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Abstract: A mathematical model employing the concept of energy-equivalent inhomogeneity is applied
to analyze short cylindrical fiber composites with interfaces described by the Steigmann–Ogden
material surface model. Real inhomogeneity consists of a cylindrical fiber of finite length, and its
surface possessing different properties is replaced by a homogeneous, energy-equivalent cylinder.
The properties of the energy-equivalent fiber, incorporating properties of the original fiber and its
interface, are determined on the basis of Hill’s energy equivalence principle. Closed-form expressions
for components of the stiffness tensor of equivalent fiber have been developed and, in the limit, shown
to compare well with the results available in the literature for infinite fibers with the Steigmann–Ogden
interface model. Dependence of those components on the radius, length of the cylindrical fiber,
and surface parameters is included in these expressions. The effective stiffness tensor of the short-fiber
composites with so-defined equivalent cylindrical fibers can be determined by any homogenization
method developed without accounting for interface.

Keywords: equivalent cylinder of finite length; Steigmann–Ogden surface model; anisotropic properties

1. Introduction

Interphases between inhomogeneities and the matrix may have a very pronounced influence on
the effective behavior of entire composites. The interphases are typically three-dimensional continua,
but treating them as such is feasible only for simple geometry of the inhomogeneities and for simple
loading conditions.

To cover more complex situations, some effort has been invested into developing various
simplified models of interphases [1–11], among others. The most practical and popular of them
are the Gurtin–Murdoch [12,13] model and the spring layer model [1,4,5,14–19]. The former is a
membrane-type model in which the bending stiffness of the interphase is assumed to be negligible and
which preserves kinematic continuity. The latter allows for displacement discontinuity and relates
forces transmitted across the interphase to the tangential and normal components of that discontinuity.
The Gurtin–Murdoch and related models of surface elasticity have been used to study beams, plates,
and shells [20,21].

Generalization of the Gurtin–Murdoch model was proposed by Steigmann and Ogden [22,23],
who introduced the resistance of the surface to both stretching and bending. Their development
is based on the Kirchhoff–Love shell kinematics and, as such, implies that the surface energy in
the Steigmann–Ogden model includes both the surface membrane strain tensor and the surface
curvature tensor. The Steigmann–Ogden model was used in [24,25] to study bending of nano-sized
cantilever beams. In these investigations, the Steigmann–Ogden constants were determined by using a
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combination of atomistic simulations and a simple continuum model. A similar analysis within the
Steigmann–Ogden model but for laminates was provided in [26], where the formula for the effective
bending stiffness and its dependence on the surface elastic moduli were derived.

In [27–30], it was demonstrated that higher-gradient theories could entail surface tensors of
stresses and couple stresses as well as other stress resultants.

Within Toupin–Mindlin formulation [31–33] of the strain gradient elasticity, the mathematical study
of static and dynamic boundary value problems with surface stresses described by Steigmann-Ogden
model was presented in [34,35].

The boundary conditions for the Steigmann–Ogden [22,23] model for a two-dimensional surface
using general expression for surface energy were re-derived in [36]. The effect of curvature-dependent
interfacial energy was also studied in [37] for finite deformation. The effective moduli of nanocomposites
were analyzed in [38]. The effective properties of the isotropic particulate composites with
Steigmann–Ogden interface were derived in [39,40].

In this work, the energy-equivalent inhomogeneity (EEI) approach, recently presented in [19,41–43],
is applied to short fibers modeled as cylindrical inhomogeneity of finite length with a Steigmann–Ogden
model of interface. The presented approach can be used for determination of the properties of equivalent
homogeneous cylindrical fiber for which the properties incorporate properties of the interface and
then, in combination with any homogenization method developed for composites without interfaces,
for determination of effective properties of short-fiber composites with an interface.

This paper is organized as follows. The next section briefly introduces the notion of energy
equivalence and its subsequent specification for cylinders of finite length and the Steigmann–Ogden
model of interface; it also defines the properties of the energy-equivalent cylinder. In Section 3, this is
followed by a comparison with the results available in the literature for infinite cylindrical fibers with
Gurtin–Murdoch and Steigmann–Ogden interface models. The paper final section contains some
overall comments about the approach pursued herein and the results obtained. Several technical
details are presented in Appendix A.

2. Energy-Equivalent Short Cylindrical Fiber with Steigmann–Ogden Surface Model

2.1. General Considerations

To find properties of the equivalent inhomogeneity of any shape meant to incorporate properties
of the original inhomogeneity and those of its interphase, the system is subjected to boundary
displacements consistent with constant straining, represented by an arbitrary constant tensor εeq.
The elastic energy of this system is

E =
1
2

∫
V1

ε1 : C1 : ε 1dV1 + Eint, (1)

where Eint is the strain energy of the interphase appropriate for the Steigmann–Ogden model, ε1 is the
strain within the original inhomogeneity caused by εeq, and C1 is the rank four tensor of the elastic
moduli of the original cylindrical inhomogeneity (Figure 1).

The mathematical description of energy equivalence is expressed by the following equation:

E =
1
2

∫
Veq

εeq : Ceq : εeqdVeq =
1
2

Veqεeq : Ceq : εeq = Eint +
1
2

∫
V1

ε1 : C1 : ε1 dV1, (2)

where Ceq is the unknown constitutive tensors of the equivalent inhomogeneity and Eint depends
on the specific model of the interphase employed and on the data characterizing the system. Under
the assumption of linearly elastic interphase, at equilibrium, both terms on the far right-hand side
are quadratic functions of εeq and Equation (2) can be used to determine Ceq. As shown in [19,41],
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that simple idea may be technically quite demanding, particularly for complex shapes of inhomogeneity,
but it is executable and, in the cases considered so far, leads to remarkably accurate, closed-form results.Technologies 2020, 8, x FOR PEER REVIEW 3 of 15 

 

 
Figure 1. Schematic illustration of cylindrical inhomogeneity. 
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Figure 1. Schematic illustration of cylindrical inhomogeneity.

2.2. Steigmann–Ogden Surface Model and Associated Elastic Energy

The original development of the Steigmann–Ogden model, including equilibrium equations
and related boundary conditions, are presented in [22,23]. These relations are derived within the
Toupin–Mindlin formulation of the strain gradient elasticity in [35] and have following forms:

Displacements continuity on SI

[u(x)]SI = 0, (3)

Stress discontinuity on SI

[σ(x)]SI · n(x) = ∇SI ·

[
σS(x) − (∇SI ·MS(x))n(x)

]
− 2H n(x) · (∇SI ·MS(x))n(x). (4)

The unit vector n in the above equation is normal to SI, and it is assumed to point away from the
inhomogeneity. The square brackets indicate the jump of the field quantities across the interface, defined
as their value on the side towards which vector n points minus their value on the side from which it
points; ∇SI is the surface gradient operator; 2H = trB(x) is the main curvature; B(x) = −∇SI n(x) is the
curvature tensor; and the surface membrane stress tensor σS [12,13] is defined as

σS(x) = τ0

2
IS + 2[µS − τ0]εS(x) + [λS + τ0]tr(εS(x))

2
IS + τ0∇Su(x), (5)

where εS is the interface/surface membrane strain tensor,
2
IS represents the second-rank identity

tensor in the plane tangent to the surface, τ0 is the magnitude of the deformation-independent
(residual) surface/interfacial tension (assumed “hydrostatic” and constant in Gurtin–Murdoch model),
λS and µS are surface Lamé parameters, while ∇Su(x) denotes the surface gradient of the interface
displacement field.

The surface couple stress tensor MS (moments), which described surface bending [35,36,40], has
the following form:

MS(x) = 2µB κS(x) + λBtr(κS(x))
2
IS, (6)

The symbols λB and µB are the material parameters describing the bending stiffness of the
(isotropic) material surface. The surface strain tensor εS and the bending strain measure (tensor
representing changes of curvature due to bending) κS are as follows:

εS(x) = sym
(

2
IS(x) · ∇Su(x)

)
, (7)

κS = sym
(

2
IS(x) · ∇Sϑ(x)

)
, (8)
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in which ϑ(x) represents rotation of the surface (more specifically, it is displacement of the tip of vector
n(x) due to rotation of the surface)

ϑ(x) = ∇SI (n(x) · u(x)) + B(x) · u(x). (9)

In the case of Steigmann–Ogden interface Equations (3)–(9), the surface energy can be represented as

Eint = UT + UB, (10)

where UT and UB are the energies related to surface tension and surface bending:

UT =
1
2

∮
SI

[
2µSεS : εS + λS tr(εS)

2 + τ0∇Su : ∇Su
]
dS, (11)

UB =
1
2

∮
SI

[
2µBκ : κ+ λB (trκ)

2
]
dS. (12)

In [42], it is shown that, for cylindrical approximation of short fibers described by Gurtin–Murdoch
surface expressed in Equations (3)–(9), if MS(x) = 0, the stiffness tensors Ceq have transversely isotropic
symmetry, characterized by 5 independent constants, and have the following form:

Ceq = C1 + ĈT, (13)

where C1 is the stiffness tensor of the original inhomogeneity while ĈT represents an additional
contribution of surface elasticity to the properties of an equivalent cylindrical fiber (see details in [42]).
This specific form of Equation (13) results from the fact that the Gurtin–Murdoch model assumes
vanishingly thin interphase and preserves kinematic continuity, so in Equation (2), ε1 = εeq —a
property that is also preserved in the Steigmann–Ogden interface model and is exploited subsequently.
The transversely isotropic symmetry of equivalent elasticity stiffness tensor will be subsequently
written in Voigt’s notation assuming the following identification scheme:

11→ 1 , 22→ 2 , 33→ 3 , 23, 32→ 4 , 13, 31→ 5 , 12, 21→ 6, (14)

with index 3 denoting the longitudinal axis of the fiber. As shown in [42], the expressions for the six
non-vanishing components of matrix ĈT, five of which are independent, have the following forms:

ĈT[11] = ĈT[22] =
( 3

4r
+

2
l

)[
2µS + λS

]
, ĈT[33] =

2
[
2µS + λS

]
r

,

ĈT[12] =

[
2µS + λS

]
4r

+
2λS

l
, ĈT[13] = ĈT[23] =

λS
r

,

ĈT[44] = ĈT[55] =
µS
r

, ĈT[66] =
1
2

[
ĈT[11] − ĈT[12]

]
=

[
2µS + λS

]
4r

+
2µS

l
, (15)

where λS = λS + τ0 and µS = µS − τ0 are the modified Lamé parameters of isotropic tensor of surface
elasticity, appearing as a result of the surface tension contribution in Equations (5) and (11); r is the
radius of the cylinder; and l is its length (see Figure 1). In the adopted Steigmann–Ogden interface
model, the tenor Ceq should be also transversely isotropic and can be defined as

Ceq = C1 + ĈT + ĈB, (16)

where ĈB is a contribution of surface bending.
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The development neglecting the term MS of Equations (4) and (6) was presented in [42]. Here,
the focus of evaluation of the properties of EEI is on the contribution of surface bending. The use of the
complete Equation (4) in analysis may turn out to be important in some practical applications, where
bending of the surface should be accounted for.

Inclusion of the complete Equation (4) within the framework of the EEI is outlined in the next
subsection, with some supporting derivations presented in the related Appendix A.

2.3. Contribution of the Surface Bending to the Energy of Equivalent Cylinder

2.3.1. Evaluation of the Surface Energy Related to the Bending

In order to determine the surface contribution described by Equation (12), the tensor of curvature
changes will be evaluated first.

It is assumed that the strains, εeq, that an inhomogeneity is subjected to are constant. Under those
conditions, displacements in the surface of that inhomogeneity can be expressed as

u(ξΛ) = εeq · r(ξΛ). (17)

where r(ξΛ) is the position vector of a point on that surface which is locally parameterized by ξΛ,
Λ ∈ {1, 2}. Consequently, cf. [44]

∇Su = (εeq · r),∆ ⊗G∆ = εeq · (r,∆ ⊗G∆) = εeq · (G∆ ⊗G∆) = εeq ·
2
IS. (18)

where G∆ = r,∆ are the vectors of the natural basis associated with the parametrization ξ∆ (tangent to
the surface) and G∆ is the vectors of the dual, or reciprocal, basis also tangent to the surface) satisfying
the condition G∆ ·GΛ = δ∆

Λ, with δ∆
Λ being the “Kronecker delta”.

The tensor of curvature changes is determined as

κ = sym
(

2
IS · ∇Sϑ

)
, (19)

with
ϑ =ωN · n, (20)

where
ωN = −(n · ∇Su) ⊗ n. (21)

Considering Equation (18), ϑ can be defined as

ϑ = −n · εeq ·
2
IS = −εeq : n⊗

2
IS, (22)

which gives

∇Sϑ = −εeq : ∇S

(
n⊗

2
IS

)
; (23)

κ = −sym
[

2
IS ·

(
εeq : ∇S

(
n⊗

2
IS

))]
. (24)

The above formula indicates that εeq contracted with the first 2 vectors of∇S(n⊗
2
IS) and

2
IS operate

on the third vector of dyadic product in ∇S(n⊗
2
IS). This means that multiplication by

2
IS eliminates

n⊗GΛ ⊗ n⊗G∆ (GΛ⊥n) and the remaining two parts are unchanged. Therefore,
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κ = −sym
[
IS · (∇S(n⊗ IS))

T : εeq
]

= −sym
[(
−B∆

ΠGΛ
⊗G∆

⊗GΠ ⊗GΛ + BΛ∆GΛ
⊗G∆

⊗ n⊗ n
)

: εeq
]
. (25)

Evaluation of the components of the tensors BΛ∆ and B∆
Π is illustrated in Appendix A, where

curvature tensors for spherical inhomogeneity of radius r are given in Table A1. Considering values
BΛ∆ and BΛ

∆ from Table A1, the tensor of curvature changes can be defined as

κ = −
1
r
[(G1 ⊗G1 ⊗G1 ⊗G1 +

1
2
(G2 ⊗G1 + G1 ⊗G2) ⊗G1 ⊗G2−

−G1 ⊗G1 ⊗ n⊗ n) : εeq
]
. (26)

Then, the surface strain energy in the case of the Steigmann–Ogden model of interface is defined
as (see, for details, [35,36,40])

ES =
1
2

∮
SI

[
2µSεS : εS + λS tr(εS)

2 + τ0∇Su : ∇Su + 2µBκ : κ+ λB (trκ)
2
]
dS. (27)

The first three terms of the above integrand are identical to the surface strain energy given by
the Gurtin–Murdoch model, and properties of equivalent inhomogeneities related to these terms are
determined in [42]. The last two terms of Equation (27) represent the surface strain energy related
to surface bending. In the next section, the working formula for the properties of the equivalent
inhomogeneity is presented.

2.3.2. Constitutive Tensor of the Energy-Equivalent Cylinder

Considering Equation (26), the last two terms of Equation (27) are given as

κ : κ =
1
r2 εeq : [G1⊗G1 ⊗G1 ⊗G1 + G1 ⊗G2 ⊗G1 ⊗G2 −G1 ⊗G1 ⊗ n⊗ n−

− n⊗ n⊗G1 ⊗G1 + n⊗ n⊗ n⊗ n] : εeq; (28)

(trκ)2 =
1
r2 εeq : [G1⊗G1 ⊗G1 ⊗G1 − 2G1 ⊗G1 ⊗ n⊗ n+n⊗ n⊗ n⊗ n] : εeq. (29)

The surface energy of Equation (27) is a sum of the surface tension and the surface bending
Equations (11) and (12), and we focus only on the latter:

UB =
1
2

∮
S

[
2µBκ : κ+ λB (trκ)

2
]
dS = UµB + UλB , (30)

where UµB = 1
2

∮
S
[2µBκ : κ]dS is defined as

UµB =
2µB

2r2

∮
SI

[
εeq : (G1 ⊗G1 ⊗G1 ⊗G1 + G1 ⊗G2 ⊗G1 ⊗G2 −G1 ⊗G1 ⊗ n⊗ n−

− n⊗ n⊗G1 ⊗G1 + n⊗ n⊗ n⊗ n) : εeq
]
dS. (31)
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and UλB = 1
2

∮
S

[
λB (trκ)

2
]
dS is

UλB =
λB

2r2

∮
SI

[
εeq : (G1⊗G1 ⊗G1 ⊗G1 − 2G1 ⊗G1 ⊗ n⊗ n+n⊗ n⊗ n⊗ n) : εeq

]
dS. (32)

These last formulas in Equations (30)–(32) can be put in Equation (10), and the following form of
the surface energy yields

Eint = UT + UµB + UλB = εeq : (KT + KµB + KλB) : εeq. (33)

where
UT = εeq : KT : εeq; UµB = εeq : KµB : εeq; UλB = εeq : KλB : εeq. (34)

The last result for Eint and the energy equivalence expressed by Equation (2) leads to the following
formula for the effective moduli of equivalent inhomogeneity:

Ceq = C1 +
1

VI
(KT + KµB + KλB) = C1 + ĈT + ĈB. (35)

Then, the problem of properties of equivalent inhomogeneities is reduced to evaluation of
the components of the above tensors KµB and KλB , which is illustrated in Appendix B Equations
(A35)–(A37). Contribution of surface bending to the stiffness tensor Equation (35) in this case is

ĈB[11] = ĈB[22] =
λB + 2µB

r3 , ĈB[33] = 0,

ĈB[12] = −
λB + 2µB

r3 , ĈB[13] = ĈB[23] = 0,

ĈB[44] = ĈB[55] =
µB

r3 , ĈB[66] =
1
2

[
ĈB[11] − ĈB[12]

]
=
λB + 2µB

r3 , (36)

where λB and µB are additional material parameters describing the bending stiffness of the material
surface in Equation (6). In the presence of MS in Equation (4), the tenor Ceq is also transversely isotropic
and its constants are defined in Equation (35), where ĈT is defined in Equation (15).

Remark 1. It should be noted that the properties of equivalent cylindrical fibers can be used in combination with
any homogenization method developed without accounting for interfaces.

3. Comparison with the Existing Results for the Cylinder of Infinite Length with
Gurtin–Murdoch and Steigmann–Ogden Interfaces

To validate the proposed approach, the equivalent properties of cylinder of infinite length are
obtained as a limiting case and compared with two-dimensional solutions of the problem, which
are the only currently available results for cylindrical inhomogeneities with Gurtin–Murdoch and
Steigmann–Ogden surfaces.

In the limit l→∞ and λB = µB = 0, one obtains the results for an equivalent infinite cylindrical
fiber with Gurtin–Murdoch interface. The independent constants of matrix ĈT in this case are

ĈT[11] = ĈT[22] =
3
4r

[
2µS + λS

]
, ĈT[33] =

2
[
2µS + λS

]
r

,

ĈT[12] =

[
2µS + λS

]
4r

, ĈT[13] = ĈT[23] =
λS
r

,
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ĈT[44] = ĈT[55] =
µS
r

, ĈT[66] =
1
2

[
ĈT[11] − ĈT[12]

]
=

[
2µS + λS

]
4r

, (37)

Four out of the above five constants, ĈT[11], ĈT[33], ĈT[13], ĈT[44], can be presented in the form of
Hill’s phase moduli [45], and in that form, they are exactly the same as those presented in [15,16].
In those publications, the properties of an equivalent infinite cylindrical fiber with Gurtin–Murdoch
interface have been determined first using the concept of neutral inhomogeneity [46]. The authors
subsequently observed that the same equivalent properties are obtained if the constitutive tensor of
the fibers is augmented by the terms shown in Equations (37). Such an agreement with the values
obtained “a posteriori” and by a different approach furnishes an additional support for the concept of
equivalent inhomogeneity presented herein.

The fifth constant, the transverse shear modulus, constitutes an exception in the sense that, in [15],
it could not be determined by the same approach as the other four, i.e., by a neutral composite cylinder
approach or composite cylinder assembly [5,16]. Thus, the generalized self-consistent method [47] has
been employed in [16] instead, which turned out not to allow for identification of the contribution of
surface elasticity to the fifth constant of the equivalent cylinder.

The properties of an equivalent infinite cylindrical fiber with a Steigmann–Ogden interface can
be also compared with the two-dimensional solutions presented in [36]. Two of the constants listed
in Equations (36) and (37), ĈB[11] + ĈB[12] and ĈB[66], ĈT[11] + ĈT[12] and ĈT[66] for surface bending
and surface tension, were presented in the form of the plane bulk modulus and transverse shear
modulus (Hill’s notation) and compared with those obtained in [36] for two-dimensional solutions of
the problem (limit if l→∞ ). Properties of equivalent circular inhomogeneity [36] are obtained based
on well-known elasticity solutions for two complementary problems: one of the circular discs subjected
to the unknown tractions at any boundary point and another one from an infinite matrix subjected
to the uniform far-field load and containing a circular hole under the action of unknown boundary
tractions. The solutions for both problems can be obtained by the complex variables approach. It is
shown in [36] that surface bending does not affect the plane bulk modulus ĈB[11] + ĈB[12], and at the
same time, the contribution of the surface tension to the plane bulk modulus of equivalent cylinder
presented herein is identical to the results in [36], really, Equation (54) in [46] (in notations adopted in
the present article):

Ceq[11] + Ceq[12] = C1[11] + C1[12] +
1
2r

[
2µS + λS

]
. (38)

Comparing Equations (35)–(38), it is evident that

ĈT[11] + ĈT[12] =
1
2r

[
2µS + λS

]
.

ĈB[11] + ĈB[12] = 0, (39)

The above Equations (39) are identical to Equations (36) and (37).
Given that (λB + 2µB)/r3 and (λS + 2µS)/r are considerably smaller then Lamé parameters of

bulk material (see, e.g., [24,25,36,40]), it is possible to check that first-order approximation of the results
for transverse shear moduli ĈB[66] and ĈT[66] presented in [36] (in Equation (59)) coincides with the
ones presented here. Thus, Equation (59) in [36] (in notations adopted in the present article) is

Ceq[66] = C1[66] +

[
C2[66](C1[11] + C1[12]) + C1[66]

]
(η+ γ) + 12(C1[11] + C1[12])ηγ

C2[66](C1[11] + C1[12]) + C1[66] + 12(C1[11] + 3C1[12])(η+ γ)
, (40)

where η = (λS + 2µS)/r and γ = (λB + 2µB)/r3. It should be noted that the properties of an equivalent
infinite cylinder are obtained on the basis of a solution for an infinite matrix subjected to the uniform
far-field load and containing a circular hole under the action of unknown boundary tractions, and as a
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result, they depend on the properties of the infinite matrix C2[66]. The first-order approximation of
Equation (40) is as follows:

Ceq[66] = C1[66] + η+ γ, (41)

and it is identical to Equations (35)–(37).

4. Conclusions

A mathematical model employing the concept of the EEI [19,41–43] has been generalized to
introduce the surface effects described by the Steigmann–Ogden model [22,23] derived within the
strain gradient elasticity [35]. A particular focus was centered on accounting for surface bending
contribution in the definition of the EEI.

The properties of an equivalent cylinder of finite length with the Steigmann–Ogden model of
interface is determined based on the corresponding definition of surface energy, which includes both
surface tension and surface bending. As typically done in Hill’s equivalence principle, a uniform
state of strains within the cylinder is assumed. The stiffness tensor of the equivalent cylinder has
transversely isotropic symmetry, and five independent constants of this tensor are presented in a
closed form.

Unfortunately, due to a lack of solutions for problems involving finite-length cylindrical fibers,
the main results presented herein could not be verified by direct comparisons. This could be
accomplished only by the asymptotic transformation of those results to obtain equivalent stiffness
tensors for infinite cylindrical inhomogeneity. As shown in Section 3, in the asymptotic limit, the results
obtained in this work are in a good agreement with those of [15,16] obtained for infinite cylindrical
inhomogeneities with Gurtin–Murdoch interface (by solving a number of two-dimensional problems).
They are also in good agreement with results obtained for the plane bulk and transverse shear moduli
derived for the two-dimensional problem of circular inhomogeneities with the Steigmann–Ogden
model of interface.

To conclude, it is worth mentioning that the definition of the EEI is general and can be used
in the case of inhomogeneities of shapes other than cylindrical, e.g., ellipsoidal. It can be very
naturally combined with any homogenization method developed for composite materials without
accounting for interface and appears to be potentially amenable for inclusion of models other than
the Gurtin–Murdoch or Steigmann–Ogden interface models. The important characteristic of the
proposed approach is its ability to provide closed-form expressions for the properties of equivalent
inhomogeneities. Closed-form results are important, especially if the influence of different problem
parameters needs to be analyzed.
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Appendix A. Components of Curvature Tensors for Cylinder

Let us assume that the surface of interest is locally parameterized by ξΛ, Λ ∈ {1, 2}, and that
the position vector of a point on that surface is expressed as r(ξΛ). Then, one can define a couple of
vectors GΛ:

GΛ =
∂r
∂ξΛ

≡ r,Λ , (A1)

which forms the vector basis in the linear space tangent to the surface S, called the natural basis.
Another basis in the same tangent space, denoted by G∆ and called dual or reciprocal, is defined
as follows:

GΛ ·G∆ = δ∆
Λ, (A2)

where · represents the “dot” (or “inner”) product of vectors and δ∆
Λ is the Kronecker “delta”.

The bases GΛ and G∆ are functions of ξΛ, and their derivatives can be expressed by the well-known
Gauss–Weingarten formulas (see [44], for example). For the natural basis, these formulas are (cf.
Equation (A1) for notations)

GΛ,Σ = ΓΛΣ
∆G∆ + BΛΣn ≡ ΓΛΣ

1G1 + ΓΛΣ
2G2 + BΛΣn, (A3)

with a unit vector n normal to the surface. Here (as shown in the above equation), an index repeated
in the subscript and superscript position implies summation, ΓΛΣ

∆ = GΛ,Σ ·G∆ are the so-called
Christoffel symbols (of the second kind), and the components of the local curvature tensor are

BΛΣ = GΛ,Σ ·n. (A4)

Equation (A3) together with Equation (A1) imply that BΛΣ = BΣΛ, whereas definition of the
Christoffel symbols and Equation (A1) imply the following symmetry property: ΓΛΣ

Ω = ΓΣΛ
Ω.

The analogical formulas for the derivatives of vectors of the dual basis are

G∆,Σ = −ΓΛΣ
∆GΛ

− B∆
Σn ≡ −Γ1Σ

∆G1
− Γ2Σ

∆G2
− B∆

Σn, (A5)

where B∆
Σ is the so-called mixed components of the local curvature tensor. The curvature tensor B can

be represented as

B = B∆ΛG∆
⊗GΛ = B∆ΛG∆ ⊗GΛ = B∆

ΛG∆
⊗GΛ = B∆

ΛG∆ ⊗GΛ. (A6)

In the above equation, double summation is implied and the (indexed) coefficients multiplying
the dyadic are various components of tensor B. They all can be different, but they are related to each
other by transformation formulas involving the so-called gram matrices related to the natural or dual
bases. Those matrices are defined as follows:

G∆Λ = G∆ ·GΛ, G∆Λ = G∆
·GΛ. (A7)

Using the relationship between various components of the curvature tensor B, one can present
the following:

B∆
Λ = B∆ΣGΣΛ. (A8)

In the case of cylindrical inhomogeneity of radius r, the position vector R of a point on the surface
of the inhomogeneity and the corresponding unit vector n, normal to that surface may be expressed in
cylindrical coordinates as follows:

R =


r cosϕ
r sinϕ

z

, 0 ≤ ϕ ≤ 2π. (A9)
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Consequently, the local vectors of the natural basis G∆ are

G1 = R,ϕ= r


− sin ϕ

cosϕ
0

; G2 = R,z =


0
0
1

; G3 = R,r = n =


cos ϕ
sin ϕ

0

, (A10)

and

G1,1 = R,ϕϕ= r


− cos ϕ
− sinϕ

0

; G2,1 = R,zϕ=


0
0
0

; G2,2 = R,zz =


0
0
0

. (A11)

The dual basis is defined as

G1 =
1
r


− sin ϕ
cos ϕ

0

, G2 =


0
0
1

, G3 = G3 = n =


cos ϕ
sin ϕ

0

. (A12)

Then, the curvature tensors for cylindrical inhomogeneity of radius r are given:

Table A1. Curvature tensors for a cylinder of radius r.

Λ ∆ BΛ∆ BΛ
∆

1 1 −r −1/r

1 2 0 0

2 2 0 0

2 1 0 0

The local vectors of the natural basis G∆ on the circular part of the cylinder’s surface (i.e., on its
two ends) are

G1 = R,r =


cosϕ
sin ϕ

0

; G2 = R,ϕ= r


− sin ϕ

cosϕ
0

 ; G3 = R,z = n =


0
0
1

, (A13)

and

G1,1 = R,rr =


0
0
0

; G2 = R,ϕr =


− sin ϕ

cosϕ
0

 ; G2 = R,ϕφ= r


− cos ϕ
− sinϕ

0

 . (A14)

Substituting (A14) in (A4), it is seen that the curvature tensor of the circular part of the cylinder’s
surface (two ends of cylinder) is as follows:

BΛΣ = 0. (A15)

As a result, we have that the contribution of the circular part of the cylinder’s surface to surface
bending of cylindrical inhomogeneity is equal to zero.

Appendix B. Properties of the Energy-Equivalent Cylinder of Finite Length Accounting for
Surface Bending

For illustration of some technical details, KµB and KλB of Equations (31)–(34) are evaluated in this
Appendix. In addition to KµB and KλB , the contribution of surface tension to properties of equivalent
inhomogeneity includes another term KT present in Equation (34); however, evaluation of this term is
presented in [42].
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Assuming that inhomogeneities are cylinders of radius r and length l (Figure 1) and using
the cylindrical coordinate system in Equation (A9), KµB of Equations (31) and (33) is described by
the following:

KµB =
2µB

πr3l

l∫
0

2π∫
0

[G1⊗G1 ⊗G1 ⊗G1 + G1 ⊗G2 ⊗G1 ⊗G2 −G1 ⊗G1 ⊗ n⊗ n−

− n⊗ n⊗G1 ⊗G1 + n⊗ n⊗ n⊗ n]dϕdz; (A16)

KµB[1111] = KµB[2222] =
2µB

πr3l

l∫
0

2π∫
0

[
sin ϕ4

− 2 sin ϕ2 cos ϕ2 + cos ϕ4
]
dϕ dz=

2µB

r3 ; (A17)

KµB[3333] =
2µB

πr2l

l∫
0

2π∫
0

[0]dϕ dz; (A18)

KµB[1122] =
2µB

πr3l

l∫
0

2π∫
0

[
2 sin ϕ2 cos ϕ2

− sin ϕ4
− cos ϕ4

]
dϕ dz = −

2µB

r3 ; (A19)

KµB[1133] = KµB[2233] =
2µB

πr3l

l∫
0

2π∫
0

[0]dϕ dz = 0; (A20)

KµB[1212] =
2µB

πr3l

l∫
0

2π∫
0

[
4 sin ϕ2 cos ϕ2

]
dϕ dz =

2µB

r3 ; (A21)

KµB[2112] =
2µB

πr3l

l∫
0

2π∫
0

[
4 sin ϕ2 cos ϕ2

]
dϕ dz =

2µB

r3 ; (A22)

KµB[1313] = KµB[2323] =
2µB

πr3l

l∫
0

2π∫
0

[
sin ϕ2

]
dϕ dz =

2µB

r3 ; (A23)

KµB[3113] = KµB[3223] =
2µB

πr3l

l∫
0

2π∫
0

[0]dϕ dz = 0. (A24)

It is seen that tensor KµB has transversely isotropic symmetry. KλB of Equations (32) and (34) is
described by the following:

KλB =
λB

πr3l

π∫
0

2π∫
0

[[G1⊗G1 ⊗G1 ⊗G1 − 2G1 ⊗G1 ⊗ n⊗ n+n⊗ n⊗ n⊗ n]dϕdz; (A25)

KλB[1111] = KλB[2222] =
λB

πr3l

l∫
0

2π∫
0

[
sin ϕ4

− 2 sin ϕ2 cos ϕ2 + cos ϕ4
]
dϕ dz=

λB

r3 ; (A26)

KλB[3333] =
λB

πr2l

l∫
0

2π∫
0

[0]dϕ dz; (A27)
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KλB[1122] =
λB

πr3l

l∫
0

2π∫
0

[
2 sin ϕ2 cos ϕ2

− sin ϕ4
− cos ϕ4

]
dϕ dz = −

λB

r3 ; (A28)

KλB[1133] = KλB[2233] =
λB

πr3l

l∫
0

2π∫
0

[0]dϕ dz = 0; (A29)

KλB[1212] =
λB

πr3l

l∫
0

2π∫
0

[
4 sin ϕ2 cos ϕ2

]
dϕ dz =

λB

r3 ; (A30)

KλB[2112] =
λB

πr3l

l∫
0

2π∫
0

[
4 sin ϕ2 cos ϕ2

]
dϕ dz =

λB

r3 ; (A31)

KλB[1313] = KλB[2323] =
λB

πr3l

l∫
0

2π∫
0

[
sin ϕ2

]
dϕ dz =

λB

r3 ; (A32)

KλB[3113] = KλB[3223] =
λB

πr3l

l∫
0

2π∫
0

[0]dϕ dz = 0. (A33)

As expected, tensor KλB is transversely isotropic.
The contribution of surface bending ĈB to the stiffness tensor of the equivalent inhomogeneity

Equation (35) is
ĈB = K̂µB + K̂λB; (A34)

ĈB[11] = ĈB[22] =
λB + 2µB

r3 , ĈB[33] = 0, (A35)

ĈB[12] = −
λB + 2µB

r3 , ĈB[13] = ĈB[23] = 0, (A36)

ĈB[44] = ĈB[55] =
µB

r3 , ĈB[66] =
1
2

[
ĈB[11] − ĈB[12]

]
=
λB + 2µB

r3 , (A37)

In addition to ĈB, the contribution of surface tension to properties of equivalent inhomogeneity
includes another term ĈT present in Equation (15); however, evaluation of this term is presented in [42].
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