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Abstract: Historically, open source agriculture (OSA) was based on grassroots technology generally
manufactured by hand tools or with manual machining. The rise of distributed digital manufacturing
provides an opportunity for much more rapid lateral scaling of open source appropriate technologies
for agriculture. However, the most mature distributed manufacturing area is plastic, which has
limited use for many OSA applications. To overcome this limitation with design, this study reports
on of a completely 3D-printable planetary roller screw linear actuator. The device is designed as a
parametric script-based computer aided design (CAD) package to allow for the easy adaption for
a number of applications such as food processing at different scales. The planetary roller screw is
fabricated in dishwasher-safe polyethylene terephthalate glycol (PETG) on an open source machine
and tested using an open source testing platform to determine if it could maintain a constant load
without slipping and the maximum force. Then, this output is compared to a direct screw press using
the same materials. The results found that the maximum force is more than doubled for the roller
screw actuator using the same materials, making them adequate for some food processing techniques.
Future work is outlined to improve the performance and ease of assembly.

Keywords: 3D printing; additive manufacturing; distributed manufacturing; open hardware; open
source; open source hardware; cider press; food processing; roller screw; planetary roller screw

1. Introduction

Although much open source agriculture (OSA) was grassroots technology [1] born of
necessity [2], it is emerging as a commons-based [3] peer production [4], and some have
even argued that open source agriculture is becoming a social movement [1,5]. For example,
the MIT Media Lab Open Agriculture Initiative (OpenAg) believes that the precursor to a
sustainable food system will be the creation of an open-source ecosystem of technologies
that enable and promote transparency, networked experimentation, education, and hyper-
local production [6]. This distributed farming system is based on communication, sensing,
data collection, and sharing as well as automation to enable a network effect or the Internet
of Food and the next agricultural revolution [7]. As the organizers of the Gathering for
Open Agricultural Technology (GOAT) argue, “The technologies that produce our food
and the data about our food system should be public, and enable control by the farms and
farmers that produce it” [8]. OSA follows the same open source approach long established
to be beneficial in sustainable development [9,10]. Specifically, open source appropriate
technology (OSAT) [11] consists of technologies that provide for sustainable development
while being designed in the same fashion as free and open source software [12–15]. The
open source model functions on a gift culture [16], where everyone benefits from generous
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sharing. OSAT specifically consists of technologies that are easily and economically utilized
from readily available resources by local communities to meet their needs [11,17,18]. OSAT
is determined by environmental, cultural, economic, and educational resource constraints
of specific local communities long established for what makes an “appropriate technology”
(AT) [19–21]. The networked world now enables innovation and collaboration in the ap-
propriate technology space [22,23] allowing for full OSAT [11,24,25]. OSAT for agriculture
covers a wide range of agricultural tools [2] from often low-tech designs from grassroots
innovations in India from the Honey Bee Network [26–29] to precision agriculture and food
computing of OpenAg [6,30,31]. One of the most ambitious OSAT projects is Open Source
Ecology, which aims to create open source versions of all the tools needed for civilization
starting with the tractor for farming [32–35].

One open source technology that is particularly well-suited for fabricating OSAT
for OSA is the 3D printer [36,37]. The open source self-replicating rapid prototyper (or
RepRap) [38–41] has radically reduced the cost of additive manufacturing [42]. Already,
several solar-powered versions of the RepRap have been developed, which enable green
distributed manufacturing anywhere the sun shines [43–47]. The sharing community that
has resulted from RepRap and the resultant desktop 3D printer industry has created an
exponentially growing number of free designs [48] now numbering in the millions. These
designs can be digitally replicated anywhere in the world with access to the tools that now
cost <$250. It is now well-established that these low-cost open source 3D printers can reduce
costs for mass manufactured consumer goods on average by 90–99% [48–50]. In general,
the greater the percentage of a product that is 3D printed, the greater the potential economic
savings. Three-dimensional (3D) printers can also be applied to solving problems in the
developing world for farmers that use labor-intensive agricultural hand tools, as a growing
number of 3D-printed tools can be used for improving the efficiency of agriculture [45,51].
The cost-saving nature of distributed manufacturing of 3D printing has also been shown
to benefit developed-world small-scale organic farmers through a wide array of devices
including fruit pickers, chicken feeders, hose splitters, and hydroponics [52]. These agri-
cultural tools can be sophisticated such as tools for measuring nitrates in soil, water, and
forage [53] or for water quality testing that replaces thousands of dollars of commercial
handheld instrumentation [54]. However, often, these tools are mechanical in nature and
not overly sophisticated such as screw presses. The tensile strength of common 3D-printed
materials [55–59] limits the forces for simple screw presses, so often, metal screws or bolts
are used on devices such as the open source cassava press [52]. This increases the costs and
forces external dependency for the “vitamins” (non-3D-printed parts).

The most popular commercial design for fruit presses cannot be adequately repro-
duced cheaply using all-plastic common desktop 3D printing. This is not due to the design
itself, but rather the material properties of 3D-printed plastics. Although there are open
source systems that can 3D print higher strength plastics such as polycarbonate [60], the
lower-cost 3D printers are still largely limited to printing common thermoplastics such as
polylactic acid (PLA) and a glycol-modified version of polyethylene terephthalate (PETG).
This limits the effective loading of the pressing mechanism. To allow the construction of
an agricultural product press (e.g., a fruit press) with only 3D printing technologies using
common plastics, the design of the structure of the pressing mechanism needs to be made
stronger than a traditional lead screw while maintaining a small package to limit cost.

This study reports on the open-source design of a completely 3D printable planetary
roller screw linear actuator. The device is designed as a parametric script-based computer
aided design (CAD) package to allow for easy adaption for a number of applications such
as food processing at different scales. The planetary roller screw is fabricated in PETG
polymer filament on an open source fused filament-based 3D printing machine and tested
using an open source testing platform to determine that it could maintain a constant load
without slipping and the maximum force. Then, this output is compared to a direct screw
press using the same material. The results are presented and discussed for food processing
applications.
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2. Materials and Methods
2.1. Roller Screw Design

Here, the primary solution explored was the use of a planetary roller screw linear
actuator. These actuators were originally designed by C.B. Strandgren in 1954 [61]. They are
low-friction, high duty-cycle linear actuators that can deliver large amounts of power and
torque with lower friction and in a relatively small package [61]. The construction of these
actuators involves the use of an outer nut or shell with threading, coupled to a number
of threaded rollers that transfer the rotational power from the nut to the linear motion
of a central lead screw. Another way to approach their function would be to envision a
planetary gear system that is extruded into screws rather than 2D gears. This design was
adapted and used for this project.

There are three primary functional parameters to a planetary roller screw that define
the major functional relationships between each element. These elements are listed in
Table 1 with appropriate units for each.

Table 1. Primary functional parameters of a planetary roller screw.

Parameter Variable Units Description

Central Screw Lead l mm
rot.

Linear distance
traversed by the central

screw per rotation of
that central screw

Central Screw Thread
Starts t Each

The number of thread
starts on the central

screw

Central Screw Major
Diameter d mm The major diameter of

the central screw

These three functional parameters in Table 1 define the functions of the entire planetary
roller screw system and are used to define a number of other functional variables down the
line. Most importantly, they define the gear ratios between the threaded units, which can be
used to determine the performance of these actuators in a specific application. Equation (1)
shows the resulting gear ratio between the outer nut and the central screw.

GR = 1 :
t

t − 2
(unitless) (1)

Note that the only major parameter that affects this ratio is the number of thread
starts. It is also important to note that mathematically, these planetary screw systems
cannot operate with less than 3 screw starts on the central screw. It will be shown later that
although a minimum of 3 thread starts is possible, it is rather impractical for real-world use.

These functional parameters also define the major diameters of the other components
in the system. Table 2 shows the relationship between the primary functional parameters
and the major diameters of the other components:

Table 2. Resulting functional variables from primary parameters.

Component Variable Relationship Units

Outer Nut dnut dnut =
d∗t
t−2 mm

Roller Diameter droller droller =
dnut

t mm

These parameters define the basic dimensions and mechanical requirements of the
planetary roller screw. However, there are other values that need to be defined to completely
constrain the design of the planetary roller screw shown in Table 3.
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Table 3. Necessary mechanical parameters for constraining the planetary roller screw.

Parameter Variable Units Description

Assembly Height h mm
Linear height of the

entire planetary roller
screw assembly

Number of Rollers nrollers Each

The number of rollers
to place in the

assembly. Limited by
the diameter of the

rollers. Need at least
3.

Timing Gear Height hgears mm

Linear height of the
internal timing gears
used on the nut and

rollers.

Timing Gear Module m Each

The metric module of
the timing gears.

Larger values
correspond to larger
gear teeth. Has no

effect on gear ratios.

Timing Gear Helical
Angle θhelical

◦
Angle of the gear
teeth from purely

vertical.

Timing Gear Tooth
Shape gearTeeth N/A

Standard shape of
gear teeth such as

Convolute.

Thread Standard threads N/A
Thread standard used

such as ACME
Square or UTS.

Roller Axle Length laxle mm

Linear length of the
axles extending from
the tops and bottoms

of the rollers.

2.2. Bill of Materials (BOM) for 3D-Printed Parts

The BOM of the 3D-printed parts in shown in Table 4 for the roller screw assembly,
and those for the test stand assembly are shown in Table 5. An alternate top retainer is also
included in Table 4 for validation testing of a similar direct press screw mechanism. Full
details of the design are shown in Appendix A.

2.3. Roller Screw Assembly

A fully 3D-printed and assembled roller screw assembly is shown in Figure 1. This
example was 3D printed on an open source Prusa Mk3S in natural PLA at 0.2 mm layer
height, but it is amenable to replication on any RepRap-class fused filament 3D printer.
Complete source for the assembly can be found on Github at [62].

2.4. Roller Screw Testing and Validation

Testing was performed with the roller screw and modular testing assembly made up
the test materials shown in Table 6. Although initial prototyping was done in PLA, which is
the most common 3D-printed plastic, it is not dishwasher safe. PETG has a heat distortion
temperature of 70 ◦C and vicant softening temperature of 85 ◦C. Most home dishwashers
operate at about 49 ◦C, which enables PETG components (unlike PLA) to be cleaned in
most home dishwashers even without annealing the 3D-printed part. Both the roller screw
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assembly and test rig assembly were printed with PETG using an open source Lulzbot
TAZ6 3-D printer [63]. Default high-detail print settings were used in a TAZ6 3D printer
with a layer height of 0.14 mm. All tests were run on PETG 3D-printed roller screws and
testing rigs. An S-type load sensor was used to measure the force the screw was able to
impart during actuation.

Table 4. BOM of roller screw assembly.

Name Qty Image

Outer Nut 1
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Figure 1. Fully 3D-printed and assembled roller screw assembly. Printed on an open source Prusa
Mk3S in natural PLA at 0.2 mm layer height.

The load sensor was assembled and calibrated prior to insertion into the test rig
assembly. The load cell wires are soldered to the input side of the SparkFun HX711. The
wire coloring on load cells is standardized. Connect pins on the other side of the amplifier
to an Arduino. The entire wiring diagram be seen in Figure 2.

After connecting all components, then, Arduino was used to calibrate the load cell. The
HX711 library was downloaded from the Arduino IDE library manager. The public domain
“SparkFun_HX711_Calibration.ino” calibration code was available from the SparkFun
website and can alsobe downloaded from the project github repository [62]. A 9.07 kg
weight was placed on top of the load cell, and the calibration factor in the calibration
code was adjusted until the output on the serial monitor matched the weight. Once the
calibration was completed, the calibration factor was placed into the “run_scale.ino” code
found in the same locations as the calibration code. The weight was added to the top of the
load cell again to confirm that the operational code was correct.
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Table 6. Test materials.

Name Description Material Image

Roller screw assembly

Unit under test. Mechanical
system inserted into test rig

assembly. Default high-detail
print settings used in TAZ6

3D printer.

3D-printed PETG
(PLA Shown)
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After the setup process, the S-type load cell was fitted into the hole in the bottom
retainer of the test rig. Three-dimensional (3D)-printed plates were fastened into the M12
holes on the top and bottom of the load sensor to hold it in place and provide an even
surface for roller screw contact. The tests were performed by twisting the collar, while the
center screw was held in place by hand to prevent rotation. This is shown in Figure 3.
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Using the completed assembly described above, the roller screw was first tested to
determine if it could maintain a constant load without slipping and what the maximum
force could be obtained from the current build of this mechanism. Second, a test was done
to determine the increase in loading per rotation of the collar. At each step, the collar was
rotated 90 degrees and held static for a short amount of time. At each loading step, the
force on the roller screw mechanism lowered after the hand was removed from the collar.
Tests were repeated six times.

2.5. Validation Testing Versus Control Direct Press Screw

Then, a direct press screw was created using the same central lead screw and test
stand assembly to determine how much force was generated compared to a roller screw
press. In this alternate assembly, the top retainer was replaced with a threaded version
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(where the original was a through-hole with clearance for the screw), and the roller screw
assembly was removed. All other materials remained unchanged. This configuration can
be seen in Figure 4.
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Figure 4. Image of direct press screw test assembly.

Testing with this version of the screw used the same method to startup and acquire
data as with the roller screw test. However, for this series of testing, the lead screw is
twisted from the top until no more force can be applied. The same operator was used in
the manual twisting of this mechanism as in previous tests. The performance of the direct
press screw was measured during 10 consecutive tests in terms of applied force over a
duration. The direct press screw was rotated to apply force onto the load cell until it was
no longer capable of completing this operation. After a varying duration of time, the force
was then removed from the load cell by rotation of the screw in the opposite direction until
it was no longer touching the load cell top screw plate.

3. Results
3.1. Maintain a Constant Load without Slipping Test

The first test determined that the current roller screw assembly could maintain a
160 lbf compressive load against the S-type load sensor. However, when the loading
exceeded 200 lbf, the roller screw teeth started de-meshing with the central screw. This
de-meshing can be seen most prominently around the 1000th collected sample in Figure 5.
Then, the planetary roller screw was turned in the opposite direction to remove the load on
the load sensor. No visual damage was observed on the rollers or central screw during the
first test.

3.2. Increase in Loading Per Rotation of the Collar

The results of a representative loading test are shown in Figure 6. The planetary roller
screw was able to maintain an average of up to 85.73 kg. At the 250th sample, the collar
was rotated again, but the rollers failed and slipped off of the central screw. During the
seventh repeat of this test, one of the rollers experienced a failure where the central screw
sheared off its threads. The test ended after this event.

3.3. Direct Screw Press Performance

The results of the direct screw press are shown in Figure 7 for the most representative
experiment. The average maximum force was 403.5 N.
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4. Discussion

This is the first application of a roller screw design made for both AM, parametric,
and for distributed manufacturing. The results that double the applied force was able to be
tolerated with the same material represents a major step forward in the amplification of
mechanical strength for fused filament fabrication (FFF)-based AM. The overall effective-
ness of the 3D-printed planetary roller screw is discussed in the context of the experimental
results. Afterwards, a path forward is described for future research.

4.1. Force Exertion and Pressure as a Function of Angle

The measured force after each 90-degree rotation was averaged together and plotted
in Figure 8. For every degree of rotation of the main collar, the central screw exerted on
average of 2.19 N onto the load cell. The same force data are divided by the area of the
50 mm diameter pressure plate base to determine the exerted pressure and can be seen in
Table 7. This version of the roller screw is able to exert approximately 428 kPa onto a flat
surface. The pressure exerted by this mechanism is dependent on the area of the crushing
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surface; a press plate with 1
4 the area would be able to deliver four times the pressure before

entering the roller slippage failure mode of the current design.
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Table 7. Calculated pressure created by rotation of roller screw mechanism onto load cell.

Angle (deg) Pressure (kPa)

90 27.09
180 162.78
270 276.86
360 363.45
450 428.28
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4.2. Comparison to Conventional Screw Press

The screw press assembly was only able to generate roughly half the approximate
force that the roller screw testing yielded. The average maximum force delivered from
10 trials was found to be approximately 403 N. The pressure delivered by this screw was
calculated to be 206 kPa or roughly 2 atmospheres of pressure at sea level. This direct
press method encountered a large amount of friction during actuation from the rotating
central screw against the fixed load sensor. This friction is believed to have reduced the
overall effectiveness of the system by increasing the difficulty in rotating the lead screw.
This limitation is not present in the roller screw mechanism because there are no large flat
surface contact areas that can cause static friction.

4.3. Future Work

Throughout the process of designing this initial prototype, a number of additional
ideas and potential improvements have been thought of and even explored. The following
section will briefly go over some of the potential future developments for this design.

4.3.1. Overcoming Mechanism Failures

The mechanism failures discussed in the second test of the roller screw are prevent-
ing the planetary roller screw from reaching maximum force application. This can be
accomplished by adding additional rollers into the collar assembly to better distribute
force. However, manually inserting eight rollers into the collar housing, holding them
in place, aligning them, and threading the central screw through them is an incredibly
time-consuming process that is prone to failure. Overall, one of the largest difficulties
with the current design is the assembly of the central roller screw. The components can
be difficult to manage by hand and are difficult to align properly for complete assembly.
Potential design changes could allow the entire roller screw to be printed at once with
all components pre-located where they are required. Future roller screw mechanisms
will need to be printed in place to overcome assembly issues from adding more rollers to
increase mechanism strength. This can be done with a printer with two heads: one printing
in PLA and another in a water-soluble material such as polyvinyl alcohol (PVA).

If this were implemented properly, a user would simply need to print out the entire
system once, remove, and begin using the system immediately. This would bring about
quicker turn-around times and simpler end-user application for these systems. Modifying
this design to be print-in-place will require design changes to allow everything to be
printed properly without binding or meshing. The tolerances between the threads would
need to be controlled so that there is adequate distance between the roller threads as well
as the outer nut threads. Without appropriate tolerances, the threads could bind together,
making operation impossible.

Keeping the rollers within the assembly would also be a challenge, as the current
design relies on the gears as well as the central screw to keep the rollers within the assembly.
The most likely approach to printing-in-place would not include the central screw, as there
are typically other components to the overall system that need to be installed before the
central screw. Thus, the approach to keeping the rollers within the assembly must be
changed for the print-in-place design. This may be in the form of support material, a
“pseudo-central screw”, or any other means to prevent the rollers from falling out of the
assembly before the central screw is installed.

4.3.2. Increasing Overall Force

The primary delivery method of power to the roller screw is through the application
of torque to the outer nut. This torque is proportional to the total force that the press can
exert. If the given material can withstand larger forces and higher torques than the original
design allows, the simplest way to increase the force exerted by the press is to increase
the torque on the outer nut. This can be done by increasing the size of the moment arm
on the outer nut. The current design has rather short flanges which were pressed by the
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users’ fingers. By making these flanges longer and adding more weight to the end of the
flanges, the user can effectively increase the torque they can exert on the outer nut without
an increase in force. This is a commonly used method within manual metal presses and
cutters that use a large overhead wheel with a weight on one side. The user would take the
weight and “throw” it to create large amounts of linear force on the work piece. The same
principal can be applied here.

Further analysis of the mechanical system, such as through finite element analyses
(FEA), would allow the overall system to become more rigid and tolerant of component
variance. With such improvements, the overall force that can be applied to the system
can be increased without changing materials nor significantly increasing the size of the
system. These targets for future work would broaden the applicability of the system with
the potential to optimize the design for specialized needs where required.

4.3.3. Migration to SolidPython

While designing this project, one goal was to make the design parametric so that it
may fit into many different requirement sets. Although this design was originally intended
for use in a fruit press, the design scope can be expanded to other areas where a high-duty
cycle, low-friction, linear actuator is needed. Although OpenSCAD has facilities to create a
parametric design, the design of the OpenSCAD Language can quickly become restrained
and limited as the complexity of the design increases. This started to become a problem
as time went on and the overall code base became difficult to control and manage while
maintaining parametric design.

While searching for solutions to some of the problems encountered with OpenSCAD,
SolidPython was found as a potential alternative. SolidPython is a Python3 module
that encapsulates OpenSCAD within Python3 and allows the generation and exporting of
OpenSCAD code. This allows developers to use many of the features and systems built into
Python3 for developing OpenSCAD Code. Some of these features, such as encapsulation,
polymorphism, and Front-End User Interfaces, are difficult or impossible to implement
directly into OpenSCAD. However, these features are easy to implement within the context
of SolidPython. Potential front-end features include the following:

• Graphical User Interface
• Interactive 3D rendering
• Easy import of external thread standards
• Easy import of external housings
• Easy import of alternate gear methods
• Quick-switching between various design features
• Force vs. torque estimations
• Embedded operational simulation

With some of these great advantages available, SolidPython was explored more, and a
code base was developed that can use some of these features. That code base is located on
the GitHub repository [62] and is released under the same license as the rest of the Roller
Screw OpenSCAD code in a separate branch.

4.3.4. Roller Encapsulation

As can be seen in the original design, the roller screw typically used the spacers as
retainers for the rollers to prevent them from falling out of the assembly. This requirement
adds complexity to the design and is a source of increased friction as the spacers are pressed
against the walls of the roller screw. Our design solved these issues by using herringbone
gears for the timing gears. Herringbone gears are capable of taking some level of axial load
and therefore can keep the rollers retained.

However, there are other potential solutions to this issue. One other potential solution
that has not been thoroughly explored yet is the use of an “Angled” ring gear. Figure 9
shows a mockup of what this may look like. Although first impressions may lead one to
believe these are bevel gears, standard bevel gears cannot operate in the manner shown,
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because the axe of rotation for the roller and the nut are parallel. Bevel gears can only
operate when the two reference cones of the gears form a line at the mating connection of
the gears.
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In contrast, the “Angled” ring gear would require a new gear tooth geometry. This is
because, in essence, as the tooth moves up and along the slanted gear face, the module of
the gear is changing. This is because the number of teeth of the gear is constant; however,
the diameter of the gear is changing along the slant. This creates a gear tooth that would
appear to get larger as it moves up the gear. This slanted gear could be used for limiting
the axial movement of the rollers while possibly minimizing the friction between the rollers
and the outer nut.

4.3.5. Food Processing Applications

The maturity of open-source appropriate technologies being applied to agriculture
are maturing in the research and development arena, focusing largely on electronics-based
applications to agriculture [64–67]. There are also sophisticated systems that are open
source and can be used to sterilize for example rooms in the agriculture industry as well as
for research and development and medical applications [68]. This study has shown that
even traditional mechanical food processing can be potentially processed using digital
replication of OSAT as one potential application for planetary roller screw assembly is for
crushing and or pressing fruits. The recorded pressure would be adequate for crushing
soft-walled fruits such as grapes or peeled citrus without any prior processing. Firmer
fruits such as apples and some root vegetables such as potatoes can just be crushed with
the current iteration of the roller screw mechanism. However, this device could be used
for these applications by both increasing the size and implementing the improvements
discussed above. Food-safe plastics or an inner waterproof lining would be required to
ensure safe consumption and prevent the absorption of liquids into the printed filament.
To date, most 3D-printing applications focusing on food processing have been focused on
printing food [69,70]. This study has shown that there are considerably more traditional
applications available even to low-cost and readily accessible additive manufacturing sys-
tems. Future work is also needed to investigate the use of high-temperature open-source
3D printers [71] to print in engineering grade plastics such as polycarbonate, polyether-
ketoneketone (PEKK), and polyetherimide (PEI, ULTEM) and to determine that they are
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food safe and can be washed with industrial dish washing units [72], which have operating
temperature above 70 ◦C (and thus could distort PETG).

5. Conclusions

This study has shown the potential for using parametric scripted design to improve
the applied force of a linear actuator using a completely 3D-printed roller screw assembly.
It is clear that despite enormous progress in the last few years of the utility of low-cost
open source 3D printers, there is still considerable room for improvement to make more
sophisticated fully 3D-printable designs even without moving to other 3D-printing materi-
als or composites. Such designs offer the potential for extremely low-cost food processing
equipment along with many other applications that involve substantial physical forces.
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Appendix A

Appendix A.1. OpenSCAD Implementation

Following best practices for open hardware design, the system is designed and manu-
factured using only open source software and hardware [73–76]. The initial implementation
of the open source planetary roller screw was done completely in OpenSCAD [77], which
is a script-based CAD package. The OpenSCAD code base consisted of separate files with
dedicated purpose. The file structure can be seen in Table A1.

It is important to note that there are two external OpenSCAD files that are used within
the project. These files and their appropriate licenses can be found in the “lib” folder. The
files and their descriptions are listed in Table A2.

All other files are used to support the components or is a component itself. In the
following sections, the operational theory behind each component will be explained using
description and pseudo-code.

Appendix A.1.1. Central Screw

The central screw is the simplest component in the entire assembly. Figure A1a shows
a finished and labeled central screw assembly. Table A3 provides all of the parameters for
the central screw. The following sections will describe the operation of the OpenSCAD
code for generating the central screw.
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Table A1. File names and functions for the open source SCAD files.

File Name Function

“01_pressScrew.scad” Central Screw Module

“02_roller_V4.scad” Roller Module (Version 4)

“03_collar.scad” Outer Nut Module

“04_spacer_V3.scad” Roller Spacer Module (Version 3)

“05_topRetainer_V2.scad” Top portion of test stand to keep outer nut in place

“06_botRetainer_V4.scad” Bottom portion of test stand to keep load cell and
center screw in place

“08_loadSensor.scad” Load cell stand-in for determining size

“09_plateBase.scad” Screws in to bottom of load cell to keep it in place

“10_slotAnchor_alt.scad” Slide-in anchor point for bottom retainer to
connect to bracket

“11_bracket.scad” Slotted bracket that holds the bottom and top
retainer together

“12_presPlate.scad” Top screw-in plate for load cell. Pressed on by
center screw

Table A2. Resulting functional variables from primary parameters.

Library File Name License Function

Tsmthreads [78] “tsmthread4.scad” GNU General Public
License v. 3

Standard Threads
Library

Giertriebe [79] “Giertriebe.scad”

Creative Commons—
Attribution—Non-

Commercial—Share
Alike

Convolute Gears
Library
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Table A3. OpenSCAD central screw parameters.

Parameter OpenSCAD Variable Unit Description

Screw

Screw Diameter d_screw_eff mm Major diameter of the
central screw

Screw Lead l_screw_lead mm Lead of the central
screw

Screw Thread Starts n_screw_threads Ea.
Number of thread
starts in the central

screw

Screw Length l_screw_length mm
Length of the central
screw. Does not affect

overall function

Screw Cap

Outer Diameter d_cap_outer mm Outer diameter of
screw cap

Cut circles diameter d_cap_cut_temp mm
Outer diameter of the

circles used to cut
holes into the cap

Cap thickness l_cap_thickness mm Overall thickness of
the cap

Cap Cut-ins n_cap_cuts Ea. Number of cuts to be
made into the cap

As shown in Figure A1, the overall design of the central screw is simple. The design
consists of a large, central, threaded rod with a cap at top. The cap serves two functions.
One is to force a lower limit to the travel of the screw to prevent the screw from falling out
of the assembly. The second is to allow the user to quickly turn the central screw if the
need were to arise. This would be a quicker method of moving the screw than with the
Planetary Roller Assembly.

The threaded rod of the central screw has the simplest external implementation. This
is due to the use of the tsmthread4.scad developed by Dan Kirshner [78]. Using this
thread library, the central threaded rod is a simple function call using the screw diameter
(d_screw_eff), screw lead (l_screw_lead), screw thread starts (n_screw_threads), and screw
length (l_screw_length). It is important to note that the screw diameter, screw lead, and
screw thread starts are extremely important to the overall operation of the assembly. These
parameters will be in all the major modules and must be the same across all of these
modules.

The cap is a fairly simple construction. In OpenSCAD, it is implemented in its
own module, which is then moved up to and attached (unioned) to the screw. The cap
module generates one large central cylinder with the following parameters: outer diameter
(d_cap_outer), cap thickness (l_cap_thickness). The outer diameter parameter defines the
diameter of the cylinder while the cap thickness determines the cylinder height. This is
the primary cylinder. Then, the cap module produces a cap cut-ins (n_cap_cuts) number
of cylinders with a diameter of cut circles diameter (d_cap_cut_temp) and a height of cap
thickness (l_cap_thickness). These cylinders are translated out to half of the diameter of
the primary cylinder and then rotated around the primary cylinder. Finally, the periphery
cylinders are subtracted from the primary cylinder to produce “cuts” into the primary
cylinder that can be used to grasp and spin the central screw.

A picture of the printed part can be seen in Figure A1b. The printed part was printed
on an open source PrusaMK3S [80] using natural PLA with a layer height of 0.2 mm.
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Appendix A.1.2. Rollers

The rollers are a more complex design and are a critical part of the entire assembly.
The rollers transfer all of the axial forces exerted on the central screw to the nut. The rollers
are also the primary method of rotating, and therefore actuating, the central screw when the
nut is rotated. These design considerations imply that the rollers need to be robust while
also minimizing rolling friction between themselves and the central screw. Figure A2a
shows a rendered and labeled image of the roller and (b) shows the required parameters to
be generated. The following section will discuss the design of the roller and the usage of
the rollers OpenSCAD Module.
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The rollers are designed with a central section of threads, gears on both the top and
bottom of the roller, and an axle that extends through the roller and past the gears. However,
the gears and threads do not intersect with each other as they do in the original patent. In
the original patent, this was required due to manufacturing limitations; the manufacturer
could not simply start and stop the threads along the stock and then hob gears out of it.
The conventional manufacturer was forced to make the threads along the entire length of
their stock and then hob gears into both ends of the threads, creating the intersecting gears
and threads in the patent. For this design using more advanced AM, it was decided to
try what the original patent could not, so the gears and threads were kept separate from
each other.

The parameters for the OpenSCAD module can be seen in Table A4. Notice that
the three primary design parameters (central screw lead, central screw thread starts, and
central screw major diameter) are being used rather than the direct values for the roller.
The values that the rollers use to generate geometry is calculated within the module and
will be discussed later in this section.
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Table A4. OpenSCAD roller parameters.

Parameter OpenSCAD Variable Unit Description

Assembly Parameters

Screw Diameter d_screw_eff mm Major diameter of the
central screw

Screw Lead l_screw_lead mm Lead of the central
screw

Screw Thread Starts n_screw_threads Ea.
Number of thread
starts in the central

screw

Roller Parameters

Thread Length l_screw_length mm Length of the threads
on the rollers

Gear Module h_gear_module N/A

Module of the timing
gears at the top and
bottom of the rollers.
Needs to be the same

as the nut.

Gear Teeth Count n_gear_teeth Ea.

Number of teeth on
the timing gears.

Should be set so gears
are roughly same

diameter as rollers.

Gear Height l_gear_face mm Height of gear faces
on the timing gears.

Gear Pressure Angle a_gear_press ◦

Pressure angle of the
timing gear teeth.

Needs to be the same
as the pressure angle

for the nut.

Gear Helix Angle a_gear_helix ◦

Helical gear angle of
the timing gears.

Needs to be the same
as the nut.

Axle Extension l_axle_extension mm Extension of the axle
past the gear faces.

Axle Radius L_axle_radius mm
Radius of the central
axle. Note, does not

have protective limits.

As noted, not all of the variables used to generate the geometry of the rollers are
defined directly by the user. A couple of the critical dimensions are calculated within the
roller module code and are used by the rest of the code for geometry generation. These
variables are outlined, along with the calculations to obtain them, in Table A5.

These values combined create the rollers. The structure of the roller is constructed
using a cylinder, one set of threads from tmsthreads, and two gears (of appropriate type)
from Giertriebe. The central cylinder is constructed with a diameter specified by Axle
Radius and uses axle_length for the overall height of the cylinder. The roller threads use the
calculated value d_screw_eff for the major diameter of the threads with the pitched defined
by l_screw_pitch. The overall length of the threads is defined by the user parameter, Thread
Length. The standard and angle of the threads are hardcoded into the module; however,
they may be changed by a user as long as those changes are made to the nut and central
screw modules as well.
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Table A5. OpenSCAD variable and calculation for roller.

OpenSCAD Variable Unit Calculation Description

d_screw_eff mm d_screw_eff = d_central_screw /
(n_central_screw_thread_starts − 2)

Major diameter of the roller
screw

l_screw_pitch mm l_screw_lead = l_central_screw_lead /
n_central_screw_thread_starts Pitch of the roller screw

axle_length mm (l_screw_length+l_gear_face*2)+2 *
l_axle_extension Overall axle length

Appendix A.1.3. Outer Nut

The outer nut utilizes a “carving” method of the inside of the nut. This is used to carve
the shape of the outer nut into the external housing. That is, a positive image of the internal
workings of the nut is created. Then, that image is subtracted from the housing of the
outer nut. This method allows more flexibility in the shape and form of the housing. This
image includes the timing gears and load-transfer threads, which mesh with the rollers.
Figure A3a shows a labeled rendering of the outer nut with the printed output being show
in (b).
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The timing gears mesh with the rollers and prevent them from rotating out of sync
with the rest of the system, which can cause binding of the threads. The threads, as the
name implies, transfer the axial load from the rollers (which had a force induced on them
by the central screw) into the nut. As noted in Figure A3a, these threads were not included
for this design to simplify the construction and printing of the nut. This can be done
because the timing gears are herringbone gears that can transfer and support some axial
load. Similar to the separation of the timing gears and threads, which was done in the
rollers, this method could not be accomplished in the original patent due to manufacturing
limitations. AM methods allow the usage of these gears in the system and exclusion of the
Load-Transfer threads.

The housing for the outer nut is a simple cylinder with flanges that can be pushed
by hand. There are also a number of cut-outs in the housing that carve through the entire
assembly. These reduce plastic use for the overall outer nut but can be excluded if desired.

In Table A6, the primary parameters for the outer nut are described.
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Table A6. OpenSCAD outer screw parameters.

Parameter OpenSCAD Variable Unit Description

Assembly Parameters

Screw Diameter d_screw_eff mm Major diameter of the
central screw

Screw Lead l_screw_lead mm Lead of the central
screw

Screw Thread Starts n_screw_threads Ea.
Number of thread
starts in the central

screw

Nut Parameters

Thread Length l_screw_length mm Length of the threads
on the nut

Ring Gear Module h_ring_module N/A

Module of the timing
gears at the top and
bottom of the rollers.
Needs to be the same

as the rollers.

Ring Gear Teeth
Count n_ring_teeth Ea.

Number of teeth on
the timing gears.

Should be set so gears
are roughly same

diameter as rollers.

Ring Gear Height l_ring_face mm Height of gear faces
on the timing gears.

Ring Gear Pressure
Angle a_ring_press ◦

Pressure angle of the
timing gear teeth.

Needs to be the same
as the pressure angle

for the rollers.

Ring Gear Helix
Angle a_ring_helix ◦

Helical gear angle of
the timing gears.

Needs to be the same
as the rollers.

Ring Gear Rim d_ring_rim mm
Rim of extra material

around the timing
gears.

Housing Parameters

Housing Flange
Diameter d_cap_outer mm Diameter of the outer

housing flanges.

Flange Cut diameter d_cap_cut_temp mm
Diameter of the

circles cut into the
flanges.

Flange Thickness l_cap_thickness mm

Thickness of the
flanges from the

bottom of the
assembly.

Number of Flanges n_cap_cuts Ea. Number of cuts for
flanges.

The actual generation of the outer nut uses a few modules. The first generates the rings
gears, one for the top, one for the bottom, as well as the inner cylinder. This inner cylinder
is used to cut a hole into the large cylinder that forms the rest of the body. After this is
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complete, cylinders are used to cut the holes into the overall body. Finally, a hollowed
cylinder is attached to the bottom, and the flanges are formed with repeating cylinders that
orbit around the hollowed cylinder. Most of the actions use their own internal module,
which then are used in conjunction to form the entire structure.

Appendix A.1.4. Spacer

The spacers (Figure A4) are a very simple construction that is used to maintain
appropriate distance between the rollers as the operater. They prevent the rollers from
shifting within the assembly. In many cases, these spacers were not needed and are
excluded from the overall assembly.
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Figure A4. Finished and labeled rendering of the spacer.

The spacer design is simple, consisting of a cylinder with a clearance bore through the
middle that accommodates the central screw assembly. Along the ring of the spacer are
bore holes that act as simple bearings for the rollers. These bearings allow the rollers to roll
and make slight shifts in angle while maintaining a safe distance between the rollers.
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