
technologies

Article

Improved Parallel Legalization Schemes for Standard
Cell Placement with Obstacles †

Panagiotis Oikonomou 1,*, Antonios N. Dadaliaris 1 , Kostas Kolomvatsos 2,
Thanasis Loukopoulos 3, Athanasios Kakarountas 3 and Georgios I. Stamoulis 4

1 Computer Science, University of Thessaly, 35131 Lamia, Greece; dadaliaris@uth.gr
2 Informatics and Telecommunications, University of Athens, 106 79 Athens, Greece; kostasks@di.uoa.gr
3 Computer Science and Biomedical Informatics, University of Thessaly, 35100 Lamia, Greece;

luke@dib.uth.gr (T.L.); kakarountas@dib.uth.gr (A.K.)
4 Electrical and Computer Engineering, University of Thessaly, 382 21 Volos, Greece; georges@uth.gr
* Correspondence: paikonom@uth.gr; Tel.: +30-223-106-6713
† This paper is an extended version of our paper published in A Tetris-based Legalization Heuristic for

Standard Cell Placement with Obstacles. In Proceedings of the 7th International Conference on Modern
Circuits and Systems Technologies (MOCAST 2018), Thessaloniki, Greece, 7–9 May 2018.

Received: 9 November 2018; Accepted: 19 December 2018; Published: 22 December 2018 ����������
�������

Abstract: In standard cell placement, a circuit is given consisting of cells with a standard height,
(different widths) and the problem is to place the cells in the standard rows of a chip area so that no
overlaps occur and some target function is optimized. The process is usually split into at least two
phases. In a first pass, a global placement algorithm distributes the cells across the circuit area, while
in the second step, a legalization algorithm aligns the cells to the standard rows of the power grid and
alleviates any overlaps. While a few legalization schemes have been proposed in the past for the basic
problem formulation, few obstacle-aware extensions exist. Furthermore, they usually provide extreme
trade-offs between time performance and optimization efficiency. In this paper, we focus on the
legalization step, in the presence of pre-allocated modules acting as obstacles. We extend two known
algorithmic approaches, namely Tetris and Abacus, so that they become obstacle-aware. Furthermore,
we propose a parallelization scheme to tackle the computational complexity. The experiments
illustrate that the proposed parallelization method achieves a good scalability, while it also efficiently
prunes the search space resulting in a superlinear speedup. Furthermore, this time performance comes
at only a small cost (sometimes even improvement) concerning the typical optimization metrics.

Keywords: standard cell placement; cell legalization; obstacles; Abacus; Tetris; parallelization.

1. Introduction

In the cell placement problem, an input circuit must be placed over a chip area so that the circuit’s
cells do not overlap, and one or more target functions are optimized. Typical optimization targets
considered include the following: total wirelength, routability, cell congestion, and so on. A common
problem statement involves cells of a standard height (different width) that must be placed on a
chip area that is split into standard height rows (capturing power grid lines). The problem is usually
tackled in a step-wise fashion. At a first iteration, a global placement algorithm spreads the cells over
the chip area, so that the area coverage and targeted optimization goals are achieved. The resulting
cell positions might be unaligned to the chip standard rows. Thus, in a second step, a legalization
algorithm is responsible for achieving cell–row alignment and alleviating all cell overlaps. Assuming an
efficient global placement, the legalization step must be performed with as few changes to the original
assignment as possible. Thus, the aggregated cell distance between the global and final placement
(cell displacement) is usually considered as the performance metric for legalization algorithms.

Technologies 2019, 7, 3; doi:10.3390/technologies7010003 www.mdpi.com/journal/technologies

http://www.mdpi.com/journal/technologies
http://www.mdpi.com
https://orcid.org/0000-0003-0777-6867
http://www.mdpi.com/2227-7080/7/1/3?type=check_update&version=1
http://dx.doi.org/10.3390/technologies7010003
http://www.mdpi.com/journal/technologies

Technologies 2019, 7, 3 2 of 13

While extnsive literature exists on legalization schemes for standard cell placement (discussed in
Section 2), the case where obstacles exist in the chip area has received less attention. Such obstacles
might be the result of preplaced modules in the chip area at fixed positions, and may introduce
additional constraints whereby cells cannot overlap with the obstacle areas. In this paper, we turn our
attention to the legalization step in standard cell placement with obstacles. In particular, we propose
and evaluate extensions for two well-known legalization algorithms, namely Tetris [1] and Abacus [2],
which were originally designed to work for the case where no obstacles exist. The aforementioned
algorithms account for different trade-offs between running time and optimization efficiency, with
Abacus producing a better solution quality, but at a significantly higher computational overhead.
The targeted extensions aim at making the algorithms obstacle-aware. Furthermore, in order to tackle
the high running time of Abacus, we propose and evaluate a parallelization approach based on
multi-threaded execution, whereby each thread handles a non-overlapping chip area partition. It turns
out that the proposed parallelization method not only manages to reduce the running time of Abacus
(Tetris too), but also does so without affecting the quality of the final placement (even improves it
in some scenarios, particularly in the Tetris case). The initial results for the Tetris algorithm were
presented in the literature [3]. Here, we extend and consolidate our previous work so as to account
for the obstacle awareness and parallelization of the Abacus algorithm, which consists our primary
contribution. Through experiments based on ibm circuits, the merits of our contributions are illustrated.
Specifically, compared to the baseline Abacus algorithm, the parallel obstacle aware algorithm we
propose (poAbacus) achieves a similar quality, but at a speedup that can reach 66 x with 12 cores.

The rest of the paper is organized as follows. Section 2 provides an overview of the research on
the cell placement problem, as well as the legalization methods. Section 3 describes the proposed
algorithms for obstacle aware legalization, while Section 4 presents the experimental results. Finally,
Section 5 discusses the findings from the experiments and concludes the paper.

2. Related Work

Placement, routing, and the posterior layout generation of an integrated circuit, whether the
design at hand is purely analog, strictly digital, or mixed, has been at the forefront of physical design
research. This effort focuses on digital standard cell designs and their placement modelled in a 2D
plain. It should be noted that complex gates have been proposed as a valuable alternative in terms of
area and delay [4]. From a transistor-layer point of view, multiple design frameworks were proposed
in order to achieve area efficient layouts of radiation hardened devices [5], or highly dense integrated
circuits (ICs) [6].

Concerning standard cell placement legalization, the Tetris algorithm [1] first orders cells along
their x-axis. Then, starting with the cell of the minimum x-axis coordinate, it places each cell to the
first closest, leftmost available position. To do this, all of the possible candidate row positions are
checked and the final decision is taken in a greedy manner. Tetris is a particularly fast method, albeit
the final placement quality that is achieved is not on par with its counterparts. Efforts to improve the
basic scheme include, for instance [7], where various heuristics were evaluated aiming at restricting
the allowable displacement across x, y, or both axes. The authors also evaluated various heuristic
combinations involving leftward and rightward cell movement. Extensions of the basic Tetris scheme
to account for obstacles are presented in the literature [3]. The core idea is to split a standard row
into sub-rows, defined by obstacle boundaries. The algorithm then scans all of the sub-row candidate
positions in order to identify the final cell placement. In the literature [8], another obstacle-aware
alteration was introduced for Tetris, whereby the cell selection order depended on the cell width
instead of the x-axis position.

The Abacus legalizer proposed in the literature [2] works in a different manner compared with
Tetris. Abacus places each cell into its optimal row position, starting from the cell of the minimum
x-axis coordinate. If during the process a cell overlap occurs, a cluster of cells is formed and the
whole cluster’s best position is calculated through quadratic optimization. Both Tetris and Abacus

Technologies 2019, 7, 3 3 of 13

were adopted by cell placement suites. Kraftwerk2 [9] uses a Tetris-like procedure for its legalization
phase, while NTUplace3 [10] utilizes a similar scheme both as a look-ahead legalization approach
during the global placement step, and as a final legalizer. Abacus is used in the density-aware detailed
placement flow in the literature [11] in order to legalize the placement instances produced after each
cell swap is performed by the detailed placer. In the literature [12], a parallel version of the Abacus
algorithm is implemented and evaluated. Parallelization was achieved by spawning multiple threads
in order to evaluate candidate row positions. The achieved speedup with four cores was shown to
be roughly 2.5. Here, we follow an alternative approach, inspired by the authors of [13], for the case
where no obstacles exist. The approach was based on vertically dividing the chip area into partitions
to be treated by different threads. In this paper, we evaluate a variety of partitioning options. At the
same time, we factor the presence of obstacles in the partitioning formation process.

The authors of [14] pinpoint the deficiencies of Abacus, and present modifications and extensions
of its functionality in order to handle mixed-height standard cell designs. In the literature [15],
the authors tackle placement induced problems, such as pin shorts and pin access, by adopting a
look-ahead legalization procedure that ensures the existence of sufficient white space among cells.
Abax [16] is another legalizer contrived from Abacus. While it retains the main functionality of Abacus,
Abax adds hard-macro/blockage handling capabilities and look-ahead legalization during the global
placement step, tailored to suit the minimization of the mean displacement function.

Legalization in FastPlace 3.0 [17] has two distinct steps, one concerning macro-blocks and another
concerning standard cells. In the first step, the overlaps among the macro-blocks are resolved by
repositioning them to their nearest legal position. In the second step, the remaining standard cells
are assigned to a legal position in specific bins, based on the wirelength reduction caused by their
relocation and on the density target of the bin. A Tetris-like legalization scheme was used by ePlace [18]
and its subsequent extensions for mixed-size designs (e.g., [19,20]).

Dragon2005 [21] performs min-cut multi-way partitioning using hMetis [22] to spread the cells
in the chip area. In the case of a macro-free design, the cells are placed one after the other inside a
row, starting from the left edge, and proceeding to the right. When the design contains macro-blocks,
placement is governed by a mutated cost function that takes into account the legality of each movement
and the solution quality deterioration. SimPL [23] performs the approximate legalization during its
global placement phase. A uniform grid is used in order to identify the locations that present the
highest amount of overlaps. Subsequently, the cells associated with the overlaps are re-positioned
while preserving the relative order.

The legalizer presented in the literature [24] is an integral part of BonnPlace [25]. As a first step,
cell assignment to a set of predefined bins is performed, which might lead to overflows concerning cell
number/density. In order to eradicate this effect and achieve balance, a cell flow is computed between
bins. The main characteristic of the aforementioned procedure is that the flow augmentations that
prevail and are subsequently realized, are only those that lead to feasible solutions.

In the literature [26], the legalization procedure is comprised of three stages. In the first stage,
cells are aligned within sites, following a width descending order. Subsequently, an optimal position
for each illegally placed cell (in a pin amount descending order) is identified within a specific search
window. Finally, the cells are ordered based on their center coordinate, and the white space of each
row is distributed accordingly in order to remove the remaining overlaps. The detailed placer in the
literature [27] incorporates a collection of steps established in previous legalizers. More specifically,
a cyclic flow is presented comprised of cell swapping, cell re-ordering, and cell bloating and refinement.
The approach in the literature [28] targets designs containing multi-row height cells subject to additional
hard constraints in the form of fences. The cells are legalized sequentially by checking for an optimal
position on a predefined window around their global placement generated positions. Detailed
placement is also performed by two separate network-flow-based optimizations concerning total
displacement and cell ordering. Eh?Legalizer [29] approaches the legalization procedure as a network
flow problem as well, but also abides by the layout-related technology constraints such as fence regions

Technologies 2019, 7, 3 4 of 13

and cell edge spacing rules. This method leads to minimized maximum and average cell perturbation
in the competitive runtime. The first is achieved by incorporating an additional maximum movement
constraint during the search for feasible paths and the cell movement along them, while the second
goal is achieved by pinpointing the candidate paths where moving cells deflate overflowed bins. In the
literature [30], throughout the iterations of the algorithm, the legalization problem is dynamically
formulated in order to encompass an additional constraint in the form of a history file, keeping track
of the cell movements that are highly probable to cause illegal instances.

In the literature [31], a mechanism for legalization utilizing k-d tree data structures is proposed.
A modified k-d tree construction algorithm is applied, which leads to the formulation of data
independent (and thus algorithmic agnostic) partitions. Subsequently, the overall legalization
procedure can be accelerated, because of the reduced problem size and the parallel execution of any
legalization algorithm in each of the partitions. Recent advancements in the design and implementation
of standard cells were depicted in the development of an open source cell library, which contains
several versions of different routing tracks [32] and an effective through silicon via (TSV) planning
and repair framework [33]. These provide additional insight into the posing challenges of performing
routing-aware placement in 3D ICs by modifying existing 2D algorithms. Effective variations of the
established routing algorithms, such as the maze router, can be found in the literature [34]. Finally, the
authors of [35] and [36] describe design techniques that can be extended to post-placement designs,
and ensure their robustness to PVT (process voltage temperature) variations.

Overall, although much work exists with problem statements that do not contain obstacles, few
of the aforementioned works deal with obstacles. Furthermore, time performance is typically not in
the cornerstone of the proposed schemes. Its importance, however, can not be diminished, as practical
problem instances can easily scale to the order of hundrends of millions of cells. Such complexity
can only be tackled through efficient parallelism. As Abacus was shown in the relevant literature
to achieve a very good performance at the expense of high computational time for the case where
no obstacles exist, we based the contributions of this paper on proposing a parallelization approach
together with the extensions necessary to handle obstacles. We term the resulting algorithm poAbacus
(parallel obstacle-aware Abacus). For comparison reasons, we also present poTetris, which follows a
similar design logic, but is based on the Tetris algorithm.

3. Obstacle-Aware Parallel Legalization Algorithms

In this section, we illustrate poAbacus and poTetris. Pseudocode 1 describes the basic Abacus
algorithm that operates without considering obstacles. The cells are first ordered according to the
x-coordinate (increasing fashion) (line 1). The algorithm then places the cells in an iterative manner,
starting with the one of the minimum x-coordinate value (lines 2–13). In doing so, the best position
at each candidate row is calculated (lines 3–11), and the best overall position (displacement wise,
Manhattan distance) is selected among all of the possible candidates (line 9). The previous steps
described for Abacus also hold true for Tetris. However, the algorithms differ in the manner they
treat the case where an overlap might occur with a previously placed cell. Tetris simply places the
overlapping cell at the first leftmost eligible position. On the other hand, Abacus calls for a function
presented in Pseudocode 2. The function merges the overlapping cells into a cell cluster (line 10). It then
computes the best cluster position (line 11). Obviously, the process might involve moving the already
placed cells, thus, increasing their relevant (previously optimal) displacement. Thus, in order to identify
the best possible total displacement change (in the whole cell cluster), the algorithm formulates the
problem in a quadratic optimization fashion, and solves it using a dynamic programming method. This
is done by the collapseClusters function (line 11), the details of which are described in the literature [2].

Technologies 2019, 7, 3 5 of 13

Pseudocode 1: Abacus algorithm

input: circuit cells C, circuit rows R
output: C cells aligned in R rows without overlaps

1 sort C based on x-coordinate
2 foreach cell ci ∈ C do
3 bestCost := INF
4 bestRow := −1
5 foreach row rj ∈ R do

6 cost := insertCell
(

ci, rj, TRIAL
)

7 if cost < bestCost then
8 bestCost := cost
9 bestRow := rj
10 end if
11 end for
12 insertCell(ci, bestRow, NOTRIAL)
13 end for

Pseudocode 2: Function insertCell()

input: cell ci, row rj, mode
output: Manhattan distance of ci’s displacement

1 oldPlacement: = existing placement before Ci is inserted

2 if area(ci) + occupiedArea
(

rj

)
> area(rj) then

3 cost: = INF
4 end if
5 vertically align ci into rj //x-coordinate does not change
6 if ci does not overlap with any cluster clu then
7 create new cluster clnew containing ci
8 cost: = displacement of ci
9 else
10 add ci into clu with which it overlaps
12 cost: = collapseClusters(clu)
12 end if
13 if mode = TRIAL then
14 restore oldPlacement
15 end if
16 return cost

Both Tetris and Abacus are extended to account for obstacles in the following manner. We consider
that each obstacle effectively splits all of the intersecting rows into sub-rows (before and after obstacle
boundaries). Consider, for instance, the example of Figure 1, which shows an example placement
scenario whereby the chip area is split into six standard rows; nine obstacles exist shown as grey areas;
and the final position of nine cells A, B, . . . , and I must be defined. poTetris and poAbacus will operate
by considering the induced sub-rows, whereby the initial rows are split because of the presence of the
obstacles. In the example, three sub-rows exist in rows 1 and 5, while each of the rows 2, 3, 4, and 6 are
split into two sub-rows. The total sub-rows induced by the obstaces in the example is 14, and they
consist candidates for cell placement.

Technologies 2019, 7, 3 6 of 13
Technologies 2018, 6, x FOR PEER REVIEW 6 of 14

Figure 1. Example global placement

Continuing the example of Figure 1, in Figure 2(a), the final placement achieved by poTetris is
shown, and in Figure 2(b), the one by poAbacus is shown. As it can be observed, the two algorithms
lead to almost completely different results, with a closer look revealing that poAbacus results in a
much smaller displacement compared with poTetris. To better understand why, consider, for
instance, the case of E and G’s placement. In poTetris, these cells will be placed on different rows to
the one they overlap most (row four). In poAbacus, on the other hand, after E is first placed at row
four, G’s placement will result in forming a cluster with E and G. The algorithm then identifies the
best position of the cluster as a whole.

(a) poTetris placement (b) poAbacus placement

Figure 2. Obstacle-aware placement examples

Depending on the number of obstacles and their height, the number of candidate positions both
algorithms should check might drastically increase as multiple sub-rows are introduced. This might
further hinder the algorithmic performance time wise, with the effects being more prominent in the
case of poAbacus. For this reason, we tackle algorithmic parallelization not from the rather
straightforward standpoint of spawning multiple threads to calculate each sub-row cell candidate
position, but from the perspective of reducing the effective search space that is used for each cell
placement decision. In Pseudocode 3, the proposed poAbacus is described. The algorithm is based
on splitting the chip area into independent tile partitions (lines 2–14), and restricting the search space

Figure 1. Example global placement

Continuing the example of Figure 1, in Figure 2a, the final placement achieved by poTetris is
shown, and in Figure 2b, the one by poAbacus is shown. As it can be observed, the two algorithms
lead to almost completely different results, with a closer look revealing that poAbacus results in a
much smaller displacement compared with poTetris. To better understand why, consider, for instance,
the case of E and G’s placement. In poTetris, these cells will be placed on different rows to the one
they overlap most (row four). In poAbacus, on the other hand, after E is first placed at row four, G’s
placement will result in forming a cluster with E and G. The algorithm then identifies the best position
of the cluster as a whole.

Technologies 2018, 6, x FOR PEER REVIEW 6 of 14

Figure 1. Example global placement

Continuing the example of Figure 1, in Figure 2(a), the final placement achieved by poTetris is
shown, and in Figure 2(b), the one by poAbacus is shown. As it can be observed, the two algorithms
lead to almost completely different results, with a closer look revealing that poAbacus results in a
much smaller displacement compared with poTetris. To better understand why, consider, for
instance, the case of E and G’s placement. In poTetris, these cells will be placed on different rows to
the one they overlap most (row four). In poAbacus, on the other hand, after E is first placed at row
four, G’s placement will result in forming a cluster with E and G. The algorithm then identifies the
best position of the cluster as a whole.

(a) poTetris placement (b) poAbacus placement

Figure 2. Obstacle-aware placement examples

Depending on the number of obstacles and their height, the number of candidate positions both
algorithms should check might drastically increase as multiple sub-rows are introduced. This might
further hinder the algorithmic performance time wise, with the effects being more prominent in the
case of poAbacus. For this reason, we tackle algorithmic parallelization not from the rather
straightforward standpoint of spawning multiple threads to calculate each sub-row cell candidate
position, but from the perspective of reducing the effective search space that is used for each cell
placement decision. In Pseudocode 3, the proposed poAbacus is described. The algorithm is based
on splitting the chip area into independent tile partitions (lines 2–14), and restricting the search space

Figure 2. Obstacle-aware placement examples

Depending on the number of obstacles and their height, the number of candidate positions both
algorithms should check might drastically increase as multiple sub-rows are introduced. This might
further hinder the algorithmic performance time wise, with the effects being more prominent in the case
of poAbacus. For this reason, we tackle algorithmic parallelization not from the rather straightforward
standpoint of spawning multiple threads to calculate each sub-row cell candidate position, but from
the perspective of reducing the effective search space that is used for each cell placement decision.
In Pseudocode 3, the proposed poAbacus is described. The algorithm is based on splitting the chip
area into independent tile partitions (lines 2–14), and restricting the search space for each cell to the
sub-rows contained in the tile it belongs to (line 18). On top, the cells of each tile are assigned to a
separate thread in order to further the time gains with parallelization (line 15).

Technologies 2019, 7, 3 7 of 13

Pseudocode 3: poAbacus algorithm

input: circuit cells C, circuit rows R, number of horizontal partitions N, number of vertical partitions M
output: C cells aligned in R rows without overlaps

1 Crem := ∅ //stores the leftover cells
2 b = |R|/N

3
split chip area into N-1 horizontal partitions of b rows each //the Nth partition will have the

//remaining rows: |R| − (N − 1)b
4 foreach horizontal partition h do
5 avgFreeSpace: = (area(h) − obstacleArea(h))/M
6 xoffset: = chipAreaWidth/s //s is a tunable parameter
7 for v: = 1 to M-1 do
8 setTileBoundary(Thv, getTileBoundary(Th(v−1))+xoffset) // getTileBoundary(Th0) = 0
9 while freeArea(Thv) < avgFreeSpace do
10 setTileBoundary(Thv, getTileBoundary(Thv)+xoffset)
11 end while
12 end for
13 setTileBoundary(ThM, chipAreaWidth)
14 end for
15 par-foreach Thv do //each tile is assigned to a different thread
16 Chv: = {all cells contained in Thv}
17 Rhv: = {all sub-rows contained in Thv}
18 Abacus (Chv, Rhv)

19 foreach (ci, rj) : ci ∈ Chv ∧ rj ∈ Rhv ∧ ciis placed atrj do
20 if ci exceeds rj then
21 down(mutex)
22 Crem∪ = {ci}
23 up(mutex)
24 end if
25 end for
26 end par-for
27 barrier
28 if Crem 6= ∅ then
29 Abacus(Crem, Rsub) //Rsub is the set of subrows existing in the whole chip area
30 end if

In order to achieve tile independence (necessary for efficient parallelization), it is imperative that
the cells of a tile must be placed within the tile, and not be allowed to overlap with neighboring tiles.
Thus, it is possible that some cells can be left unplaced, as no suitable position might exist within their
assigned tile (lines 20–24). Both in poTetris and poAbacus, after all of the tile threads terminate (line 27),
any remaining cells are placed during a second phase, without considering tile boundary restrictions
(line 29). This necessary second step might be a source of performance degradation, as most likely,
the remaining cells will be placed in distant positions. In order to minimize the negative effects, the
tile splitting process must aim at distributing the obstacle area judiciously among the tiles. This is
achieved by first creating an N ×M partition into roughly equally sized horizontal zones (line 2–3),
and subsequently defining the vertical tile boundaries (lines 4–14). For this reason, the average free
space per tile is calculated (line 5), and the x-axis is split into s candidate cutting points (line 6). In the
experiments, s = 1,000. The candidate cutting points are scanned each time, defining tile vertical
boundaries so that the free space per tile is close to the expected average (lines 7–14). The last tile
within a horizontal zone is defined by the right chip area boundary (line 13).

Figure 3 continues the example of Figure 1, with two different partitioning scenarios for poTetris
and poAbacus, respectively. It also points out the different impact that horizontal and vertical cuts
have on algorithms’ performance. In Figure 3a, cells A, B, C, and D belong to the left tile, while the rest

Technologies 2019, 7, 3 8 of 13

belong to the right. The introduction of a vertical cut forces poTetris to place E at its optimal position,
whereas without it, the candidate position at the 4th row would have been just after the obstacle of the
4th row (for a larger displacement). In Figure 3b, the cells are also divided into two disjoint sets based
on where their left-down x-coordinate belongs. Notice, that the final placement achieved by poAbacus
is identical to the one of Figure 2b. However, the complexity of the individual cell placement decisions
is almost halved, as seven sub-rows must be evaluated (the ones belonging to the relevant tile) instead
of the 14 that exist in the total chip area.

Technologies 2018, 6, x FOR PEER REVIEW 8 of 14

boundaries so that the free space per tile is close to the expected average (lines 7–14). The last tile
within a horizontal zone is defined by the right chip area boundary (line 13).

Figure 3 continues the example of Figure 1, with two different partitioning scenarios for poTetris
and poAbacus, respectively. It also points out the different impact that horizontal and vertical cuts
have on algorithms’ performance. In Figure 3 (a), cells A, B, C, and D belong to the left tile, while the
rest belong to the right. The introduction of a vertical cut forces poTetris to place E at its optimal
position, whereas without it, the candidate position at the 4th row would have been just after the
obstacle of the 4th row (for a larger displacement). In Figure 3 (b), the cells are also divided into two
disjoint sets based on where their left-down x-coordinate belongs. Notice, that the final placement
achieved by poAbacus is identical to the one of Figure 2 (b). However, the complexity of the
individual cell placement decisions is almost halved, as seven sub-rows must be evaluated (the ones
belonging to the relevant tile) instead of the 14 that exist in the total chip area.

(a) poTetris placement (1 x 2 partition) (b) poAbacus placement (2 x 1 partition)

Figure 3. Obstacle-aware placement with tiles

4. Experiments

4.1. Experimental setup

Experiments were carried out using the ibm01-13 benchmark circuits provided by the authors
of [37]. As these circuits have no obstacles, random obstacles were introduced so that they
cumulatively cover a specific percentage of the free space (calculated by subtracting the total area of
cells from the chip area). It should be noted that the introduction of the random obstacles rather
accounts for the worst case algorithmic wise, notably for poAbacus. This is due to the fact that in real
life designs, obstacles are independent rectangular areas with some spacing in between them. On the
other hand, random obstacles may lead to non-rectangularly shaped continuous obstacle areas,
which make tile partitioning harder. Different scenarios concerning free space were evaluated per
circuit. For each scenario, 10 runs were conducted and the results were averaged. Performance
evaluation was done across the following three metrics: net wirelength, displacement, and running
time. Displacement was measured as the Manhattan distance between the starting and end cell
position. Net wirelength was measured using the half perimeter wirelength (HPWL) of the minimum
bounding rectangle, which contains all of the cells of a net. NTUplace3 [10] was used as a global
placer to obtain the starting cell positions. These positions formed the input upon which the proposed
legalization methods were evaluated. Multithreaded parallelism was implemented using OpenMP.
Experiments were conducted on a Linux server with two Intel Xeon E5-2630 processors (2.3 GHz)
using hyper threading (12 physical cores total).

4.2. Standalone Tetris and Abacus evaluation

Figure 3. Obstacle-aware placement with tiles

4. Experiments

4.1. Experimental Setup

Experiments were carried out using the ibm01-13 benchmark circuits provided by the authors
of [37]. As these circuits have no obstacles, random obstacles were introduced so that they cumulatively
cover a specific percentage of the free space (calculated by subtracting the total area of cells from the
chip area). It should be noted that the introduction of the random obstacles rather accounts for the
worst case algorithmic wise, notably for poAbacus. This is due to the fact that in real life designs,
obstacles are independent rectangular areas with some spacing in between them. On the other hand,
random obstacles may lead to non-rectangularly shaped continuous obstacle areas, which make tile
partitioning harder. Different scenarios concerning free space were evaluated per circuit. For each
scenario, 10 runs were conducted and the results were averaged. Performance evaluation was done
across the following three metrics: net wirelength, displacement, and running time. Displacement was
measured as the Manhattan distance between the starting and end cell position. Net wirelength was
measured using the half perimeter wirelength (HPWL) of the minimum bounding rectangle, which
contains all of the cells of a net. NTUplace3 [10] was used as a global placer to obtain the starting
cell positions. These positions formed the input upon which the proposed legalization methods were
evaluated. Multithreaded parallelism was implemented using OpenMP. Experiments were conducted
on a Linux server with two Intel Xeon E5-2630 processors (2.3 GHz) using hyper threading (12 physical
cores total).

4.2. Standalone Tetris and Abacus Evaluation

In a first experiment, we evaluated the performance of the standalone Tetris and Abacus. Figure 4
shows the resulting performance on the three metrics, for the case where 10% of the free space exists.
It can be clearly seen that Abacus outperforms Tetris by even an order of magnitude (in certain cases) in
both HPWL and displacement terms. On the other hand, as shown in Figure 4c, Abacus’ performance

Technologies 2019, 7, 3 9 of 13

comes at the cost of a particularly higher running time, by three orders of magnitude in most cases.
These first results undoubtedly illustrate the necessity of introducing faster approaches compared to
the baseline Abacus algorithm.

Technologies 2018, 6, x FOR PEER REVIEW 9 of 14

In a first experiment, we evaluated the performance of the standalone Tetris and Abacus. Figure
4 shows the resulting performance on the three metrics, for the case where 10% of the free space
exists. It can be clearly seen that Abacus outperforms Tetris by even an order of magnitude (in certain
cases) in both HPWL and displacement terms. On the other hand, as shown in Figure 4(c), Abacus’
performance comes at the cost of a particularly higher running time, by three orders of magnitude in
most cases. These first results undoubtedly illustrate the necessity of introducing faster approaches
compared to the baseline Abacus algorithm.

(a) HPWL performance (b) Displacement performance

(c) Time performance

Figure 4. Performance comparison standalone Tetris and Abacus. HPWL—half perimeter wirelength.

4.3. Evaluation of poTetris and poAbacus

Next, we proceeded with evaluating the performance of poTetris and poAbacus. Figure 5
compiles the relevant performance degradation in HPWL and the displacement terms of poTetris
and poAbacus as a percentage of the related Tetris and Abacus performance. Specifically, for
poTetris, the degradation percentage is given by 100((perf(poTetris)-perf(Tetris)/perf(Tetris)), and
similarly for poAbacus. Each point in the plots depict the average percentage results for the 13
benchmark circuits, assuming 20% free space. Figure 5 plots the performance of the algorithms for
four different tile partitioning cases and five different number of cuts.

Figure 4. Performance comparison standalone Tetris and Abacus. HPWL—half perimeter wirelength.

4.3. Evaluation of poTetris and poAbacus

Next, we proceeded with evaluating the performance of poTetris and poAbacus. Figure 5 compiles
the relevant performance degradation in HPWL and the displacement terms of poTetris and poAbacus
as a percentage of the related Tetris and Abacus performance. Specifically, for poTetris, the degradation
percentage is given by 100((perf (poTetris)-perf (Tetris)/perf (Tetris)), and similarly for poAbacus. Each
point in the plots depict the average percentage results for the 13 benchmark circuits, assuming 20%
free space. Figure 5 plots the performance of the algorithms for four different tile partitioning cases
and five different number of cuts.

As it can be inferred by Figure 5a,c, poTetris outperforms Tetris in both HPWL and displacement
terms (negative degradation means an improvement). In particular, the gains in displacement terms
reach 80% when N vertical cuts are introduced. By comparison, the effects of the vertical partitioning
appear to be the opposite in poAbacus, whereby introducing more horizontal cuts (N × 1 and N × 2
plots) apparently leads to z better solution quality compared with the other options. In fact, Figure 5d
depicts a substantial improvement in the displacement terms, which can reach more than 20%. These
results can be explained for the case of poTetris, as vertical cuts reduce the allowable displacement
in the x-axis. On the other hand, poAbacus defines the optimal cluster position within each sub-row.
Therefore, restricting the allowable cluster movements along the x-axis (as vertical cuts do) will likely
hinder performance, whereas restricting the y-axis will not do so and might in fact prove beneficial in
certain scenarios.

Figure 6 illustrates the time improvement of poTetris and poAbacus over their simple counterparts.
Both algorithms achieve a reduced running time, with results for poAbacus being particularly
impressive, demonstrating a reduction in running time that reaches 95%.

Technologies 2019, 7, 3 10 of 13

Technologies 2018, 6, x FOR PEER REVIEW 10 of 14

(a) poTetris, HPWL performance (b) poAbacus, HPWL performance

(c) poTetris, displacement performance

(d) poAbacus, displacement

performance

Figure 5. Solution quality performance comparison for different partitioning alternatives.

As it can be inferred by Figure 5 (a) and (c), poTetris outperforms Tetris in both HPWL and
displacement terms (negative degradation means an improvement). In particular, the gains in
displacement terms reach 80% when N vertical cuts are introduced. By comparison, the effects of the
vertical partitioning appear to be the opposite in poAbacus, whereby introducing more horizontal
cuts (N × 1 and N × 2 plots) apparently leads to z better solution quality compared with the other
options. In fact, Figure 5 (d) depicts a substantial improvement in the displacement terms, which can
reach more than 20%. These results can be explained for the case of poTetris, as vertical cuts reduce
the allowable displacement in the x-axis. On the other hand, poAbacus defines the optimal cluster
position within each sub-row. Therefore, restricting the allowable cluster movements along the x-axis
(as vertical cuts do) will likely hinder performance, whereas restricting the y-axis will not do so and
might in fact prove beneficial in certain scenarios.

Figure 6 illustrates the time improvement of poTetris and poAbacus over their simple
counterparts. Both algorithms achieve a reduced running time, with results for poAbacus being
particularly impressive, demonstrating a reduction in running time that reaches 95%.

(a) poTetris, time performance

(b) poAbacus, time performance

Figure 6. Time comparison for different partition alternatives.

Figure 5. Solution quality performance comparison for different partitioning alternatives.

Technologies 2018, 6, x FOR PEER REVIEW 10 of 14

(a) poTetris, HPWL performance (b) poAbacus, HPWL performance

(c) poTetris, displacement performance

(d) poAbacus, displacement

performance

Figure 5. Solution quality performance comparison for different partitioning alternatives.

As it can be inferred by Figure 5 (a) and (c), poTetris outperforms Tetris in both HPWL and
displacement terms (negative degradation means an improvement). In particular, the gains in
displacement terms reach 80% when N vertical cuts are introduced. By comparison, the effects of the
vertical partitioning appear to be the opposite in poAbacus, whereby introducing more horizontal
cuts (N × 1 and N × 2 plots) apparently leads to z better solution quality compared with the other
options. In fact, Figure 5 (d) depicts a substantial improvement in the displacement terms, which can
reach more than 20%. These results can be explained for the case of poTetris, as vertical cuts reduce
the allowable displacement in the x-axis. On the other hand, poAbacus defines the optimal cluster
position within each sub-row. Therefore, restricting the allowable cluster movements along the x-axis
(as vertical cuts do) will likely hinder performance, whereas restricting the y-axis will not do so and
might in fact prove beneficial in certain scenarios.

Figure 6 illustrates the time improvement of poTetris and poAbacus over their simple
counterparts. Both algorithms achieve a reduced running time, with results for poAbacus being
particularly impressive, demonstrating a reduction in running time that reaches 95%.

(a) poTetris, time performance

(b) poAbacus, time performance

Figure 6. Time comparison for different partition alternatives. Figure 6. Time comparison for different partition alternatives.

Next, we evaluate the solution quality of the algorithms for different free space percentages.
Figure 7 shows the results. poTetris achieves an improved performance over Tetris, with the gains in the
displacement being constantly around 80%. In poAbacus, the displacement gains vary between ±20%,
depending on the particular case considered, while HPWL remains unaffected in the 12 × 1 case.

Having established that in terms of solution quality, poAbacus has a comparable performance to
Abacus and might even exhibit improvement, depending on the evaluation scenario, we proceed by
plotting the speedup trends (time(Abacus)/time(poAbacus)) for the N × 1 partitioning as the number
of threads increases. Results presented in Figure 8 demonstrate an impressive superlinear behavior,
whereby the achievable speedup with 12 threads reaches 66. This is a strong testament on the merits of
our approach, which combines multithreaded parallelism with search space pruning.

Technologies 2019, 7, 3 11 of 13

Technologies 2018, 6, x FOR PEER REVIEW 11 of 14

Next, we evaluate the solution quality of the algorithms for different free space percentages.
Figure 7 shows the results. poTetris achieves an improved performance over Tetris, with the gains in
the displacement being constantly around 80%. In poAbacus, the displacement gains vary between
±20%, depending on the particular case considered, while HPWL remains unaffected in the 12 × 1
case.

(a) HPWL performance

(b) Displacement performance

Figure 7. Solution quality performance comparison for different free space percentages.

Figure 8. Speedup of poAbacus over Abacus.

Having established that in terms of solution quality, poAbacus has a comparable performance
to Abacus and might even exhibit improvement, depending on the evaluation scenario, we proceed
by plotting the speedup trends (time(Abacus)/time(poAbacus)) for the N × 1 partitioning as the
number of threads increases. Results presented in Figure 8 demonstrate an impressive superlinear
behavior, whereby the achievable speedup with 12 threads reaches 66. This is a strong testament on
the merits of our approach, which combines multithreaded parallelism with search space pruning.

5. Conclusions

In this paper, we tackled the problem of improving the performance of a state-of-the-art
legalizer, and of a fast and greedy one in the presence of obstacles. This improvement was achieved
by inducing a judicious tile partitioning of the chip area, which takes into consideration obstacles and
allows for both reducing the search space and for the split of computations into independent tasks
that can be trivially parallelized. The results are particularly encouraging, demonstrating an
improvement in all aspects of HPWL, displacement, and time for Tetris. They also demonstrate that
the proposed poAbacus scheme can achieve an impressive superlinear speedup over its simple
counterpart without negatively affecting HPWL and displacement, if horizontally defined tiles are
used.

Author Contributions: conceptualization, Oikonomou P. and Loukopoulos T.; methodology, Dadaliaris A. N.,
Kolomvatsos K., and Kakarountas A.; software, Oikonomou P. and Kolomvatsos K.; validation, Oikonomou P.,
Dadaliaris A. N., and Kakarountas A.; formal analysis, Oikonomou P. and Kolomvatsos K.; investigation,

Figure 7. Solution quality performance comparison for different free space percentages.

Technologies 2018, 6, x FOR PEER REVIEW 11 of 14

Next, we evaluate the solution quality of the algorithms for different free space percentages.
Figure 7 shows the results. poTetris achieves an improved performance over Tetris, with the gains in
the displacement being constantly around 80%. In poAbacus, the displacement gains vary between
±20%, depending on the particular case considered, while HPWL remains unaffected in the 12 × 1
case.

(a) HPWL performance

(b) Displacement performance

Figure 7. Solution quality performance comparison for different free space percentages.

Figure 8. Speedup of poAbacus over Abacus.

Having established that in terms of solution quality, poAbacus has a comparable performance
to Abacus and might even exhibit improvement, depending on the evaluation scenario, we proceed
by plotting the speedup trends (time(Abacus)/time(poAbacus)) for the N × 1 partitioning as the
number of threads increases. Results presented in Figure 8 demonstrate an impressive superlinear
behavior, whereby the achievable speedup with 12 threads reaches 66. This is a strong testament on
the merits of our approach, which combines multithreaded parallelism with search space pruning.

5. Conclusions

In this paper, we tackled the problem of improving the performance of a state-of-the-art
legalizer, and of a fast and greedy one in the presence of obstacles. This improvement was achieved
by inducing a judicious tile partitioning of the chip area, which takes into consideration obstacles and
allows for both reducing the search space and for the split of computations into independent tasks
that can be trivially parallelized. The results are particularly encouraging, demonstrating an
improvement in all aspects of HPWL, displacement, and time for Tetris. They also demonstrate that
the proposed poAbacus scheme can achieve an impressive superlinear speedup over its simple
counterpart without negatively affecting HPWL and displacement, if horizontally defined tiles are
used.

Author Contributions: conceptualization, Oikonomou P. and Loukopoulos T.; methodology, Dadaliaris A. N.,
Kolomvatsos K., and Kakarountas A.; software, Oikonomou P. and Kolomvatsos K.; validation, Oikonomou P.,
Dadaliaris A. N., and Kakarountas A.; formal analysis, Oikonomou P. and Kolomvatsos K.; investigation,

Figure 8. Speedup of poAbacus over Abacus.

5. Conclusions

In this paper, we tackled the problem of improving the performance of a state-of-the-art legalizer,
and of a fast and greedy one in the presence of obstacles. This improvement was achieved by inducing
a judicious tile partitioning of the chip area, which takes into consideration obstacles and allows for
both reducing the search space and for the split of computations into independent tasks that can be
trivially parallelized. The results are particularly encouraging, demonstrating an improvement in
all aspects of HPWL, displacement, and time for Tetris. They also demonstrate that the proposed
poAbacus scheme can achieve an impressive superlinear speedup over its simple counterpart without
negatively affecting HPWL and displacement, if horizontally defined tiles are used.

Author Contributions: Conceptualization, P.O. and T.L.; methodology, A.N.D., K.K., and A.K.; software, P.O. and
K.K.; validation, P.O., A.N.D., and A.K.; formal analysis, P.O. and K.K.; investigation, A.N.D. and T.L.; resources,
S.G.I.; data curation, A.N.D.; writing (original draft preparation), P.O., A.N.D., K.K., T.L., and A.K.; writing
(review and editing), G.I.S.; visualization, P.O. and T.L.; supervision, G.I.S.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hill, D. Method and System for High Speed Detailed Placement of Cells within an Integrated Circuit Design.
U.S. Patent 6370673 B1, 9 April 2002.

2. Spindler, P.; Schlichtmann, U.; Johannes, F.M. Abacus: Fast Legalization of Standard Cell Circuits with
Minimal Movement. In Proceedings of the 2008 International Symposium on Physical Design (ISPD ’08),
Portland, OR, USA, 13–16 April 2008; ACM Press: New York, NY, USA, 2008.

3. Oikonomou, P.; Dadaliaris, A.N.; Loukopoulos, T.; Kakarountas, A.; Stamoulis, G.I. A Tetris-based
Legalization Heuristic for Standard Cell Placement with Obstacles. In Proceedings of the 7th International
Conference on Modern Circuits and Systems Technologies (MOCAST), Thessaloniki, Greece, 7–9 May 2018;
IEEE: Piscataway, NJ, USA, 2018.

Technologies 2019, 7, 3 12 of 13

4. Cardoso, M.S.; Smaniotto, G.H.; Bubolz, A.A.O.; Moreira, M.T.; da Rosa, L.S.; de Souza Marques, F. Libra:
An automatic design methodology for CMOS complex gates. IEEE Trans. Circuits Syst. II Express Br. 2018, 65,
1345–1349. [CrossRef]

5. Guo, J.; Zhu, L.; Sun, Y.; Cao, H.; Huang, H.; Wang, T.; Qi, C.; Zhang, R.; Cao, X.; Xiao, L.; et al. Design of
area-efficient and highly reliable RHBD 10T memory cell for aerospace applications. IEEE Trans. Very Larg.
Scale Integr. Syst. 2018, 26, 991–994. [CrossRef]

6. Mishra, V.K.; Chauhan, R.K. Area efficient layout design of CMOS circuit for high-density ICs. Int. J. Electron.
2018, 105, 73–87. [CrossRef]

7. Dadaliaris, A.; Oikonomou, P.; Koziri, M.; Nerantzaki, E.; Hatzaras, Y.; Garyfallou, D.; Loukopoulos, T.;
Stamoulis, G. Heuristics to augment the performance of tetris legalization: Making a fast but inferior method
competitive. J. Low Power Electron. 2017, 13, 220–230. [CrossRef]

8. Chou, S.; Ho, T.-Y. OAL: An obstacle-aware legalization in standard cell placement with displacement
minimization. In Proceedings of the 2009 IEEE International SOC Conference (SOCC), Belfast, UK,
9–11 September 2009.

9. Spindler, P.; Schlichtmann, U.; Johannes, F.M. Kraftwerk2—A fast force-directed quadratic placement
approach using an accurate net model. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2008, 27,
1398–1411. [CrossRef]

10. Chen, T.-C.; Jiang, Z.-W.; Hsu, T.-C.; Chen, H.-C.; Chang, Y.-W. NTUplace3: An analytical placer for
large-scale mixed-size designs with preplaced blocks and density constraints. IEEE Trans. Comput. Aided Des.
Integr. Circuits Syst. 2008, 27, 1228–1240. [CrossRef]

11. Popovych, S.; Lai, H.-H.; Wang, C.-M.; Li, Y.-L.; Liu, W.-H.; Wang, T.-C. Density-Aware Detailed Placement
with Instant Legalization. In Proceedings of the 51st Annual Design Automation Conference on Design
Automation Conference (DAC ’14), San Francisco, CA, USA, 1–5 June 2014; ACM Press: New York, NY,
USA, 2014.

12. Netto, R.; Guth, C.; Livramento, V.; Castro, M.; Pilla, L.L.; Guntzel, J.L. Exploiting parallelism to speed up
circuit legalization. In Proceedings of the 2016 IEEE International Conference on Electronics, Circuits and
Systems (ICECS), Monte Carlo, Monaco, 11–14 December 2016.

13. Oikonomou, P.; Koziri, M.G.; Dadaliaris, A.N.; Loukopoulos, T.; Stamoulis, G.I. Domocus: Lock free parallel
legalization in standard cell placement. In Proceedings of the 6th International Conference on Modern
Circuits and Systems Technologies (MOCAST), Thessaloniki, Greece, 4–6 May 2017.

14. Wang, C.-H.; Wu, Y.-Y.; Chen, J.; Chang, Y.-W.; Kuo, S.-Y.; Zhu, W.; Fan, G. An effective legalization algorithm
for mixed-cell-height standard cells. In Proceedings of the 22nd Asia and South Pacific Design Automation
Conference (ASP-DAC), Chiba, Japan, 16–19 January 2017.

15. Kennings, A.; Darav, N.K.; Behjat, L. Detailed placement accounting for technology constraints.
In Proceedings of the 2014 22nd International Conference on Very Large Scale Integration (VLSI-SoC),
Playa del Carmen, Mexico, 6–8 October 2014.

16. Sketopoulos, N.; Sotiriou, C.; Simoglou, S. Abax: 2D/3D legaliser supporting look-ahead legalisation and
blockage strategies. In Proceedings of the 2018 Design, Automation and Test in Europe Conference and
Exhibition (DATE), Dresden, Germany, 19–23 March 2018.

17. Viswanathan, N.; Pan, M.; Chu, C. FastPlace 3.0: A fast multilevel quadratic placement algorithm with
placement congestion control. In Proceedings of the 2007 Asia and South Pacific Design Automation
Conference, Yokohama, Japan, 23–26 January 2007.

18. Lu, J.; Chen, P.; Chang, C.-C.; Sha, L.; Huang, D.J.-H.; Teng, C.-C.; Cheng, C.-K. ePlace: Electrostatics-based
placement using fast fourier transform and Nesterov’s method. ACM Trans. Des. Autom. Electron. Syst. 2015,
20, 1–34. [CrossRef]

19. Lu, J.; Zhuang, H.; Chen, P.; Chang, H.; Chang, C.-C.; Wong, Y.-C.; Sha, L.; Huang, D.; Luo, Y.; Teng, C.-C.;
et al. ePlace-MS: Electrostatics-based placement for mixed-size circuits. IEEE Trans. Comput. Aided Des.
Integr. Circuits Syst. 2015, 34, 685–698. [CrossRef]

20. Wu, G.; Chu, C. Detailed Placement Algorithm for VLSI Design with Double-Row Height Standard Cells.
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2016, 35, 1569–1573. [CrossRef]

21. Taghavi, T.; Yang, X.; Choi, B.-K. Dragon2005: Large-Scale Mixed-Size Placement Tool. In Proceedings of
the 2005 International Symposium on Physical Design (ISPD ’05), San Francisco, CA, USA, 3–6 April 2005;
ACM Press: New York, NY, USA, 2005.

http://dx.doi.org/10.1109/TCSII.2018.2866231
http://dx.doi.org/10.1109/TVLSI.2017.2788439
http://dx.doi.org/10.1080/00207217.2017.1340978
http://dx.doi.org/10.1166/jolpe.2017.1483
http://dx.doi.org/10.1109/TCAD.2008.925783
http://dx.doi.org/10.1109/TCAD.2008.923063
http://dx.doi.org/10.1145/2699873
http://dx.doi.org/10.1109/TCAD.2015.2391263
http://dx.doi.org/10.1109/TCAD.2015.2511141

Technologies 2019, 7, 3 13 of 13

22. Ababei, C.; Navaratnasothie, S.; Bazargan, K.; Karypis, G. Multi-objective circuit partitioning for cutsize and
path-based delay minimization. In Proceedings of the IEEE/ACM International Conference on Computer
Aided Design (ICCAD 2002), San Jose, CA, USA, 10–14 November 2002.

23. Kim, M.-C.; Lee, D.-J.; Markov, I.L. SimPL: An effective placement algorithm. IEEE Trans. Comput. Aided Des.
Integr. Circuits Syst. 2012, 31, 50–60. [CrossRef]

24. Brenner, U. VLSI legalization with minimum perturbation by iterative augmentation. In Proceedings of
the 2012 Design, Automation and Test in Europe Conference and Exhibition (DATE), Dresden, Germany,
12–16 March 2012.

25. Brenner, U. BonnPlace legalization: Minimizing movement by iterative augmentation. IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst. 2013, 32, 1215–1227. [CrossRef]

26. Hu, J.; Zhou, Q.; Gao, W.; Qian, X.; Zhou, Q. An effective legalization approach based on multiple ordering.
In Proceedings of the 2013 International Conference on Communications, Circuits and Systems (ICCCAS),
Chengdu, China, 15–17 November 2013.

27. Zhou, Q.; Hu, J.; Zhou, Q. An effective iterative density aware detailed placement algorithm. In Proceedings
of the 2014 IEEE International Symposium on Circuits and Systems (ISCAS), Melbourne, VIC, Australia, 1–5
June 2014.

28. Li, H.; Chow, W.-K.; Chen, G.; Young, E.F.Y.; Yu, B. Routability-driven and fence-aware legalization for
mixed-cell-height circuits. In Proceedings of the 55th Annual Design Automation Conference on (DAC ’18),
San Francisco, CA, USA, 24–29 June 2018; ACM Press: New York, NY, USA, 2018.

29. Darav, N.K.; Bustany, I.S.; Kennings, A.; Westwick, D.; Behjat, L. Eh?Legalizer: A high performance
standard-cell legalizer observing technology constraints. ACM Trans. Des. Autom. Electron. Syst. 2018, 23,
1–25. [CrossRef]

30. Cho, M.; Ren, H.; Xiang, H.; Puri, R. History-Based VLSI Legalization Using Network Flow. In Proceedings
of the 47th Design Automation Conference (DAC ’10), Anaheim, CA, USA, 13–18 June 2010; ACM Press:
New York, NY, USA, 2010.

31. Fabre, S.; Guntzel, J.L.; Pilla, L.; Netto, R.; Fontana, T.; Livramento, V. Enhancing Multi-threaded legalization
through k-d tree circuit partitioning. In Proceedings of the 2018 31st Symposium on Integrated Circuits
and Systems Design (SBCCI), Bento Goncalves, Brazil, 27–31 August 2018; pp. 1–6.

32. Yan, C.; Salman, E. Mono3D: Open source cell library for monolithic 3-D integrated circuits. IEEE Trans.
Circuits Syst. I Regul. Pap. 2018, 65, 1075–1085. [CrossRef]

33. Xu, Q.; Chen, S.; Xu, X.; Yu, B. Clustered fault tolerance TSV planning for 3-D integrated circuits. IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst. 2017, 36, 1287–1300. [CrossRef]

34. Lepercq, É.; Blaquière, Y.; Savaria, Y. A pattern-based routing algorithm for a novel electronic system
prototyping platform. Integration 2018, 62, 224–237. [CrossRef]

35. Carbajal-Gomez, V.; Tlelo-Cuautle, E.; Sanchez-Lopez, C.; Fernandez-Fernandez, F. PVT-robust CMOS
programmable chaotic oscillator: Synchronization of two 7-scroll attractors. Electronics 2018, 7, 252.
[CrossRef]

36. Abbas, Z.; Olivieri, M.; Ripp, A. Yield-driven power-delay-optimal CMOS full-adder design complying with
automotive product specifications of PVT variations and NBTI degradations. J. Comput. Electron. 2016, 15,
1424–1439. [CrossRef]

37. ISPD04 Benchmark Circuits. Available online: http://vlsicad.eecs.umich.edu/BK/Slots/cache/www.public.
iastate.edu/~{}nataraj/ISPD04_Bench.html (accessed on 21 December 2018).

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TCAD.2011.2170567
http://dx.doi.org/10.1109/TCAD.2013.2253834
http://dx.doi.org/10.1145/3158215
http://dx.doi.org/10.1109/TCSI.2017.2768330
http://dx.doi.org/10.1109/TCAD.2017.2681080
http://dx.doi.org/10.1016/j.vlsi.2018.03.005
http://dx.doi.org/10.3390/electronics7100252
http://dx.doi.org/10.1007/s10825-016-0878-2
http://vlsicad.eecs.umich.edu/BK/Slots/cache/www.public. iastate.edu/~{}nataraj/ISPD04_Bench.html
http://vlsicad.eecs.umich.edu/BK/Slots/cache/www.public. iastate.edu/~{}nataraj/ISPD04_Bench.html
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Obstacle-Aware Parallel Legalization Algorithms
	Experiments
	Experimental Setup
	Standalone Tetris and Abacus Evaluation
	Evaluation of poTetris and poAbacus

	Conclusions
	References

