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Abstract: While virtual reality has attracted educators’ interest by providing new opportunities to
the learning process and assessment in different science, technology, engineering and mathematics
(STEM) subjects, the results from previous studies indicate that there is still much work to be done
when large data collection and analysis is considered. At the same time, learning analytics emerged
with the promise to revolutionise the traditional practices by introducing new ways to systematically
assess and improve the effectiveness of instruction. However, the collection of ‘big’ educational data
is mostly associated with web-based platforms (i.e., learning management systems) as they offer
direct access to students’ data with minimal effort. Thence, in the context of this work, we present a
four-dimensional theoretical framework for virtual reality-supported instruction and propose a set of
structural elements that can be utilised in conjunction with a learning analytics prototype system.
The outcomes of this work are expected to support practitioners on how to maximise the potential of
their interventions and provide further inspiration for the development of new ones.
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1. Introduction

As new statistical data show, STEM (science, technology, engineering, and mathematics) education
is expanding rapidly in most developed countries and thus, the necessity to provide learners with
well-designed instructional contexts becomes even more imperative. This statement is aligned
to the outcomes of previous studies [1,2], which stressed the importance of assisting learners to
understand the acquired knowledge in-depth, albeit the difficulties that instructional designers face
when preparing specific laboratory exercises (including experiments and practice-based tasks) pertinent
to the STEM fields cannot be easily disregarded. For instance, field-based experiments require complex
transportation to different locations whereas some of the laboratory-based tasks may be too dangerous
(e.g., an electric shock caused due to the incorrect wiring of electrical wires in an electrical engineering
course) or too expensive to be performed in the real world (e.g., use of hard-to-acquire specialised
equipment). Additionally, the limited training, or the lack of awareness that students may have on
matters related to lab safety and security further increase the risks for injuries or even fatalities [2,3].
To prevent such issues from occurring, the presence of the instructor is essential however, even then,
the limited attention that individuals receive—e.g., due to the time-management constraints—has been
reported as a factor causing negative emotions and behaviour (e.g., frustration, dissatisfaction) [3,4].
Such shortcomings are linked to serious complications towards the theoretical knowledge development
or the conceptual experience advancement when abstract topics are under consideration, and that may
hinder students’ confidence to apply such practices in the future [5].
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A proposed solution to eliminate the impact of such drawbacks considers the adoption and the
integration of interactive technologies which can make the educational processes more efficient and
effective [2,6]. This is also aligned to the route that wants employees to be undertaking frequent
training tasks in simulated environments [7,8]. As a result, the need to analyse the potential and the
shortcomings of the computer-supported instructional strategy is of critical importance [9].

However, understanding how to maximise the effectiveness of the instructional design strategy,
based on the theory that each STEM subject imposes, is a complicated and demanding process.
The solution to this matter is identified in the potential that the technological tools (per se) offer several
opportunities for the collection of large datasets which can provide information related to the educational
context, the utilised instructional strategy and the behavior of the learners. Therefore, by collecting and
interpreting such information, content and instructional designers as well as researchers and educators
can increase the effectiveness of the learning strategy, facilitate the learning process, and prevent the
development of misconceptions [10,11].

Virtual reality (VR) has been steadily gaining momentum in STEM education as researchers,
educators, and industry practitioners tend to design and develop more and more applications that
promote experiential and active learning; as opposed to the traditional teacher-centered (passive)
approach [1,4]. In addition, under the aid of third-party equipment—such as cave automatic virtual
environments (CAVEs) or head-mounted displays (HMDs)—users are free from external distractions
and can thus, achieve greater levels of immersion. Relevant studies [5,6,9–12] have concluded that the
high representational fidelity of the graphics affects the realism of the activities and thus, leads users to
develop the so-called sense of presence. Sense of presence or, otherwise, immersion has been correlated
with positive learning outcomes and results (e.g., attainment of different learning objectives, cultivation
of cognitive thinking skills).

However, despite the increasing movement towards evidence-informed VR-supported instruction,
very few systematic efforts can be identified to date where applied learning analytics (LA) practices
are discussed. In addition, no concrete solution exists to analyse and present the potential benefits of
using VR in different STEM subjects. This inadequacy of the literature motivated this initial attempt to
describe and propose a theoretical design framework that could assist educators, scholars, researchers,
and policymakers to gather large data sets in order to analyse the potential of VR applications in
combination with LA models.

Therein, in the context of this work, we filtered and analysed the elements that influence VR-support
instruction the most and further combined them with LA practices. We believe that researchers and
developers who are interested in these disciplines and envision a similar instruction-and-assessment
system will find this work as the “go-to” source on the basis of which actual research and development
efforts can be initiated.

The remainder of this manuscript is organised as follows: in Section 2 we synthesise the conclusions
of different works related to the integration of VR and LA in STEM education and align them to
the instructional design perspective. Section 3 entails the rationale and the purpose of the proposed
theoretical design framework wherein, the design decisions are justified and the proposed developmental
tools are analysed. Section 4 encompasses the main contribution and implications (conceptual, theoretical,
and practical) made by this work. Section 5 discusses the potential of this work by blending conceptual
and developmental elements of the proposed framework. Finally, Section 6 concludes with the most
important limitations and provides directions for future research and development.

2. Background

2.1. Virtual Reality in STEM Education

Heim [12] argued over the potential of virtual reality (VR) by attributing its added value to three
fundamental elements: interactivity, immersion, and information intensity. Despite the time that
has passed since this claim was made, the experimental studies that have been performed ever since
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not only confirmed its validity but, also, revealed the additional benefits that such “tools” can bring
to the educational scenery [3,13]. Therein, in the context of this work, we adopt the definition that
Gigante [14] coined, which defines VR as the computer-supported setting that enhances the real-world
experience through the provision of multi-aesthetic stimuli (e.g., visual, audio, motion). Additionally,
we expand the notion of this definition by providing a brief overview of the VR-supported (educational)
settings that are available to date (e.g., room-scale VR such as CAVE, standalone-VR such as Oculus
Rift, HTC Vive, and mobile-VR such as Samsung Gear VR, Google Cardboard).

The aforementioned setups promote different levels of embodiment (immersion) and offer variable
opportunities for knowledge acquisition and construction (information intensity) whereas, the inclusion
of haptic sensors, brings additional opportunities for interactivity and engagement. In a sense, this is
what differentiates VR from other educational technology tools—i.e., the opportunity offered to
learners to undertake both passive learning (e.g., observation of natural phenomena) and active
learning activities (e.g., laboratory-related experiments) without spatiotemporal or time constraints.
However, none of the above would have been possible without the rapid technological advancement
of computing devices and the vast evolution of VR [15].

The integration of VR in different educational contexts is already playing a significant role as
it has facilitated the application of contemporary instructional methods which enable learners to
immerse themselves in the subject under investigation and thus, develop the cognitive strategies
(e.g., problem-solving, critical thinking, creativity) that are essential in the 21st century [3,10]. Aligned to
the notion of this claim, a common observation across the STEM education disciplines can be made
regarding the nature of the programs and the respective interventions which follow (primarily)
the principles of the experiential learning model. It, therefore, comes with no surprise why such
tremendous efforts have been made to integrate immersive technologies to every education level which
involves matters related to the STEM disciplines. This is also in line with the conclusions that [11]
have drawn which attribute the successful integration of such technologies to the high degree of
embodiment that users develop when interacting with the (digital) objects that have been customised
following their personal needs and demands [9,11].

2.2. Instructional Design in Virtual Reality

Instructional design methods comprised strategies (e.g., instructor-guided, self-directed)
and techniques (e.g., simulations, gamification) aimed at helping educators to contextualise the
learning process and learners to link the concepts under investigation with their prior knowledge
and experiences [16,17]. In other words, instructional design helps learners to understand what
kind of information is provided within a specific context, how this information can be translated
into knowledge acquisition, and how the constructed knowledge can be applied more effectively
into practice [18,19]. The aforementioned processes are directly linked to the learning performance,
which concerns the range of fluctuations in learners’ knowledge development or behavior during
the different stages of the intervention, and the learning outcomes (e.g., satisfaction, achievements,
acquired knowledge/skills, competencies) that learners are expected to achieve at the end of the
intervention [20].

The findings from the VR-supported educational activities are well-documented by a substantial
body of literature as are the benefits that this technology brings to the learning process. Below, we provide
a summary of the most important elements that influence the respective educational practices:

• Student-centered learning: Aligned to the principles of (social) constructivism and constructionism,
the visually rich environment and the experimental nature of VR enable students to develop
strong mental representations of the information sources through hands-on and collaborative
activities [21,22].

• Self-directed learning: By exploiting the potential that the three-dimensional (3D) element offers,
learners can investigate hypothetical and abstract concepts—which are difficult or even impossible
to examine in the real-world—without spatial, time, and/or geographical boundaries [13,23,24].
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• Self-regulated learning: Immersing learners in situations similar to the real-life context enables them
to self-regulate the learning process following challenges and difficulties they are facing [25,26].

2.3. Learning Analytics

Educational practitioners and scholars have attempted to define LA from different perspectives.
For instance, a portion of researchers [27–29] account them as an alternative method to gather
student-generated data to provide personalised learning experiences. Others [30,31] set the focus on
the patterns that can be developed from the students’ learning behaviour to inform future instructional
design decisions. Long and Siemens [32] have proposed a definition which considers and rounds up
the aforementioned perspectives by suggesting that LA is a method to collect longitudinal educational
data and a process that utilises the collected data to optimise learning and the environment in which it
occurs. A significant number of researchers from different disciplines and fields (e.g., applied statistics,
artificial intelligence, data Science) are working in collaboration to identify the diverse learning
needs that students have and improve the present educational practices [32]. To achieve this goal,
large sets of heterogeneous data—from different educational levels and sources—are collected, explored,
and analysed using machine learning (ML) models. The outcomes of this process provide diverse,
but equally useful, feedback to the educational stakeholders concerning learners’ performance,
the shortcomings of the utilised instructional approach, and the inadequacies of the course under
investigation [33,34].

The added value of LA can be examined from different points of view. Below, we present the
key-areas that LA influence, after considering the interests and the needs that the various stakeholders
(e.g., learners, educators, instructional designers, policymakers) have:

• Learners: Alter the learning habits by identifying patterns and paths that can support the
attainment of the learning objectives and ensure the achievement of the predefined goals.

• Educators: Improve the quality of teaching based on real-time and summative data that mirror
learners’ performance, involvement, and engagement throughout the time.

• Instructional designers: Increase the quality of instruction based on the analysis of the elements
that have been utilised the most, the feedback from the students on the provided interventions,
and the comments of the teachers.

• Policymakers: Develop clear and accurate awareness of current and future tendencies to inform
the subsequent decisions and policymaking.

3. The Theoretical Framework Design

3.1. Rationale and Purpose

Accounting to the above, the desirable outcome of this work is to provide a theoretical framework
that offers educators and instructional designers suggestions related to the data that can be collected
from different VR-supported educational interventions and recommendations on the connections that
may exist amongst them. To facilitate this goal, the main objectives of this work are split into three
consecutive stages.

In the context of this manuscript, we elaborate on and discuss the perquisites that characterise the
requirements of the first stage as presented below:

1. Development of a theoretical design framework which takes under consideration the research
gaps that have been identified from the examination of the relevant literature.

2. Analysis of an instructional approach that can determine students, educators, and practitioners from
different STEM fields while uncovering the most relevant variables related to this classification.

3. Identification of the most efficient ML models for the analysis of the error-related behaviors and
the determination of the patterns that will improve the provided instruction.
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In the second stage, we plan on using the proposed framework to design a functional prototype of
a VR learning tool which can be applied in various iterations within the STEM education fields for
evaluation purposes. Finally, in the third stage, it is expected that a complete training and assessment
session is provided by utilising solely the recommendations of the LA measurements.

To achieve the objectives of the first stage, we propose the use of different approaches based
on which the student models are shaped from the information that can be retrieved from the VR
application and the companion learning management system (LMS). The proposed methodology that
leads to the practical development of the proposed framework also comprises three parts, which are:

1. Use of statistical analysis models to classify students after collecting data from several
VR-supported training sessions. The initial dataset includes information related to the course
design, the learners’ profile, and the interactions that the students had during the VR training task.
For the construction of the final model it is expected that several statistical models are considered
so as to increase the prediction accuracy and the reliability of the results.

2. Use of different feature importance analysis (FIA) methods to identify the most effective classifiers
per task, the relevant variables, and their impact on determining students’ success or failure for
the task under consideration.

3. Use of an exploratory data analysis (EDA) tool to identify the relationships between the recorded
errors. To this end, the clustered information is exported visually to develop different hypotheses
related to the underlying reasons that drive these relations. For the visual representation, the LA
guidelines that Baker and Yacef [35] have proposed can be applied.

3.2. Theoretical Framework Analysis

According to Hevner et al. [36] the design science research methodology is one of the most
appropriate methods for the development of an information technology or information system artifact
which, in this case, is the proposed theoretical framework. The main principle of this approach suggests
the deconstruction of important problems on the grounds of which sound (technical) solutions can
be developed. Therein, during the literature review that was conducted in the context of this work,
we identified a set of issues that have not been yet addressed. These shortcomings, provide the
foundation based on which we design the main requirements of this framework as presented below:

1. LA models are applied primarily to data that originate from LMS without considering alternative
or supplementary tools.

2. The main sources for data collection consider the information that derives either from the
technological or the pedagogical perspective of the tool/intervention but disregard partially or
even completely the psychological one.

3. Relevant studies examine the correlations that may exist between a finite set of dependent
variables (e.g., demographics, credits, grades) against non-classified parameters that are relevant
to specific contexts and fields. This endangers the essence and the further evolution of LA as it
prevents the collection and the sharing of large and homogenous data sets.

4. By cross-examining the latest (systematic) literature reviews, it became apparent that there is still
a lack of a universally accepted comprehensive framework and/or system capable of providing
the involved stakeholders with suggestions on the typology of the data that should be collected
or recommendations on how to interpret such data to evaluate specific elements and improve
their practices.

According to the above, the proposed framework (Figure 1) blends the aforementioned points by
integrating the use of LA models for processing and cross-examination of the information related to:

(a) the technical affordances of the utilised tools;
(b) the instructional design choices that practitioners and educators make,
(c) the psychological elements that influence learning.
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Figure 2. Classification parameters for each dimension.

In the first category (technology), we consider matters related to the design and the development
of VR-supported interventions, such as:

• the software toolkits utilised for the development of the VR application (e.g., Unity, Maya,
Net, Photoshop)

• the specifications of the hardware equipment utilised for the conduct of the interventions
(e.g., smartphone, tablet, laptop, desktop PC, head-mounted display)

• the type of the VR approach (e.g., HMD-based, CAVE, 360◦ video) and the companion equipment
(e.g., VR-enabled laboratory handbooks or discipline-related specialised equipment)

• the supplementary resources that may be required for the conduct of the intervention
(e.g., multimedia resources, web-based educational platforms, 3D models)

In the second category (pedagogy), we contemplate the potential connection across the instructional
decisions that practitioners make when designing educational activities [16], such as:

• the learning theories based on which the design of the intervention relies on (e.g., constructionism,
cognitivism, (social) constructivism, embodied cognition),

• the instructional strategies (learning models) that gravitate the didactic essence of the respective
theories (e.g., activity-based, experiential, collaborative, situated, problem-based, game-based,
agent-based learning) and instructional techniques utilised for the conduct of the intervention
(e.g., lecture, demonstration, seminar, tutorial, case study), and
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• the evaluation focus points related to the effectiveness and efficiency of the application, the
intervention, and the instructional approach (e.g., learners’ performance, learning outcomes,
learning gains).

In the third category (psychology), we consider the psychological elements that are connected to
the pedagogical dimension and influence the learning process [37,38], such as:

• the behavioral elements (e.g., the impact/effect of reinforcement, user experience, visual
attractiveness/intuitiveness),

• the cognitive elements (e.g., attention and memory span, problem-solving skills),
• the affective elements (e.g., interest, attachment, satisfaction, degree of arousal, social communication,

nature of the activities),
• the motivational elements (e.g., self-belief, self-regulation, self-efficacy, self-goals, self-concept,

self-esteem, situational interest)

In the fourth category (learning analytics), we consider the steps that are related to the data
gathering and analysis process, such as:

• the information that can be collected from the different stakeholders (e.g., administrators, educators,
students, assessment tools),

• the data collection approach which includes information related to the research method
(e.g., experimental, quasi-experimental, non-experimental) and the research methods utilised
(e.g., qualitative, quantitative, mixed),

• the data analysis approach which includes the use and combination of different methods
(e.g., item response theory, cognitive diagnosis, evolutionary algorithms) and educational data
mining models (e.g., decision tree, naïve Bayes, k-nearest neighbor), and

• the data visualisation models for the dissemination of the processed data (e.g., graphs/charts,
scatterplots, sociograms, tag clouds, signal lights).

3.4. Overview of the Learning Analytics System

Educational data (Figure 3—Input) falls into three broad and usually overlapping categories:
learning progression (Figure 3—Academic), learner intellectual competences (Figure 3—Cognitive),
and learner behaviour (Figure 3—Psychology) whereas, external linked data—such as demographics
or societal norms—can augment each of these. Aligned to the intended goal, in this section, we provide
an overview of the functional requirements and specifications of the proposed system.Educ. Sci. 2020, 10, x FOR PEER REVIEW 8 of 15 
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However, prior to unfolding the specifics of the proposed system, it should be noted that the use
of ML techniques benefits all the following stages as it is a prerequisite to filter the input data, analyse
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the classification metrics, and interpret the results (learning analytics) in order to provide answers to
the questions or concerns that educators and instructional designers usually have, such as:

• How to assess the skill cultivation between novice/expert students in VR STEM training scenarios?
• How to select the most appropriate instructional design elements to increase the effectiveness of

the VR intervention, according to the difficulty of the topic and the learners’ abilities?
• How to perform error diagnosis for VR-supported instructional settings in conjunction with LA?
• How to provide timely support to low-performing or additional opportunities for development to

high-performing students?

In Table 1, we list some examples of data types (Figure 3—“Input”), that have been reported to be
associated with LA practices and further adjust them to the concept of the proposed framework in
accordance with their nature, collection method, and source of origin.

Table 1. Indicative examples of data collection types, methods, and sources.

Parameters Method Stakeholder

Gender, Age Survey, Registry Admins
Grades, Credits, Achievements, Enrolments, Dropouts, Attendance Registry Admins, Educators

Produced artifacts (Documents, Code, 3D models) LMS, VR Students
Log-in time/frequency, Time-on-task, Resources use, e-Assessment/Feedback LMS, VR Students, Designers

Activity setting (Blended, Distance, F2F, Individual/Collaborative) LMS, VR Educators, Designers
Usability (VR), User experience (VR) Survey Students

Attitude, Motivation Survey Students
Gaze, Gesture, Speech Sensors Students

Nevertheless, the actual integration of LA begins after identifying the patterns that support
the development of deep understanding related to students’ academic skills, cognitive competences,
and psychological behaviour (Figure 3—“Classification”). For this reason, it is important to classify the
gathered information in accordance with the area(s) (Figure 3—“Metrics”) that are under investigation
and/or in need of improvement (Table 2).

Table 2. Data classification.

Categories Metrics

Academic
Progression

Domain knowledge proficiency, Skills mastery, Knowledge retention, Learning
strategies, Learning preferences, Learning styles, Performance, Achievements,

Misconceptions, Cognition, Aptitude

Cognitive
Performance

Efficiency, Evaluation, Achievement, Competence, Resource consuming, Elapsed time,
Correctness, Deficiencies

Behaviour Gambling, Guessing, Inquiring, Requesting Help, Willingness to collaborate,
Time series of access and response, Persistence, Emotions

For instance, to measure matters related to the academic dimension, the primary data collection can
include information related to students’ management skills (e.g., use of resources), their prior knowledge
with the scientific subject (STEM) and experience with the digital learning tools (e.g., VR, LMS) as well as
their attitude towards the learning process (e.g., attendance, participation, interaction with the peers)
and their learning competence (i.e., time to develop and integrate the acquired knowledge and skills).
The primary data sources can include information originating from the students’ interaction with the
VR application and the LMS as well as self-reported cues related to their short- and long-term plans or
goals (e.g., academic, personal, professional, monetary).

As regards the measurement of matters related to the cognitive dimension, self-reported data related
to the ways that students regulate their efforts (e.g., strategies, tactics, habits) can be collected using
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validated instruments and further correlated with their learning outcomes (including the identification
of misconceptions and knowledge gaps) using artificial intelligence techniques.

Finally, for the measurement of matters related to the psychological dimension, the focus is set
on learners’ behavioral patterns which are recorded from the onboard sensors of the devices that
will be utilised for the conduct of the interventions (e.g., smartphones, tablets) and other wearables
(e.g., HMDs). Such data include information related to learners’ interactions (e.g., app use log,
visual attention span, emotion recognition, textual communication records) and mobility patterns
(e.g., frequency and duration of time spent at various locations).

The gathered data can be analysed under the aid of diverse statistical analysis methods and/or
Machine Learning (ML) techniques (Figure 3—intermediate process between “Metrics” and “Learning
Analytics”). However, before adopting such practices, it is essential to understand the features and
benefits that each approach presents as well as the situations in which they can be applied (Table 3).

Table 3. Data interpretation.

Aim Machine Learning models References

Feedback to educators’ and instructional
designers’ scenarios. Decision Trees, Random Forest [39,40]

Investigation of learners’ behavior during and
after the VR-supported intervention. Naïve Bayes [41]

Course adaptation and learning
recommendations based on learners’ behavior. Decision Trees, Random Forest [42,43]

Assessment of the VR-supported learning
material and content. Decision Trees, Random Forest, Naïve Bayes [44,45]

Prediction of student’s learning performance. Decision Trees, Logistic Regression, Support
Vector Machines [46,47]

For the interpretation of the analysed data (Figure 3—“Learning Analytics”), we recommend the
use of the model that Howson et al. [48] propose (Table 4).

Table 4. The analytics stages as described by Howson et al. [48].

Analytics Description Outcome

Descriptive What happened? Insights into historical patterns of
behavior/performance.

Diagnostic Why did it happen? Evaluation of the examined data.
Predictive What could happen in the future? Identify trends / predict future behavior.

Prescriptive How should we respond in the future? Generate recommendations and make decisions
based on algorithmic models

The output of these analyses (Figure 3—prerequisite for the “Learning Analytics” stage)
is communicated to the interested stakeholders, who may not always be familiar with the dataset,
via different mediums (LA dashboards) and techniques (visualisations). The use of graphic elements
makes it easy to share insights and translate complex ideas into simple and easy-to-grasp concepts.
However, while we recognise that LA tools provide rich and detailed information about the educational
practices, they may also lead to information overload which may restrict educators’ abilities to provide
effective and adequate support to learners. Hence, it is essential to ensure that the receiver understands
the purpose of the visualisations and its interpretation (Table 5).
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Table 5. Data visualisation.

Evaluation Visualisation Method

Collaboration Mathematical graph, Statistical, Timeline, Interaction Matrix, Heatmap

Instructional Design Mathematical graph, Statistical, Timeline, Word cloud, Interaction matrix, Circular
graph, Bubble plot, Concept map, Glyph, Geomap

Learning Progress Statistical, Circular graph, Heatmap, Radar
Retention Statistical, Timeline, Word cloud, Glyph

Motivation Statistical

4. Contribution and Implications

4.1. Conceptual Implications

The current study also contributes to the existing body of literature by providing a range of
parameters that stream from the proposed theoretical framework and could improve teaching and
learning practices. These are:

1. Orchestration of instruction by teachers and reflection on the utilised strategies from the originals
available to them.

2. Evaluation methods to assess not only the students’ performance but, also, that of teachers about
the mode of operation and practices followed in both formal and informal contexts.

3. Provision of personalised suggestions and appropriate structures to support the implementation
of similar scenarios in the future.

4. Development of deep understanding of the core elements that influence the educational process
and adaptation of the educational resources based on needs and interests of the students.

5. Assessment of the course curriculum with particular focus on the parameters that affect the
success and the effectiveness of the interventions in STEM training tasks.

6. Support from the administration for reshaping of the educational units and allocation of financial
resources for the development of VR applications in formal teaching conditions.

4.2. Theoretical Implications

Several theoretical implications with regard to the development of a universal LA system tailored
to the VR configuration setups are also provided. The following points are expected to guide the future
developmental decisions but also provide instructions to those researchers, educators, and instructional
designers who are willing to contribute towards this effort:

1. The decisions related to the data collection should be driven by the principles of the applied
instructional design method. Hence, the involved stakeholders are encouraged to provide
detailed information about the utilised instructional approaches, the educational subjects that
were under investigation, and the analysis methods that have been followed for the examination
of the correlations. In doing so, the repetition of the intervention to similar contexts facilitate
and supports future research efforts to validate (collectively) the gathered information to develop
well-grounded theoretical perspectives.

2. The potential of interactions should be examined holistically and not just unilaterally
(i.e., both between the users and the VR system and among the users themselves). Under this
consideration, we recommend cross-examination and correlation clustering of different pedagogical
and psychological elements using ML models to aid the development of prototype profiles and
allow the systematic mapping of the factors that influence students’ outcomes and performance.

3. The classification of the gathered information should be done in accordance to the areas of interest
of the different beneficiaries (e.g., administrators, instructional designers, teachers, students)
and the outcomes should be disseminated following the data analytics maturity scale that
Howson et al. [46] proposed (e.g., descriptive, diagnostic, predictive, and prescriptive analytics).
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In doing so the involved stakeholders are able to determine the suitability and the effectiveness of
the intervention and thus, perform any adjustments that may be required before designing or
implementing new interventions.

4.3. Practical Implications

The inadequacy of the literature to provide recommendations with regard to the data types that
can be collected from immersive technologies as well as the absence of a distributed system—capable of
collecting, analyzing, and determining the appropriateness and the effectiveness of the VR-supported
interventions in STEM education—motivated this initiative based on which we provide a set of practical
implications which could help developers to better understand the functional requirements of such
VR-supported LA systems:

1. VR technology produces huge amounts of data but not all of them are meaningful to the context
of educational studies. For exemplification purposes we summarise the data sources that are
pertinent to the aim of the proposed LA system followed by some indicative examples:

• visual (e.g., eye motion tracking)
• auditory (e.g., pitch/intensity of the environmental noise levels)
• haptic (e.g., movement, rotation, force)
• network (e.g., packet loss, time delay)

2. The essence of the educational VR applications relies on the provision of immediate feedback
which offers answer-revision opportunities and leads to errorless learning. In the same vein,
comprehensive implementation of a visual LA dashboard is expected to influence the learning
dynamics (e.g., motivation, competitiveness, goal orientation) and impact positively learners’
outcomes, achievements, and performance.

5. Discussion and Conclusions

In the context of the 21st century skills that individuals need to develop, more digitally oriented
training programs and tools are needed to support and/or enhance trainees’ digital competences and
learning performance. At the same time, as STEM programs continue to gain ground globally, the need
to improve and advance the existing instructional and assessment methods increases. To this end,
student engagement across STEM fields is dependent on the appropriateness of the learning activities
which, in turn, shape the capacity of the future professionals. Therefore, in order to guarantee the
proficiency of the newly trained graduates, it is essential to integrate highly sophisticated and advanced
instructional methods and evaluation techniques.

The potential of VR in STEM education has already attracted practitioners’ interest by
demonstrating its power to support the conduct of safe, interactive, and engaging learning experiences.
At the same time, the LA domain is gaining more and more ground as it has immense potential
to improve teaching and learning practices [24,28,29]. Typical examples include early warning and
recommendation systems which provide personalised guidance, feedback and support to learners while
enabling educators and instructors to better understand the needs and potential of their learners [49].
Other studies [50], focus on the analytics methods used to predict learning outcomes (e.g., completion,
progression) and student retention [51]. Finally, a substantial body of the available literature is
streamlined towards the educational data mining techniques and methods that are being used to
achieve the aforementioned goals [52,53]. However, the attempts to integrate LA in the context of
immersive technologies are limited and scarce.

Studies which blend pedagogy and cognitive psychology with LA could not be identified. Therein,
in the present work, an effort to tackle this literature limitation was made on the basis of which we
outlined the foundations of a four-dimensional theoretical framework which accounts the multifaceted
layers that the learning process displays (technology, pedagogy, psychology) and combines them
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with LA practices. In addition, we discussed the parameters and constructs that should be taken into
account with particular emphasis on the impact that the different instructional strategies and methods
have on the knowledge development process and the opportunities they bring to create personalised
learning patterns [16].

By integrating LA, educators and instructors can also facilitate the assessment process. This is
of particular importance now that teaching takes place in distant settings (e.g., remote/virtualised
laboratories) and thus, timely feedback and feedforward is needed. For instance, a VR application
dedicated to construction engineering includes both hands-on practices, using controllers and haptics,
and observation-oriented actions using HMDs and standardised PC peripherals (e.g., geometrical
calculations, 3D model editing, estimation of actual construction costs) in order to achieve the
respective learning objectives. Any data collected during this process can be extracted via an embedded
LA pipeline to a dedicated LA system for classification and interpretation using ML algorithms.
For instance, supervised learning algorithms can be utilised to predict future events based on students’
past behaviour and actions in the VR environment. On the other hand, unsupervised learning algorithms
do not require historical information for the classification of the input data. In this case, the clusters are
developed in accordance with the hidden patterns and connections that emerge during the training of
the dataset under investigation (e.g., grouping of different VR exercises).

By highlighting these conceptual design elements, we envision that researchers, educators,
and educational technology entrepreneurs will further consider these relations—when evaluating
the potential of the utilised instructional VR approach so as to take full advantage of the data
that can be collected from such tools and platforms and thus, support the students to reach their
maximum potential. This statement also governs our future work recommendations thus, we advise
VR developers and practitioners to make their primary data publicly available so as to support and
promote such efforts for the mutual benefit of the respective communities. However, as LA entail
multiple privacy management and ethical considerations we would like to highlight and remind that
any data collection, interpretation, and dissemination practices should always follow the General Data
Protection Regulation (GDPR) guidelines and the wider code of ethical research [54].

6. Limitations of the Study

As in any study, this one has its own limitations worth noting. First, due to the often-sparse
definitions used to describe VR, we sought articles only from specific databases (Scopus, Web of
Science, IEEE Xplore) with preference of selection over peer-reviewed international journals. Second,
many of the originally identified articles were one-off studies with either too small samples or very
context-dependent conclusions. As a result, when considering the features that could be integrated
in the preliminary version of the proposed system, we opted for studies which were grounded to
well-established theories and models and had reasonably large samples so as to compose a more
realistic picture with regard to the needs that STEM education students have.
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