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Abstract: During the recent vast growth of digitalization, e-learning methods have become the most
influential phenomenon at higher educational institutions. E-learning adoption has proved able to
shift educational circumstances from the traditional face-to-face teaching environment to a flexible
and sharable type of education. An online survey was conducted, consisting of 30 teachers and 342
students in one of the universities in the United Arab Emirates. The results show that teachers’ and
students’ perceived technology self-efficacy (TSE), ease of use (PEOU), and usefulness (PU) are the
main factors directly affecting the continuous intention to use technology. Instructors’ technological
pedagogical content knowledge (TPACK) and perceived organizational support (POS) positively
affect the intention to use the technology, whereas students’ controlled motivation (CTRLM) has a
greater influence on their intention to use the technology, due to the type of intrinsic and extrinsic
motivation that they have and which they can develop throughout the process of learning. The
findings support the given hypotheses. In addition, they provide empirical evidence of a relationship
between perceived organizational support and perceived pedagogical content knowledge. In fact,
they are considered the key factors that support the use of technology continuously.

Keywords: e-learning platform; PACK; perceived usefulness; perceived ease of use; perceived
organizational support and technology self-efficacy

1. Introduction

Teachers and students may perceive the importance of e-learning differently. Teachers
usually focus on the importance of training and support that may enhance the effective use
of e-learning platforms, whereas the perceived usefulness and ease of use are influential
factors from the students’ perspective. The differences in their perspectives stem from
the fact that their roles are different. Students usually receive the product through the
e-learning system and can get all the different advantages that the system may offer; thus,
they act as the consumers of the product [1]. On the other hand, teachers are the providers
of the educational product, as they provide learners with the content and synthesize the
given information in simple and concise language [1,2].

Past studies have focused on the importance of e-learning and its implementation
all over the world; some have focused on the continuous use of e-learning [3–19] and
some on the effect of either teachers’ or students’ attitudes towards e-learning [20–26]. In
other words, no studies have put forward the implementation of two models that focus on
how the perceived interactivity of education technology influences teachers’ and students’
perceptions and urges them to continue using the technology. This study assumes that some
factors affecting teachers’ intentions to use e-learning platforms continually are different
from those affecting students’ intentions to use the same platforms continuously. Therefore,
this study proposes two different models that tackle both teachers’ and students’ continuous
intentions to use technology. The two models will focus on a certain predictive power
that has a more direct relationship with the teachers’ and students’ perceptions regarding
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the continued use of the technology. For instance, one of the factors that contributes to
the teachers’ continuous use of the e-learning platform is the support they get from the
university to enhance the use of the e-learning environment. On the other hand, one of
the crucial factors for the students’ perception is the controlled motivation that embraces
certain intrinsic and extrinsic factors. It is worth mentioning that all previous studies have
focused on students’ perspectives on any technology-based technique. The acceptance
of technology from a student’s perspective has been dealt with in many papers, such
as [27–29]. The fact that this study focuses on the effect of the same e-learning tool from a
teacher’s perspective separately is what sets this paper apart from other previous studies.

The objective of this study was to propose a theoretical framework that could be
validated later through a proposed model that predicates the continuous intention to use
e-learning among students at public universities in Dubai. There are numerous examples of
literature related to technology acceptance [25,30–34] and continuous intention [35–38] that
have been reviewed to identify the most common factors affecting the continuous intention
to use the e-learning platform. The main concentration has been on theories that have been
proven to have great predictive power in understanding users’ perceptions and on theories
that help to explain the importance of continuous use from two different perspectives.
Hence, the Technological Pedagogical Content Knowledge (TPACK) was initiated by [39],
Technology Acceptance Model (TAM) acceptance theory by [40], Social Cognitive Theory
by [41], Perceived Organizational Support (POS) by [42], and Motivational Theory (MT)
by [43,44]. The main factors that have been derived from these theories are perceived
use and perceived usefulness, computer self-efficacy, controlled motivation, and so forth.
The table below (Table 1) summarizes the studies that have tackled the continuous use of
e-learning platforms.

Table 1. Most relevant studies of e-learning platforms in different sectors.

Authors/
Reference Target Population Objective/Goal Models Adopted

[45] Students
To explain the f-variables that
affect continued use of
m-learning.

TAM, Theory of
Planned Behavior
(TPB), and Expectation
Confirmation Model
(ECM).

[46] Students

To examine students’ continuous
use of blended learning, with
reference to behavioral attitudes,
motivations, and barriers.

TAM, TPB and
self-determination
theory (SDT).

[47] Students

To make a connection between
learners’ adoption and
satisfaction with LMS in blended
learning in relation to certain
learners’ personal characteristics
in terms of continuous use of the
e-learning environment.

TAM and satisfaction
factor (SAT).

[48] Instructors

To examine the influential factors
which may contribute to
instructors’ satisfaction with LMS
use in a blended learning
atmosphere.

LMS, system and
instructors’
characteristics that are
derived from
well-established factors.

[49] Students

To investigate students’ behavior
of continuance intentions to use
the double reinforcement
interactive e-portfolio learning
system.

TAM and IS
continuance
post-acceptance model
(IS-TAM).
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Table 1. Cont.

Authors/
Reference Target Population Objective/Goal Models Adopted

[50] Learners

To investigate the basic
determinants behind the
continuous intention to use
e-learning.

TAM and Negative
Critical Incident (NCI).

[51]

People chosen
randomly through
a high-traffic
website

To investigate the motivational
factors that affect the synthesized
model that is composed of a
combination of TAM, ECM,
COGM and SDM.

TAM, ECM and
cognitive model
(COGM).

[52] Technology users

To investigate and predict the
main reason behind users’
intentions to continue using
e-learning.

ECM, TAM, and, TPB.

As seen in the previous table showing the studies in the existing literature, much
research has been conducted focusing on students and/or teachers within one proposed
model. Nevertheless, searching for the predictive power behind both teachers’ and students’
intentions by proposing different variables is still neglected. To our knowledge, no research
has examined the continued-use intention (CU) of teachers and instructors using e-learning
platforms in higher education. Without knowledge of teachers’ and students’ CU, it is
impossible to enhance e-learning in the Gulf area or to support its programs, systems, or
administrative policies in terms of helping to sustain the e-learning platform.

2. Theoretical Framework and Hypotheses

The proposed framework has certain factors that can make the intention to use e-
learning more measurable from two different perspectives. TPACK and POS are crucial
elements that usually guide the teaching and learning environments from the teachers’
perspectives. On the other hand, controlled motivation (CTRLM) is a factor that combines
students’ intrinsic and extrinsic motivations. Nevertheless, certain factors are equally
important to both teachers and students, such as technology self-efficacy (TSE), perceived
usefulness (PU), and perceived ease of use (PEOU).

2.1. Technological Pedagogical Content Knowledge (TPACK)

Teachers’ knowledge cannot be tackled easily, as it is a complex concept that has many
embedded elements [39]. The most important element is pedagogical content knowledge
(PCK), which has been the domain of study for many researchers and practitioners. Its
importance stems from the fact that it comprises both the content and the pedagogy that can
explain how a particular topic is organized and how it is represented to the learners [53].

Since its emergence, TPACK has become a must since all teachers want to have a full
understanding of the relationship between pedagogy and technology. TPACK refers to the
type of technological pedagogical knowledge that teachers need to organize and present
the intended teaching material effectively [39]. TPACK is one of the influential factors
affecting teachers’ perspectives. It refers to technological pedagogical content knowledge
which includes: TCK (technological content knowledge), TPK (technological pedagogical
knowledge), and PCK (pedagogical content knowledge) [54]. Self-assessment surveys and
performance-based assessments are the basic instruments for evaluating TPACK [55,56].

The framework that comprises TPACK can be explained as combing different elements,
such as content knowledge (CK), that highlight the teacher’s knowledge of the subject
matter. It includes knowledge of different types, such as knowledge of the theory, discipline,
psychological aspects, historical aspects, and so forth [57]. The other two closely related
elements are the pedagogy knowledge (PK), which is closely related to the teacher’s
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knowledge concerning methodology, process, and practice, and the pedagogical content
knowledge, which is concerned with how teachers interpret and tailor the teaching material
to suit certain pedagogical aims and purposes. This implies that the difference between
the former element and the latter is the fact that the latter is related to methodology,
assessment, and teaching style knowledge which can be used differently based on students’
prior knowledge. Other elements are related to technology, as it comprises technology
knowledge, technological content knowledge, and technological pedagogical knowledge.
They are related to the ability of users to use technology to accomplish different tasks. The
technological content knowledge is related to how technology can affect teaching material
and vice versa. The final element is technological pedagogical knowledge, which has to do
with the constraints that technology may impose on teaching material. This stems from
the fact that certain technology is not developed for educational purposes and should be
accustomed to suit educational purposes [57,58]. Accordingly, the following hypothesis
can be formed:

Hypothesis 1 (H1). TPACK will positively affect teachers’ CU in the e-learning environment.

2.2. Technology Self-Efficacy (TSE)

Self-efficacy is an effective factor that can reflect how students’ own belief in their
abilities to use technology affects their acceptance of the learning environment. Therefore,
self-efficacy and learning are two factors that can, interactively and dynamically, affect each
other [59]. Self-efficacy in the e-learning environment is considered an intrinsic motivator
as far as continuous intention is concerned. It usually refers to the degree of confidence
that users have in making use of technology [60]. Technology self-efficacy is usually
identified as the ability to use technology without facing any crucial problems. It embraces
two subdivisions: the estimation of result (users’ estimations about their own input) and
estimation efficacy (users’ estimations in achieving the final result) [61–63]. Within the
environment of e-learning, self-efficacy is highly connected to users’ own beliefs regarding
technology. Some believe that using technology is tremendously easy and achievable, while
others may share a contradictory belief, as they may face problems in their ability to learn
the appropriate way of using technology [64]. This simply implies that whenever users
have a high level of technological self-belief, they may perceive the whole system properly;
hence, they will be able to continue using the technology in a positive way. Accordingly,
the following hypothesis may be formulated:

Hypothesis 2 (H2). Technology Self-efficacy will positively affect teachers’ and students’ CU in
the e-learning environment.

2.3. Technology Acceptance Model (TAM)

A review of recent studies has shown that certain variables are crucial to understand-
ing the reasons behind the continuous intention to use e-learning. Regarding Davis’s
TAM [65], it has been proven that PU and PEOU are the most influential factors in users’
continuous-use intentions. Interestingly, PU is more effective than PEOU when one wants
to deal with the use of technology [60]. This study focuses only on two constructs within the
TAM theory, which have proven effective in investigating the continuous use of technology;
these are perceived usefulness and ease of use. [65] adopted the view that the perceived
usefulness (PU) and the perceived ease of use (PEOU) of technology form the baseline for
examining individuals’ usage intentions. PU is defined as the degree to which a person
believes that using a technological system supports user performance, whereas PEOU
tends to refer to the degree to which a person believes that use will be free of effort. Due to
the fact that PEOU has proved to be of great significance only during the early-acceptance
stage of technology use [54,65], PEOU may not directly affect teachers’ and students’ CU
in the e-learning environment. Hence, we hypothesize the following:

Hypothesis 3 (H3). The level of PU will positively affect teachers’ and students’ CU.
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Hypothesis 4 (H4). The level of PEOU will not affect teachers’ and students’ CU.

2.4. Perceived Organizational Support (POS)

Organizational support theory has a close relation with how users perceive organiza-
tional feedback regarding the use of technology. Users’ perceptions may vary in accordance
with an organization’s rewards, fairness, and supervisor support [42]. To put it differently,
when users had a positive attitude towards their organization, they were more willing to
pursue their intention to use its technology and vice versa. The organization has a crucial
role in enhancing the use of technology by motivating users internally at the organizational
level [44,66]. Related literature is guided by the fact that organizational support for use
of technology has a high impact on teachers’ and students’ CU to adhere to computer
technology, particularly in technical support [67–69]. In this respect, teachers and students
may have different subjective perspectives of the role of educational institutions (colleges
and universities) in creating a motivational atmosphere regarding the continuous use of
technology. Hence, it is hypothesized that if teachers and students had a positive percep-
tion of organizational support (POS), they would support the continuous usage of the
technology. Thus, the following hypothesis may be formed:

Hypothesis 5 (H5). The level of POS support will positively affect teachers’ CU.

2.5. Controlled Motivation (CTRLM)

According to [43], students’ intrinsic and extrinsic motivations can be dealt with in
terms of a hieratical model in which three factors play an influential role: contextual,
situational, and global factors. One of the motivations that have a massive effect on
user perception is called Controlled Motivation (CTRLM), which refers to a source of
negative perception that is illustrated by the pressure that students may be under, both
internally and externally. This type of pressure may lead to maladaptive outcomes, which
are, in turn, illustrated by a combination of negative effects, perceived incompetence, and
dissatisfaction [44]. A more updated view regarding controlled motivation is given by [44],
who proposed two different types within CTRLM: introjected and external regulation.
Introjected regulation has a close relationship with an individual’s behavioral engagement,
such as obligation, avoidance of guilt, ego-enhancement, and internal rewards. On the other
hand, external regulation affects behavior engagement, including compliance, external
rewards, and avoidance of punishments.

Hypothesis 6 (H6). Controlled Motivation negatively affects students’ continuous intention to
use e-learning platforms.

2.6. The Proposed Research Models

Based on the review of previous studies, it has been noticed that most of the studies
on continuous intention have focused on one model that has factors that may be crucial to
teachers but not students [60,70]. Therefore, this study attempted to build two models that
can meet both teachers’ and students’ continuous intentions to meet e-learning demands.
The proposed research models rely on these hypotheses, as illustrated in Figures 1 and 2.
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Figure 1. The e-learning technology model adopted for teachers. Note: H1–5 = Hypotheses 1–5.

Figure 2. The e-learning technology model adopted for students.

3. Methodology
3.1. Participants

The participants (n = 372) were classified into two categories—teachers and students—in
accordance with the two proposed models. This two-level selection was based on certain
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influential factors. First, participants were identified as having sufficient experience in using
e-learning platforms. Second, two different surveys were prepared and distributed to the two
targeted groups of participants. The two surveys may have had similar and shared questions,
but the teachers’ survey may have had additional questions that the students’ survey may
have lacked. Responses were received from 372 participants. Therefore, the total number of
teacher participants in this study was 30. These were college instructors with a nearly equal
female-to-male gender ratio. On the other hand, the total number of student participants was
342. These were students at The British University in Dubai (BUiD).

3.2. Data Collection

During the winter semester of 2019/2020, the data was collected through online sur-
veys from individuals studying at the British University in Dubai (BUiD) from 15 January
to 20 February 2020. The aggregated response rate was 93%; 400 questionnaires were circu-
lated, out of which 372 were answered by respondents. This means that 372 questionnaires
were filled out correctly and found to be useful, while 28 were rejected because of missing
values. The prospective sample size was 306 respondents with respect to a population
of 1500. Thus, the sample size of 372 correct responses was suitable, according to [71],
because—bearing in mind the required sample size—the sample size of 372 is a higher
figure. Thus, this sample size could be reviewed using structural equation modeling [72]
to verify the hypotheses. It must be noted that hypotheses were based on the current
theories and were adjusted to the e-learning context. In order to assess the measurement
model, the researchers used structural equation modeling (SEM) [72]. Further treatment
was performed using a final path model.

3.3. Students’ Personal Information/Demographic Data

The assessment of personal/demographic data is covered in Table 2. The percentage
of males was 53%, while for females it was 47%. A total of 33% of students had ages
ranging from 18 to 29 years, while 67% of respondents were aged over 29. In terms of
academic background, 39% were students from the Faculty of Engineering and IT, 35% were
from the Faculty of Education and 26% belonged to the Faculty of Business and Law. The
majority of respondents came from sophisticated families and held university degrees; 49%
of participants had bachelor’s degrees, 42% had master’s degrees, and 9% had a doctoral
degree. When the respondents were ready to volunteer and were easily approachable, the
purposive sampling approach was used as per [3]. This sample was created by students
coming from different faculties, with different ages, enrolling in diverse programs at different
levels. Moreover, with the aid of IBM SPSS Statistics ver. 23, the demographic data was
evaluated. Table 2 depicts the complete demographic data of the respondents.

Table 2. Demographic data of the respondents.

Criterion Factor Frequency Percentage

Gender
Female 175 47%

Male 197 53%

Age

Between 18 and 29 122 33%

Between 30 and 39 98 26%

Between 40 and 49 88 24%

Between 50 and 59 64 17%

Faculties

Faculty of Engineering and IT 145 39%

Faculty of Education 129 35%

Faculty of Business and Law 98 26%

Education qualification
Bachelor 182 49%

Master 157 42%

Doctorate 33 9%
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3.4. Study Instrument

The survey instrument used to validate the hypothesis was determined in this research.
The survey, consisting of 30 items, was used for the measurement of seven constructs in
the questionnaire. Table 3 depicts the sources of the constructs. The questions from prior
studies were modified in order to enhance the appropriateness of the research.

Table 3. Constructs and their sources.

Constructs Number of Items Source

CU 2 [73–75]

CTRLM 5 [43]

TPACK 4 [39,76]

TSE 7 [41,77]

PEOU 3 [40]

PU 4 [40]

POS 5 [42]
Note: TPACK = Technological pedagogical content knowledge; TSE = Technology self-efficacy; PEOU = Perceived
ease of use; PU = Perceived usefulness; POS = Perceived organizational support; CTRLM = Controlled motivation;
CU = Continuous intention to use e-learning platform.

3.5. Pilot Study for the Questionnaire

A pilot study was conducted to check the reliability of the questionnaire items. Ap-
proximately 40 students and teachers were chosen on a random basis from the given
population to establish the pilot study. The sample size was set based on 10% of the
aggregated sample size of this study (400 students and teachers) and thus adhered strictly
to the research criteria. Cronbach’s alpha test was utilized for the computation of internal
reliability through IBM SPSS Statistics ver. 23, in order to judge the outcomes of the pilot
study. Thus, the appropriate findings were shown for the measurement items. A value of
0.7 was taken to be an acceptable value for the reliability coefficient, considering the model
for social science research [14]. Tables 4 and 5 show the Cronbach’s alpha values for the
seven measurement scales for teachers and students.

Table 4. Cronbach’s alpha values for the pilot study (Cronbach’s alpha ≥ 0.70) for teachers (Model A).

Constructs Cronbach’s Alpha

CU 0.756

TPACK 0.779

TSE 0.864

PEOU 0.889

PU 0.734

POS 0.852
Note: TPACK = Technological pedagogical content knowledge; TSE = Technology self-efficacy; PEOU = Perceived
ease of use; PU = Perceived usefulness; POS = Perceived organizational support; CU = Continuous intention to
use e-learning platform.

3.6. Survey Structure

The questionnaire survey given to students and teachers had two sections. Within
the first part, personal data was given to gather information about students and teachers.
The second section had a group of questions related to the main factors of the proposed
models. The teachers’ questionnaire had six sub-sections coinciding with the six factors
proposed in the model. Similarly, the students’ questionnaire had five sub-sections related
to the five factors proposed in the model. With the help of the five-point Likert Scale, the 42
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items were evaluated. The scales included the following: (1) strongly disagree, (2) disagree,
(3) neutral, (4) agree, and (5) strongly agree.

Table 5. Cronbach’s alpha values for the pilot study (Cronbach’s alpha ≥ 0.70) for students (Model B).

Constructs Cronbach’s Alpha

CU 0.872

CTRLM 0.881

TSE 0.798

PEOU 0.736

PU 0.797
Note: TSE = Technology self-efficacy; PEOU = Perceived ease of use; PU = Perceived usefulness; CTRLM =
Controlled motivation; CU = Continuous intention to use e-learning platform.

4. Findings and Discussion
4.1. Data Analysis

Along with the help of SmartPLS V.3.2.7 software, the partial least squares-structural
equation modeling (PLS-SEM) was utilized to conduct the data analysis in this research [15].
The assessment approach had two steps of a structural model and a measurement model
allowed to study the collected data [16]. There were various reasons for choosing PLS-
SEM in the study. First, as the research is an extension of a current theory, PLS-SEM was
considered the best option [17]. Second, the complex models within exploratory research
can be effectively tackled with the help of PLS-SEM [18]. Third, PLS-SEM analyzes a
complete model as a single unit, so there is no need to divide it [19]. Lastly, PLS-SEM
provides concurrent analysis for measurement, as well as a structural model, leading to
more accurate calculations [20].

4.2. Convergent Validity

In order to review the measurement model, it was suggested by [16] that construct
reliability—including composite reliability (CR), Dijkstra–Henseler’s rho (pA), and Cron-
bach’s alpha (CA) and validity (including convergent and discriminant validity)—must
be considered. Cronbach’s alpha (CA) has values between 0.782 and 0.895, as Tables 6
and 7 show, in order to determine construct reliability. These statistics are higher than
the threshold value of 0.7 [78]. According to Tables 6 and 7, the outcomes also show that
the composite reliability (CR) has values from 0.796 to 0.882; these values are evidently
bigger than the recommended value of 0.7 [79]. As an alternative, the construct reliability
must be appraised by researchers by means of the Dijkstra–Henseler’s rho (pA) relia-
bility coefficient [80]. Like CA and CR, the reliability coefficient ρA must show 0.70 or
higher in exploratory studies and values of more than 0.80 or 0.90 for further stages of
research [78,81,82]. The reliability coefficient ρA of each measurement construct is above
0.70 according to Tables 6 and 7. According to these outcomes, the construct reliability is
verified and all the constructs were considered to be accurate.

Convergent validity can be measured by testing the average variance extracted (AVE)
as well as the factor loading [16]. Tables 6 and 7 suggest that all values of factor loadings
exceeded the threshold value of 0.7. Moreover, Tables 6 and 7 show that the values
obtained for the AVE were higher than the threshold value of 0.5, ranging from 0.509 to
0.718. Depending on the expected results, the convergent reliability can be obtained for all
the constructs.
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Table 6. Convergent validity results that ensure acceptable values (Factor loading, Cronbach’s alpha,
composite reliability (CR), Dijkstra–Henseler’s rho (pA) ≥ 0.70 and average variance extracted (AVE)
> 0.5) (Model A).

Constructs Items Factor
Loading

Cronbach’s
Alpha CR pA AVE

Technology Self-Efficacy

TSE1 0.775

0.874 0.799 0.832 0.536

TSE2 0.736

TSE3 0.820

TSE4 0.901

TSE5 0.756

TSE6 0.723

TSE7 0.797

Technological
Pedagogical Content
Knowledge

TPACK 1 0.711

0.829 0.882 0.791 0.552
TPACK 2 0.869

TPACK 3 0.909

TPACK 4 0.790

Perceived Ease of Use

PEOU1 0.829
0.844 0.812 0.817 0.661PEOU2 0.847

PEOU3 0.746

Perceived Usefulness

PU1 0.734

0.816 0.828 0.825 0.623
PU2 0.766

PU3 0.889

PU4 0.850

Perceived
Organizational Support

POS1 0.729

0.863 0.814 0.883 0.718

POS2 0.848

POS3 0.758

POS4 0.819

POS5 0.878

Continuous intention to
use e-learning platform

CU1 0.796
0.815 0.876 0.898 0.673

CU2 0.801

Table 7. Convergent validity results that ensure acceptable values (Factor loading, Cronbach’s alpha,
composite reliability, Dijkstra–Henseler’s rho ≥ 0.70 & AVE > 0.5) (Model B).

Constructs Items Factor
Loading

Cronbach’s
Alpha CR PA AVE

Technology Self-Efficacy

TSE1 0.726

TSE2 0.826

0.782 0.833 0.823 0.705
TSE3 0.710

TSE4 0.868

TSE5 0.746

TSE6 0.733
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Table 7. Cont.

Constructs Items Factor
Loading

Cronbach’s
Alpha CR PA AVE

Perceived Ease of Use

PEOU1 0.763
0.895 0.800 0.836 0.559PEOU2 0.890

PEOU3 0.849

Perceived Usefulness

PU1 0.793

0.856 0.879 0.808 0.696PU2 0.709

PU3 0.873

PU4 0.821

Controlled Motivation

CTRL1 0.832

0.805 0.796 0.807 0.700

CTRL2 0.802

CTRL3 0.875

CTRL4 0.810

CTRL5 0.796

Continuous intention to
use e-learning platform

CU1 0.725
0.878 0.818 0.816 0.509

CU2 0.878

4.3. Discriminant Validity

The two criteria that were suggested should be measured to obtain the measurement
of discriminant validity were the Fornell–Larcker measure and the Heterotrait–Monotrait
ratio (HTMT) [16]. As per the findings of Tables 8 and 9, these needs have been verified by
the Fornell–Larker criterion as each AVE value, together with its square root, exceeds the
value of the correlation of AVE with other constructs [83].

Table 8. Fornell–Larcker Scale (Model A).

TSE TPACK PEOU PU POS CU

TSE 0.876

TPACK 0.165 0.845

PEOU 0.125 0.253 0.802

PU 0.569 0.487 0.558 0.790

POS 0.187 0.202 0.291 0.115 0.787

CU 0.369 0.198 0.378 0.383 0.178 0.803
Note: TPACK = Technological pedagogical content knowledge; TSE = Technology self-efficacy; PEOU = Perceived
ease of use; PU = Perceived usefulness; POS = Perceived organizational support; CU = Continuous intention to
use e-learning platform.

Table 9. Fornell–Larcker Scale (Model B).

TSE PEOU PU CTRL CU

TSE 0.768

PEOU 0.368 0.801

PU 0.267 0.229 0.887

CTRL 0.649 0.492 0.399 0.844

CU 0.422 0.327 0.302 0.188 0.870
Note: TSE = Technology self-efficacy; PEOU = Perceived ease of use; PU = Perceived usefulness; CTRLM =
Controlled motivation; CU = Continuous intention to use e-learning platform.
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Tables 10 and 11 show the outcomes of the HTMT ratio, indicating that the threshold
value of 0.85 is bigger than the values of other constructs [27], and hence confirming the
HTMT ratio. These outcomes play a role in the evaluation of the discriminant validity. The
outcomes of the analysis indicated a smooth and simple assessment of the measurement
model in terms of the model’s validity and reliability. To conclude, it can be said that the
collected data was appropriate for additionally evaluating the structural model.

Table 10. Heterotrait–Monotrait Ratio (HTMT) (Model A).

TSE TPACK PEOU PU POS CU

TSE

TPACK 0.560

PEOU 0.136 0.487

PU 0.266 0.363 0.556

POS 0.296 0.200 0.270 0.544

CU 0.389 0.635 0.378 0.638 0.555
Note: TPACK = Technological pedagogical content knowledge; TSE = Technology self-efficacy; PEOU = Perceived
ease of use; PU = Perceived usefulness; POS = Perceived organizational support; CU = Continuous intention to
use e-learning platform.

Table 11. Heterotrait–Monotrait Ratio (HTMT) (Model B).

TSE PEOU PU CTRL CU

TSE

PEOU 0.232

PU 0.506 0.436

CTRL 0.392 0.457 0.503

CU 0.697 0.609 0.210 0.264
Note TSE = Technology self-efficacy; PEOU = Perceived ease of use; PU = Perceived usefulness; CTRLM =
Controlled motivation; CU = Continuous intention to use e-learning platform.

4.4. Model Fit

The subsequently mentioned fit measures are ensured by SmartPLS: the standard
root mean square residual (SRMR), exact fit criteria, Euclidean distance (d_ULS), geodesic
distance (d_G), Chi-square, Normed Fit Index (NFI), and RMS Theta show the model fit
in PLS-SEM [84]. The difference between experimental correlations and the correlation
matrix inferred from model [85] are indicated by SRMR, and values smaller than 0.08 are
assumed to serve as good model-fit measures [86]. The NFI values that are higher than 0.90
point out a good model fit [87]. The NFI is a ratio of the Chi-square value of the proposed
model to the null model (also known as the benchmark model) [88]. The NFI increases with
larger parameters and therefore, the NPI is not suggested as a model-fit pointer [85]. The
discrepancy between the empirical covariance matrix and the covariance matrix, inferred
from the composite factor model, is indicated by the metrics of squared Euclidean distance
(d_ULS) and the geodesic distance (d_G) [80,85]. The RMS Theta helps in the measurement
of the degree of outer model residuals correlation and is appropriate for reflective models
only [88]. The nearer the RMS Theta value is to zero, the more superior the PLS-SEM
model, and their values of less than 0.12, are assumed to be a good fit, with anything other
than this suggesting an absence of fit [89]. The saturated model evaluates the correlation
between all constructs, as recommended by [29], while the approximate model takes all the
effects and model structure into consideration. The RMS Theta value was 0.073 in Model A
and 0.073 in Model B, as given in Tables 12 and 13, which gives an idea that the specific
goodness-of-fit for the PLS-SEM model was big enough to prove global PLS model validity.
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Table 12. Model fit indicators (Model A).

Complete Model

Saturated Model Estimated Mod

SRMR 0.031 0.041

d_ULS 0.786 3.216

d_G 0.565 0.535

Chi-Square 466.736 473.348

NFI 0.624 0.627

RMS Theta 0.073

Table 13. Model fit indicators (Model B).

Complete Model

Saturated Model Estimated Mod

SRMR 0.012 0.031

d_ULS 0.605 2.317

d_G 0.516 0.506

Chi-Square 461.646 472.347

NFI 0.633 0.642

RMS Theta 0.061

4.5. Hypotheses Testing Using PLS-SEM

The interdependence between different theoretical constructs related to the structural
model was studied by using a combination of the structural equation model with maximum-
likelihood estimation and SmartPLS [38,39]. This indicates the procedure of analysis of
the proposed hypothesis. About 83% and 71% variance were found within the continuous
intention to use the e-learning platform, as shown in Tables 14 and 15, which indicates a
high predictive power of Models A and B [37]. For all the proposed hypotheses, outcomes
of the PLS-SEM technique provided the beta (β) values, t-values, and p-values, which have
been stated in Tables 16 and 17. It is evident that each and every hypothesis is supported
by all the researchers. The empirical data backs hypotheses H1, H2, H3, H4, H5, and H6 on
the basis of the analyzed data. The standardized path coefficients and path significances
are demonstrated in Figures 3 and 4.

Table 14. R2 of the endogenous latent variables (Model A).

Constructs R2 Results

Continuous intention to use e-learning platform 0.832 High

Table 15. R2 of the endogenous latent variables (Model B).

Constructs R2 Results

Continuous intention to use e-learning platform 0.709 High

In Model A, technological pedagogical content knowledge (TPACK), technology self-
efficacy (TSE), perceived ease of use (PEOU), perceived usefulness (PU), and perceived
organizational support (POS) have significant effects on continuous intention to use the
e-learning platform (CU) ((β = 0.336, p < 0.001), (β = 0.426, p < 0.05), β = 0.589, p < 0.05), (β
= 0.625, p < 0.05) and (β = 0.553, p < 0.001), respectively); hence, H1, H2, H3, H4, and H5
are supported.
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In Model B, technology self-efficacy (TSE), perceived ease of use (PEOU), perceived
usefulness (PU), and controlled motivation (CTRLM) have significant effects on continuous
intention to use the e-learning platform (CU) ((β = 0.290, p < 0.001), (β = 0.357, p < 0.05),
β = 0.465, p < 0.05) and (β = 0.243, p < 0.05), respectively); hence, H2, H3, H4, and H6 are
supported.

Table 16. Hypotheses testing of the research model (significant at ** p < = 0.01, * p < 0.05) (Model A).

H Relationship Path t-Value p-Value Direction Decision

H1 TPACK -> CU 0.336 12.223 0.001 Positive Supported **

H2 TSE -> CU 0.426 5.269 0.026 Positive Supported *

H3 PU -> CU 0.589 6.716 0.018 Positive Supported *

H4 PEOU -> CU 0.625 5.584 0.023 Positive Supported *

H5 POS -> CU 0.553 16.108 0.000 Positive Supported **
Note: TPACK = Technological pedagogical content knowledge; TSE = Technology self-efficacy; PEOU = Perceived
ease of use; PU = Perceived usefulness; POS = Perceived organizational support; CU = Continuous intention to
use e-learning platform.

Table 17. Hypotheses testing of the research model (significant at ** p < = 0.01, * p < 0.05) (Model B).

H Relationship Path t-Value p-Value Direction Decision

H2 TSE -> CU 0.290 14.578 0.000 Positive Supported **

H3 PEOU -> CU 0.357 3.116 0.043 Positive Supported *

H4 PU -> CU 0.465 2.646 0.035 Positive Supported *

H6 CTRLM -> CU 0.243 4.361 0.033 Positive Supported *
Note: TSE = Technology self-efficacy; PEOU = Perceived ease of use; PU = Perceived usefulness; CTRLM =
Controlled motivation; CU = Continuous intention to use e-learning platform.

Figure 3. Path coefficient of the model (significant at ** p <= 0.01, * p < 0.05) (Model A).



Educ. Sci. 2021, 11, 6 15 of 20

Figure 4. Path coefficient of the model (significant at ** p < = 0.01, * p < 0.05) (Model B).

5. Discussion and Conclusions

This study proposed two unique CU models that took into consideration factors that
affect both instructors’ and students’ attitudes. The two models can be theoretically ex-
tended to enhance other technology-supported educational environments and instructional
processes. The first research model of instructors’ CU was proposed, taking into considera-
tion certain social cognitive theory along with personal, behavioral, and environmental
elements that are closely related to instructors’ CU. In general, the results of SEM analysis
has supported all the proposed hypothesis. From a practical perspective, this study has
proven that POS is the most influential factor that affects instructors’ CU of e-learning
platforms.

Ref. [90–92] seem to agree with the current conclusion in stating that POS could
motivate its staff members, leading to an upgrade of the organization. However, a study
by [93] placed an emphasis on staff members’ personalities and readiness to change. This
implies that the lack of organizational support may have negative consequences. One
of the studies by [60] has proposed that when instructors feel that there is no adequate
organizational support, they are less likely to continuously use the technology, especially in
an educational atmosphere where instructors are supposed to implement various in-class
pedagogical changes to facilitate a better learning environment for the students.

In fact, POS is not the only factor that affects instructors’ CU, but rather instructors’
TPACK is another key factor that affects CU. Most of the previous research has proven that
the organizational support may affect users’ motivation to use the technology. A study
by [94] put emphasis on the effect of PACK in facilitating the e-learning process by both
teachers and adult learners. This seems to be in line with the results obtained from this
study where TPACK affected, to great extent, the teachers’ performance. It is assumed that
whenever teachers’ content, technological, and pedagogical knowledge is high, it implies
that his or her ability to change the teaching material to suit the newly used technology
will be more practical and effective. Obviously, teachers are more motivated when there
is reliable technical support and IT staff that can facilitate the process of establishing new
computer-supported knowledge [66,68].
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Similarly, CTRLM has an effect on students’ CU. CTRLM, along with technology self-
efficacy (TSE), are the key factors that have a great impact on students’ CU. The study has
proven that CTRLM is connected deeply with the willingness to use the e-learning teaching
platform. The higher the motivation is, the more effective results are obtained. Previous
studies have tackled the effect of CTRLM on students’ performance and have proven that
there are both pedagogical and non-pedagogical elements that affect motivation [95–97].
These studies have indicated that technology development has placed a positive effect on
motivation, as it urges students to get engaged in the new learning platform. This makes
motivation very high and involvement in classes even higher, increasing the students’
willingness to learn, and thus, using the technology continuously [98,99].

5.1. Practical Implications

According to the study outcomes, salient factors were noticed in determining users’
acceptance of the e-learning system and technological pedagogical content knowledge,
technology self-efficacy, perceived ease of use, perceived usefulness, perceived organiza-
tional support, and controlled motivation were significant. Hence, upon implementing a
new e-learning system, faculty members must be informed about the system’s features
and its technical issues, as well as its usefulness, so that they feel self-assured and can
gain insight into the system. To increase faculty use of the e-learning system, faculty
members are of the view that universities should deliver workshops, extensive training,
and awareness programs on the system’s features, benefits, and usage [100]. In addition,
a national survey was conducted, in which 57% of faculty members said that they could
become more productive [100] if the use of e-learning technology was communicated
thoroughly to them in their courses. Faculty members in this study also reported that,
if they were aware of the positive impact of such technology on student learning, they
would be inspired to learn and use the e-learning system. Hence, extended online help and
periodic training programs for the e-learning system should be offered by the universities
to ensure increased use of the system and to increase the faculty’s self-efficacy. As a result,
this overall phenomenon would help faculty members to obtain practical exposure, acquire
better skills and become more proficient in using the e-learning system; as a result of this,
their use of the system would be enhanced. In accordance with our findings, there was a
weak influence on faculty attitudes toward the e-learning system because of facilitating
conditions. Consequently, to ensure the smooth running of the e-learning system, attention
must be given by universities to ensuring technical support and reliable network access.
Moreover, online and face-to-face support and guidance should be provided by the uni-
versities for faculty members to ensure that members have positive attitudes toward the
e-learning system and, consequently, that they become capable of extended use of the
system [65,101].

5.2. Limitations and Further Research

This study has the following limitations. Only one university in the United Arab
Emirates was considered for studying the impact of factors on the adoption of e-learning
systems; this is the key limitation. The applicability and pertinence of this study would
have been enhanced if more institutes and universities in the United Arab Emirates had
been taken into consideration. With further analysis and insight into the e-learning system,
the researchers could have better understood the factors that influence such a system.
In addition, the participation of a limited number of students (372) is another limitation.
According to [45], a survey questionnaire method was used for data collection. For ap-
propriate and improved outcomes, an enhanced instrument is being sought and more
institutes will be taken into account from other regions, such as the Arab Gulf, including
Kuwait, Saudi Arabia, and Bahrain. Furthermore, invitations to join the study will be sent
to more students, and researchers will conduct focus groups and interviews for suitable
results. Moreover, we are seeking to implement the e-learning system in specific Arab
universities that have contributed to the research.
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