
higher-order arrays). We extend this method to multimodal data and perform regression using TMG
and sEMG to detect user intents. Our contribution is twofold. First, we validate the use of the Gaussian
process for TMG data with a real-time goal-reaching task involving hand and wrist movement detection.
Second, we propose a GPR approach to combine multimodal data and compare the use of sEMG, TMG
and a combination of both for hand and wrist movement detection. For both experiments, the intended
activations were associated with input signal patterns by relying on the values of an animated hand
model that the participants had to imitate. This approach could introduce some mismatches compared
to the use of a dataglove or a vision system to detect the hand pose. The aim of using this method
was to test if such a protocol could be used in future studies with amputees, for whom data cannot
be collected by directly measuring the movements of the hand. The paper is organized as follows.
Sections 2 and 3 present the sensors and regression methods used in the experiments. Section 4
describes the experimental protocol. The results are presented and discussed in Sections 5 and 6.
Section 7 concludes the paper.

2. Materials

Muscle activity was acquired using two sensor devices. The first was based on TMG, and the
process is known as high-resolution force myography (HD-FMG) or residual kinetic imaging (RKI).
This idea was introduced in the prosthetics community by Craelius, Phillips and others [8,9], who
demonstrated that this method could intensify patterns of individual finger motions. The second device
was based on sEMG, which is the standard detection method in clinical applications. The bracelets
were placed on the proximal end of the forearm, at the position with the greatest muscle bulk, as
shown in Figure 1a.

(a) (b)

Figure 1. (a) A participant equipped with the two sensor devices. The proximal device is a
shape-conformable tactile bracelet with 10 pressure sensor modules. The distal device is composed
of 10 surface electromyography (sEMG) sensors linked to a wireless acquisition device. (b) The two
sensor devices lain down, as shown from the side in contact with the skin. In the upper part, the
tactile bracelet is linked via a mini USB cable to the computer. In the lower part, the sEMG Ottobock
electrodes are linked to a data acquisition board transmitting the data via Bluetooth to the same
computer. The spacing of the sensors/modules of each bracelet could be easily changed to adapt to the
circumference of the forearm of each participant.
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2.1. Surface Electromyography Bracelet

Ten Ottobock MyoBock 13E200=50 placed on a Velcro strap, as shown in Figure 1b, were used
to gather sEMG data. The sensors were linked to the wireless acquisition device developed in [15],
which can gather up to 32 sensors by multiplexing the channels and gathering these through the 12-bit
analog-to-digital converter (ADC) of a MSP430 microcontroller that transmitted the data via Bluetooth
to the computer. In our case, only 10 sensors were used because of the limited space on the forearm.
The functional block representation of the acquisition device is shown by Figure 2. Each off-the-shelf
sEMG sensor provided amplification, rectification and filtering on-board. Such sensors are standardly
used in prosthetic sockets for myocontrol.

Figure 2. Functional block representation of the analog-to-digital converter (ADC) board for the surface
electromyography (sEMG) sensors (reproduced with permission from [15]).

2.2. Tactile Bracelet

The tactile bracelet developed in [10] was composed of 7 to 10 modules, each having 4× 8 cells,
resulting in a total of 320 input sensors. Each module was linked to the main data acquisition board
that gathered the signals with 12-bit precision via serial peripheral interface (SPI) and sent them
through a serial port via a mini USB cable (see Figure 3). On each module lay a soft, porose conductive
foam whose resistance decreased when pressure was applied. The variable cell resistance was then
converted to a voltage value and, after passing through a standard voltage divider, was sent through an
ADC to obtain the sensor output. TMG gathers a high-spatial resolution (5 mm) image of the pressure
exerted at the surface of the forearm by the volumetric changes of the muscles due to movements.
All details regarding the device can be found in [10], while further details regarding the resistive-based
approach to TMG employed in the device are available in [16].

Figure 3. The tactile bracelet rolled out with 10 modules regularly spaced on a Velcro strap.
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3. Methods

3.1. Gaussian Process Regression

Gaussian processes are a class of probabilistic models that define a posterior over functions given
a set of input and output data. A dataset of N observations {(xn, yn)}N

n=1 or {X, Y} is encoded as
a joint distribution, which is assumed to be Gaussian with some mean µ and covariance or kernel
matrix K, as follows:

p(y|X) ∼ N (µ, K) (1)

The covariance K ∈ RN×N is computed using a kernel function k as a measure of similarity so
that Kij = k(xi, xj). If two input points are similar according to the kernel, the output of the function
at those points will also be similar. The predictive distribution of a new output y∗ corresponding to
a new input x∗ can then be inferred as

p(y∗|x∗, X, y) ∼ N (µ∗, Σ∗) (2)

where

µ∗ = k(x∗, X)
(
k(X, X) + σ2 I

)−1Y , (3)

Σ∗ = k(x∗, x∗)− k(x∗, X)
(
k(X, X) + σ2 I

)−1k(X, x∗)

3.2. Gaussian Process Regression for Matrix-Valued Data

GPR can be adapted to matrix and higher-order data by adapting the kernel function
computation [13]. Given a dataset of N observations {(Xn, yn)}N

n=1, the kernel is defined as a product
of positive semi-definite factor kernels:

k(Xi, Xj) = k(Xi, Xj) k(X>i , X>j ) (4)

where X> is the transpose of X.

3.3. Gaussian Process Regression for Multimodal Data

Given a dataset of N multimodal observations {(X1
n, ..., X M

n , x1
n, ..., xP

n , yn)}N
n=1, where the inputs

are matrix and/or vector-valued data, we propose to define the kernel as the following product:

k({Xi, xi}, {Xj, xj}) =
M

∏
m=1

k(Xm
i , Xm

j )
P

∏
p=1

k(xp
i , xp

j ) (5)

3.4. Kernels

We consider factor kernels in the form of radial basis function (RBF) kernels defined as

k(xi, xj) = exp
(
−

d(xi, xj)

2β2

)
(6)

where d(xi, xj) is a distance measure and β is a scaling parameter defining the variance of the Gaussian.
We investigated different distance measures for matrix and vector-valued data, namely

• the Kullback–Leibler (KL) divergence dKL = KL
(

p(Xi|µi, Σj)‖q(Xj|µj, Σj)
)

by treating all matrix
data as a Gaussian generative model [14];
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• two different distances for covariance or symmetric positive definite (SPD) matrices,
dlogSPD = ‖ ln(Σi)− ln(Σj)‖F and dSPD = ‖Σi − Σj‖F, where Σ = X if X is a SPD matrix and
Σ = cov(X) otherwise [17];

• the Euclidean distance dEucl = ‖vec(Xi)− vec(Xj)‖ for matrices and dEucl = ‖xi − xj‖ for vectors.

4. Experiments

4.1. Participants

Nine non-amputated right-handed participants joined both experiments (two females and seven
males, aged 31± 6 with a minimum age of 24 and a maximum age of 45 years old). None of the
participants had medical issue that could interfere with the measurements. Moreover, three participants
knew the material from previous experiments. The procedure was thoroughly explained to each
participant before the trial, and it was conducted according to the World Medical Association (WMA)
Declaration of Helsinki; informed consent was obtained from all the participants in written form.

4.2. Experimental Setup

For both experiments, each participant was asked to sit comfortably in a chair in front of a monitor.
The tactile and sEMG bracelets were fitted on the upper part of their right forearm, the tactile bracelet
being further up than the sEMG sensors, as shown in Figure 1a. Ground truth was obtained by using
the values of an animated visual stimulus in the form of a 9-DOF hand model. The stimulus was
displayed on the monitor. This method relies on the assumption that the participant replicates the hand
model movements with reasonable accuracy. For a study with non-amputees, it has the drawback of
possibly reducing the precision in the prediction of the intent detection as a result of the delay required
by the participant to adapt. However, as we forecasted future studies to be conducted with amputees,
we could not collect data using precise systems such as motion capture or a position-sensing glove,
as these involve directly measuring the movement of the hand. Because ground truth data cannot be
collected on amputees, the approach described above was required to associate intended activations
with input signal patterns.

4.3. Experiment 1: Real-Time Goal-Reaching Task with Tactile Myography

This experiment aimed to bring the analyses of TMG data performed in [11,18] one step further
by applying a non-linear regression method to achieve real-time detection.

During the first part of the experiment, namely the training part, the participants were asked to
imitate the movements of an animated hand model (see Figure 4). They were presented the following
sequence of movements three times: wrist flexion, wrist extension, wrist supination, thumb flexion,
index flexion and little-finger flexion. Wrist and finger movements were executed in the air and by
pressing fingers on the table, respectively. Each stimulus followed a cycle of 14 s, consisting of a
transition phase (2 s), an activation phase (6 s), a transition phase (2 s) and a relaxing phase (4 s).
The data were captured only during the activation and rest phases, and the transition phases allowed
the participant to reach full activation and rest, respectively. Data acquired from the tactile bracelet
and the visual stimulus were synchronized by linearly interpolating the samples of each channel.
TMG data were low-pass filtered (first-order Butterworth filter with cut-off frequency of 1 Hz) to
remove high-frequency disturbances. We then trained two different regression models, namely, ridge
regression (RR) and GPR, using a RBF kernel with a Euclidean distance. The GPR parameter β was
optimized for each participant using cross-validation on training data. Each training dataset was
randomly shuffled; then, 40% was used to train each model, and the test was performed on the
remaining 60%. This procedure was repeated 10 times with a different random shuffle each time.
The obtained β values ranged between 1 and 4 depending on the participant. The final model was
trained on the whole training set with the optimized parameters.
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Figure 4. Training part of the experiment: the participant imitates the grey animated hand model.

The second part of the experiment consisted of a real-time goal-reaching task, in which the
participants controlled a second hand model. For each method, 54 tasks were administrated to the
participants (6 movements used for training at 3 activation levels, repeated 3 times). Half of the
participants began with RR, while the other half began with GPR. For each method, the participants
experienced the control of the virtual hand without constraints before beginning the goal-reaching
tasks. For each task, the first hand model would perform a movement to either one-third, two-thirds
or full activation. The participants controlled the second hand model and were asked to have it mimic
the action of the first. Performing the detection for several activation levels allowed us to determine
whether the method was adapted for proportional control. A task was considered successful if the
participant could maintain the desired movement at the desired activation level for 1.5 s. The movement
was considered as maintained as long as the difference between the first and the second hand model
was below a fixed threshold. If the task was not successfully fulfilled after 15 s, it was considered to
have failed. A visual marker (smiling or sad face) appearing on the monitor indicated the result of each
task (see Figure 5). A video of this experiment can be found in the supplementary material (Video S1).

Figure 5. Testing part of the experiment: the participant imitates the grey animated hand model and
controls the skin-colored model. The green smiling face indicates a successful task.

4.4. Experiment 2: Combination of Electromyography and Tactile Myography

With this experiment, we extended the preliminary comparison between sEMG and TMG
performed in [11] with a comparison between sEMG, TMG and both inputs considered together.
Moreover, we compared a simple linear regression method (RR) and GPR using a RBF kernel with
different measures of distance. The data collection process was similar to that for the training part of
the first experiment. The participants, wearing the tactile and sEMG bracelets, were asked to imitate
movements of an animated hand model. They were presented the same sequence of six movements
three times. The main difference to the previous experiment was that the data were recorded during
the whole cycle of each stimulus in order to obtain the whole range of activation from rest to complete
finger and wrist movement. The transition phases were extended from 2 to 5 s to allow the participants
to follow the model more precisely.

Data from the TMG, sEMG sensors and visual stimulus were synchronized by linearly
interpolating the samples of each channel. This was possible because each and every sample gathered
from the input devices, as well as the stimulus values, were accurately timestamped using the
computer’s performance counter. TMG and sEMG data were low-pass filtered (first-order Butterworth
filter with cut-off frequency of 1 Hz) to remove high-frequency disturbances. We selected the training
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dataset as data recorded at zero and full activation and the testing dataset as data in the transition
parts, corresponding to the whole range of intermediate activation levels. This choice was made in
order to evaluate the performance of the models applicable to amputees in forecasted future studies, as
they cannot provide accurate intermediate training data. For each participant, the RR and GPR models
were trained on the training data using inputs from sEMG, TMG or both. The following distance
measures were used in the RBF kernels of GPR:

• sEMG signal as input: dEucl, dSPD and dlogSPD;
• TMG signal as input: dEucl, dSPD, dlogSPD and dKL;
• sEMG and TMG signals as input: all combinations of dEucl, dSPD and dlogSPD for sEMG coupled

with dEucl, dSPD and dKL for TMG.

In the case of sEMG data, the two distances dSPD and dlogSPD were computed for data arranged in
spatial covariances with a 400 ms sliding window and an increment of 40 ms. The parameters of each
model were selected by cross-validation of the training data. The applied cross-validation process was the
same as for the first experiment. The final model was trained on the whole training set with the optimized
parameters and tested on data corresponding to the whole range of intermediate activation levels for each
participant. A video of this experiment can be found in the supplementary material (Video S2).

5. Results

5.1. Experiment 1: Real-Time Goal-Reaching Task with Tactile Myography

We compared the performance of RR and GPR (dEucl) by computing the ratio of successful tasks
(success rate—SR), the time needed to accomplish successful tasks (time to complete task—TCT) and,
in the case of unsuccessful tasks, the time spent within the goal (time in the target—TIT). We also
computed the root-mean-square error (RMSE) between the ground truth and the prediction for
both methods. Table 1 shows the average and the standard deviation of the mentioned results.
Figures 6 and 7 show evaluations in terms of SR, and in terms of TCT and TIT, respectively. The SR,
TCT and TIT for each participant are available in Appendix A (Figures A1 and A2).

Table 1. Performance comparison in term of success rate (SR), time to complete the task (TCT) and
time in the target (TIT) between Gaussian process regression (GPR) and ridge regression (RR) in
experiment 1.

Regression Method SR (%) TCT (s) TIT (s) RMSE

GPR (dEucl) 55.35%± 17.28% 4.58± 3.02 0.13± 0.46 0.58± 0.08
RR 35.60%± 12.24% 5.56± 3.46 0.23± 0.56 0.78± 0.12

Figure 6. Comparison of the success rate (SR) of Gaussian process regression (GPR) and ridge
regression (RR).
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Figure 7. Comparison of the time to complete task (TCT) and the time in the target (TIT) between
Gaussian process regression (GPR) and ridge regression (RR), in the case of successful and failed
tasks, respectively.

A paired-samples Student’s t-test showed a statistically significant difference between the SR of
the two methods (p < 0.05). The performance of GPR outperformed the performance of RR by ∼20%.
Moreover, we observe that the TCT of GPR was reduced by ∼1 s compared to RR. However, the TIT
obtained with RR was slightly shorter, although the mean TIT was small for both methods, with a high
standard deviation compared to the average value. As expected given the different SR, TCT and TIT
values, GPR outperformed RR in terms of the RMSE.

Figure 8 shows the RMSE for each finger and wrist movement that the participants had to execute
for both regression methods. We observe that GPR outperformed RR for all movements, especially for
wrist flexion and supination. Moreover, little-finger flexion was the most difficult movement to predict
for both methods. Figure 9 shows the RMSE computed for each activation level for both regression
methods. The RMSE obtained with GPR was smaller and had a smaller variance than the RMSE
obtained with RR. We observed a slight increase of the RMSE with the activation level. This may have
been due to interferences between the DOFs that are more important for a higher level of activation;
for example, flexing one finger completely tends to induce flexion of the other fingers, especially for a
complete flexion.

Figure 8. Comparison of the root-mean-square error (RMSE) between Gaussian process regression
(GPR) and ridge regression (RR) for the different movements executed by the participants.
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Figure 9. Comparison of the root-mean-square error (RMSE) between Gaussian process regression
(GPR) and ridge regression (RR) for different activation levels.

5.2. Experiment 2: Combination of Electromyography and Tactile Myography

We compared the performance of GPR with different distance measures and RR, with sEMG,
TMG or both as the input, by computing the RMSE between the ground truth and the predictions.
Tables 2 and 3 show the average and the standard deviation of the RMSE for the participants, for
unimodal (sEMG or TMG) and multimodal inputs, respectively. These results are also reported in
Figure 10.

Table 2. Performance in term of root mean square error (RMSE) of ridge regression (RR) and Gaussian
process regression (GPR) with different distances using surface electromyography (sEMG) or tactile
myography (TMG) as input for the regression model.

sEMG RMSE

GPR (dEucl) 0.69± 0.12
GPR (dlogSPD) 0.46± 0.05

GPR (dSPD) 0.58± 0.05

RR 0.47± 0.06

TMG RMSE

GPR (dEucl) 0.31± 0.05
GPR (dlogSPD) 0.31± 0.05

GPR (dSPD) 0.32± 0.06
GPR (dKL) 0.38± 0.12

RR 0.41± 0.23

Table 3. Performance in term of root mean square error (RMSE) of ridge regression (RR) and Gaussian
process regression (GPR) with different distances combining surface electromyography (sEMG) and
tactile myography (TMG) as input for the regression models.

TMG
sEMG dEucl dlogSPD dSPD

dEucl 0.29± 0.05 0.31± 0.05 0.31± 0.06
dSPD 0.31± 0.05 0.32± 0.06 0.32± 0.06
dKL 0.31± 0.06 1.15± 2.08 2.02± 5.01

RR 0.39± 0.25



Technologies 2017, 5, 64 10 of 16

(a) (b)

(c)

Figure 10. Performance of ridge regression (RR) and Gaussian process regression (GPR) with different
distances using surface electromyography (sEMG) (a), tactile myography (TMG) (b), or both (c) as
input for the regression models.

We observe that TMG outperformed sEMG for all the regression methods in the case of a
unimodal input. Paired-samples Student’s t-tests applied to errors of any combination of methods
showed statistically significant differences between sEMG and TMG (p < 0.05). Only GPR using the
distance dlogSPD improved the prediction using sEMG input compared to RR. In the case of TMG,
GPR outperformed RR for all distances; the better predictions were obtained using dlogSPD and dEucl.
However, we chose not to use dlogSPD for TMG input in the multimodal models, as its computation
time was greatly increased compared to dSPD and both distances were similar to each other. Although
GPR using dKL had the higher averaged RMSE value, it performed better than GPR using other
distances for two participants (2 and 6). The RMSE for each participant is available in Appendix A
(Figures A3 and A4 for sEMG and TMG inputs, respectively).

RR using both sEMG and TMG as the input outperformed unimodal RR. A paired-samples
t-test showed a statistically significant difference between errors obtained with TMG and with sEMG
coupled with TMG using RR (p < 0.05). However, in the case of GPR, the only combination of sEMG
and TMG improving the RMSE compared to TMG was to use dEucl for both inputs. The scores of the
other combinations of distances were similar to those obtained using only TMG. The high RMSE value
of dKL for TMG combined with dlogSPD or dSPD for sEMG was due to the large error obtained for three
participants (5, 6 and 7). The RMSE remained close to the RMSE of other distances for the rest of the
participants. The RMSE values for all the participants are available in Appendix A (Figure A5).

Figure 11 shows the RMSE for each finger and wrist movement that the participant had to execute
for GPR with different combinations of distances. We observe that all the methods had a high and low
RMSE for the same movements. Wrist supination had the best RMSE, while index flexion and wrist
extension seemed to be the most difficult to detect.
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Figure 11. Comparison of the root-mean-square error (RMSE) between Gaussian process regression
(GPR) using different kernel distances to combine surface electromyography (sEMG) and tactile
myography (TMG) as input for the different movements executed by the participants.

Table 4 shows the time to compute all the training distances between training data points and the
time to compute the distances between a new test data point and the training data points. Computation
times are shown for distances applied to sEMG and TMG data separately. These had to be added
when both sensors were used as the input. The computation of these distances caused the difference in
computation times for GPR using different kernel distances. All methods were programmed in Matlab
and were run on a 3.5 GHz six-core CPU. We observe that dEucl was the fastest to compute for both
input sensors; dlogSPD and dKL were more expensive than other distances in the case of sEMG and
TMG data as input, respectively.

Table 4. Computation (comp.) time for the different kernel distances using surface electromyography
(sEMG) or tactile myography (TMG) as input for the regression model. The time to compute training
distances is the time needed to compute the distances between all training data points. The time to
compute testing distances is the time needed to compute the distance of a new test data point with all
training data points.

sEMG Training Distances Comp. Time (s) Testing Distances Comp. Time (s)

dEucl 0.37± 0.01 0.001± 0.001
dlogSPD 34.18± 0.96 0.046± 0.001

dSPD 2.75± 0.1 0.006± 0.001

TMG Training Distances Comp. Time (s) Testing Distances Comp. Time (s)

dEucl 1.35± 0.06 0.003± 0.000
dSPD 1.94± 0.06 0.077± 0.007
dKL 49.31± 2.1 0.184± 0.010

6. Discussion

In the first experiment, we showed that GPR outperformed RR to detect hand and wrist
movements at different activation levels in terms of the SR, TCT and RMSE. GPR and RR obtained
similar TIT values. These results confirm the batch analysis presented in [18] with GPR and RR on
zero and full activation values. In comparison with the preliminary real-time experiment using RR
presented in [11], we obtained a ∼20% lower SR, a ∼1 s lower TIT and similar TCT values. The lower
SR and TIT results may have been explained by the fact that we tested individual finger movements that
are usually more difficult to detect and can be confounded with some wrist movements. Furthermore,
we often observed difficulties in discriminating index- and little-finger flexion and finger and wrist
flexion during the real-time experiment, especially using RR. This often results in the activation of
several DOFs rather than a unique DOF; for example, the index was often flexed along with the
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little finger during tasks involving only the little finger. Most failed tasks seemed to be due to this
kind of interaction, which induced a large difference between the poses of the hand model and the
controlled hand. It also induced a zero TIT for these failed tasks. Thus, the presence of many outliers
in Figure 7 is explained by the fact that only a minority of failed tasks had a non-zero TIT. Difficulties
in discriminating index- and little-finger flexion and finger and wrist flexion may also explain the
slightly higher RMSE observed for those movements.

In the second experiment, we confirmed that TMG outperformed sEMG using RR, and we
showed that the performance was also improved using GPR. The first assessment is in line with
the comparison presented in [11], and the second confirms the results from [18] and from our first
experiment. The RMSE values obtained with TMG in this experiment were slightly lower than those
of the previous experiment. This may have been explained by the fact that the second experiment
was performed in batch and because training and testing data are parts of a continuous set of data
(i.e., in the whole dataset, zero and full activation are considered as training data, while transitions are
considered as testing data).

The RMSE values we obtained showed only a small improvement for certain methods when
combining sEMG and TMG compared to TMG. The RMSE of GPR with different combinations
of distances were similar, except those for which the KL divergence was used for TMG data that
performed very poorly for some participants. When combining sEMG and TMG, the Euclidean and
SPD distances may have been preferred over the log SPD distance for sEMG, as the latter had a longer
computation time and did not seem to improve the detection compared to other distances. Moreover,
the Euclidean and SPD distances may have been preferred to the KL divergence for TMG data, as
they were more stable over the participants and required less time to be computed. Similarly to the
first experiment, the RMSE values computed for each movement suggest that wrist supination is the
easiest to detect. Overall, the comparison between TMG and combined sEMG and TMG in the second
experiment was performed in batch, and we are not aware of any such comparison in the literature.
Thus, we consider the results of this comparison as preliminary. Moreover, the choice of RBF kernels
with different distances was motivated by the fact that these are known to work well in practice and
are easy to tune. However, it would be interesting to test GPR with other kernels, for example, with
Matérn kernels. Further analysis and real-time evaluations are required and will be performed in
future work.

Two further considerations must be put forward. Firstly, we used the stimulus values as ground
truth, because of the impossibility of obtaining reliable data from amputees—a technique that was has
already been introduced multiple times in literature [19,20]. That ground truth does not exactly match
the “intent” of the subjects is an unavoidable drawback of this approach, and its solution relies on the
adaptation of the subjects themselves to the visual stimuli. This fact has not been greatly investigated
as far as we know, and it has a clear impact on the practical usability of all systems, such as that
presented in this paper. Secondly, and even more importantly, it has even been shown [21,22] that
offline accuracy hardly reflects practical usability. Therefore, a deeper investigation of the proposed
technique in a real-sized daily living setup is necessary.

7. Conclusions

We presented a real-time goal-reaching experiment using TMG data as the input, by comparing
a linear and a non-linear regression method (RR and GPR) to detect different levels of activation in
finger and wrist movements. We proposed a GP-based regression approach to combine multimodal
inputs and compared the efficiency of sEMG, TMG and a combination of the two in a batch analysis
performed on data collected during a second experiment. We then compared the use of different RBF
kernel distances for GPR applied to these data.

Results of both real-time and batch experiments showed that the information obtained from
320 sensors of the tactile bracelet could effectively be used to detect graded activation levels of finger
and wrist movements. We confirmed that TMG outperformed sEMG to achieve proportional and
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simultaneous control of several DOFs. Furthermore, the performance of TMG is increased using GPR
compared to a simple linear regression method, namely, RR.

The results of the comparison between TMG and the combination of both TMG and sEMG should
be considered as preliminary and suggest that combining both sensors could improve the detection
using RR and GPR with certain kernels. In future work, we plan to perform a comparison in the form
of real-time goal-reaching experiments and to further analyze the potential use of multimodal inputs.

Supplementary Materials: The following are available online at www.mdpi.com/2227-7080/5/4/64/s1, Video S1:
Real-time goal-reaching experiment: hand and wrist movements detection with Gaussian process regression,
Video S2: Combining surface electro- and tactile myography for hand and wrist movements detection using
Gaussian process regression. Data and Matlab codes are available online at http://www.idiap.ch/paper/mdpi/.
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Abbreviations

The following abbreviations are used in this manuscript:

sEMG Surface electromyography
TMG Tactile myography
RKI Residual kinematic imaging
ADC Analog-to-digital converter
DOF Degree of freedom
RR Ridge regression
GPR Gaussian process regression
RBF Radial basis function
Eucl Euclidean
SPD Symmetric positive definite matrix
KL Kullback–Leibler divergence
SR Success rate
TCT Time to complete task
TIT Time in the target
RMSE Root-mean-square error

Appendix A

Figure A1. Comparison of the success rate (SR) between Gaussian process regression (GPR) and ridge
regression (RR) for each participant.
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Figure A2. Comparison of the time to complete task (TCT) and the time in the target (TIT) between
Gaussian process regression (GPR) and ridge regression (RR), in the case of successful and failed tasks,
for each participant.

Figure A3. Comparison of the root-mean-square error (RMSE) between Gaussian process regression
(GPR) using different kernel distances, with surface electromyography (sEMG) as input, for
each participant.

Figure A4. Comparison of the root-mean-square error (RMSE) between Gaussian process regression
(GPR) using different kernel distances, with tactile myography (TMG) as input, for each participant.
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Figure A5. Comparison of the root-mean-square error (RMSE) between Gaussian process regression
(GPR) using different kernel distances to combine surface electromyography (sEMG) and tactile
myography (TMG) as input, for each participant.
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