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Abstract: The increasing interest in early childhood mathematics education for decades has increased
the need for empirically supported pedagogical strategies. However, there is little agreement on how
early math might best be taught. We draw from the empirical literature to paint a picture of research-
based and research-validated pedagogical approaches and strategies for teaching early math. Most
approaches share core characteristics, including concern for children’s interests and engagement and
for working on content matched to children’s level of thinking. Learning trajectories are an especially
useful organizing structure because they combine and integrate educational goals, development of
children’s thinking, and empirically supported pedagogical strategies. Therefore, they help teachers
interpret what the child is doing, thinking, and constructing, and offer instructional activities that
extend children’s mathematical thinking. Simultaneously, teachers can see instructional strategies
from the child’s perspective, offering meaningful and joyful opportunities to engage in learning.

Keywords: early childhood; learning trajectories; pedagogy; teaching strategies

There has been increasing interest in early childhood mathematics education for
decades. However, there is less agreement on how early math might best be taught. Here
we draw from the empirical literature to paint a picture of what research tells us about ped-
agogical approaches and strategies for teaching early math. These include understanding
learning trajectories, formative assessment, small-group instruction, rich math discussions,
strong examples and non-examples, and ensuring children from culturally and linguisti-
cally diverse backgrounds are represented in classrooms, curricula, and all educational
experiences [1].

1. Importance of Early Childhood Math and the Need for High-Quality Pedagogy

Increased attention to early math has been driven by factors such as high-stakes assess-
ment. However, a more child-centered view is the recognition that all children are able and
interested in engaging in important mathematics. If we do not teach math, we are not teach-
ing the “whole child”. Further, burgeoning research shows math’s surprising importance.
First, math has a growing role in economies and cultures, but some countries, such as the US,
have not improved mathematics education (http://ncee.org/pisa-2018-lessons, accessed
on 1 June 2023). Differences appear as early as the primary and preschool grades [2,3].
Interest in such countries around the globe is also motivated by a particular concern for chil-
dren who have not been provided opportunities to learn [4–6]. The pandemic exacerbated
these equity concerns, and more for math than other domains [7]. Educators must provide
comprehensive approaches targeted to educators and families, especially for marginalized
populations, to improve children’s experiences learning mathematics [8,9].

Second, the math that children know when they enter kindergarten is the best predictor
of graduating high school [10,11], and number and arithmetic knowledge at age 7 years
predicts socioeconomic status at age 42 (even controlling for all other variables) [12].

Third, math predicts and supports children’s development in other domains, such as
reading [13] and oral language [14]. Math plays a central role in the sciences—throughout
the grades [15]. For example, the more math courses students take in high school, the
higher their performance in college math, biology, chemistry, and physics. Taking more
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high school math courses increases achievement in the sciences as much as, or even more
than, taking more science courses [16]. Math is a core component of cognition.

Even farther transfer has also been documented. For example, early math is related to
executive function, and high-quality math experiences develop executive function, even
more so than approaches designed to do so [17,18]. Perhaps more surprisingly, high-
quality math learning contributes to students’ development of social competencies, such as
preschoolers’ ability to share [19] and engage in high-level socio-dramatic play [20].

Although there are many benefits, a caveat is critical: These are multiple positive
outcomes of high-quality early math experiences. What constitutes high-quality teaching?

2. Useful Evidence

To help answer this question, we summarize and synthesize studies that provide
evidence useful to researchers and practitioners: studies with designs that address impor-
tant pedagogical issues. We also distinguish between claims that teaching approaches are
research-based or research-validated. Most educators claim that their approach to teaching is
based on research. However, these can be placed on a continuum, from mentioning theo-
ries or studies on “students’ thinking” vaguely to drawing explicit connections from the
theories and empirical research to the design and implementation of the approaches of the
curriculum [21,22]. For example, in early childhood, early applications of Piaget’s theories
often led to suggestions that children be taught to perform accurately on Piagetian clinical
tasks. Some incorporated materials directly adapted from those tasks [23,24]. Unfortunately,
these were not particularly successful. Even detailed analyses of Piagetian research failed
to guide the development of programs or curricula in directly useful ways [25]. However,
as Piaget himself argued, it is not his clinical tasks, but his research showing that children
were active learners who constructed knowledge that was central to education. “To understand
is to invent” [26]. Many recent pedagogies take this position.

Therefore, research bases for teaching make strong contributions, if interpreted with
care. Complementing these approaches are research-validated; this indicates that the actual
pedagogy was evaluated. Such studies may either examine efficacy or effectiveness. Al-
though these terms can be used interchangeably, efficacy often implies smaller evaluations
that provide initial confirmation of the value the curriculum adds to a “business as usual”
condition, whereas effectiveness can imply larger studies into the generalizability of this
value added. At one end of the spectrum, efficacy may be measured in a superrealization
context, an ideal situation to see what the curriculum can accomplish at its best [27]. At the
other end, effectiveness might be measured in multiple locations at scale, involving not just
larger numbers but greater complexity in four interrelated dimensions: depth, sustainabil-
ity, spread, and shift in ownership to schools and teachers [28]. These are almost always
quantitative studies, although for many models, complementary qualitative methods are es-
sential [28,29]. Further, essential phases in the research-and-development process between
these ends of the spectrum feature mainly qualitative methods, including those that provide
causal evidence [30]. These include a wide variety of methodologies, such as teaching
experiments, design studies, and classroom case studies (provides a comprehensive list
and description) [29], provides a comprehensive list and description. Constraints on space
required that we present a “best evidence” synthesis in which we were selective in the
topics and studies we included. Our goal was to complement other reviews on pedagogies
in early math, e.g., [31–37]. To do so, we synthesized our comprehensive reviews using
all studies available via searches of databases, journals, and books over decades [38–40],
supplemented with a search of ERIC, PsycINFO, and Google Scholar for new studies in the
last 3 years.

As stated, the second way we wish the summary to be useful is to address important
pedagogical issues. That is, we focus our discussions on pedagogical approaches with
evidence of success and those widely used ones without. Finally, we focus on pedagogical
approaches that matter according to theory and research. That is, research on teaching has
addressed backgrounds and characteristics of teachers, process-product studies relating
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teaching practices to student outcomes, backgrounds and characteristics of students, differ-
ent ways students engage and process what teachers present, and so on. Although these
have all contributed to knowledge, they generally have not found practically meaningful
links between specific teacher actions and student learning outcomes, e.g., [41–43] and
analyses from the complex array of variables across these types of studies similarly provide
little guidance. What can guide teaching? Understanding how to provide adequate high-
quality educative experiences to achieve mathematical learning goals (which may stem
from standards, or from recognition of a child’s interests and needs). Thus, teachers can
consistently focus on creating research-based, empirically validated Sustained Learning Op-
portunities (SLO) [44]. Educators develop and plan fecund instructional tasks and patterns
of interactions, realized by teachers and children collaboratively so they are meaningful to
all. These are based on teachers’ understanding of students’ levels of thinking and their
development across SLOs, progressing toward the educational goal [5,39]. Students’ intel-
lectual work occurs within the triarchic interaction of teachers, students, and mathematics
content and activities.

Finally, as useful as these findings are, they are general teaching strategies. High-
quality teaching also depends on knowledge of content, how children think and learn
about that content, and how specifically to teach that content for each important topic
in early math [39,45–54]. This applies to intentional teaching, and perhaps more so to
child-initiated contexts such as play, so as to fully understand how to support children’s
creative math thinking and learning [5,39,55]. We ground our interpretations within our
theory of Hierarchical Interactionalism, a synthesis of empiricist, nativist, and especially
constructivist theories, that emphasizes these three knowledge domains [40,56].

3. Children’s Learning with Different Approaches to Teaching

As one of the most complex human enterprises, teaching is difficult to define and
study. Here, we define the teaching of math as intentional interactions among children
and teachers around mathematics content using deliberately arranged environments, con-
texts, and tasks, all designed to promote children’s learning of increasingly powerful and
sophisticated math competencies and positive dispositions. Those goals—competencies
and dispositions—lead to our first issue.

3.1. General Teaching Approaches for Different Goals

When not recognized, differences in these goals can lead us to believe that research is
contradictory when it is not because different pedagogical approaches can be effective for
different goals [41]. For example, when learning skills, or targeting instrumental under-
standing (rules without reasons) [57], is the primary goal, certain teaching strategies, such
as whole group organization, clear directions and explanations with modeling, fast pacing,
emphasis on mastery, and careful review are effective [58–62]. In contrast, goals focused on
relational understanding (knowing both what to do and why) [57] include skills and also
competencies such as conceptual knowledge, mathematical practices, general cognitive
competencies (e.g., executive functions) and positive dispositions [63]. Here, effective
teaching strategies include attending explicitly to concepts and connections among facts,
skills, and the key ideas of mathematics with consistent math talk among all participants,
creating a shared coherent mathematical structure [54,64], and an emphasis on children
struggling with the key math ideas [41]. “Struggle” does not indicate frustration but rather
trying to make sense of math and figure out how to understand or solve a problem without
following prescribed procedures.

Addressing relational understanding promotes full mathematical learning and devel-
opment [39,65–68] and supports skill fluency as well as focusing mainly on skills [41,69,70].
As one example of these benefits, low-SES, urban first, and second graders learned to
use the standard arithmetic algorithms skillfully and to understand them conceptually,
when taught conceptually, by connecting place-value blocks and written representations.
Second graders and high-ability first graders performed higher than third graders receiving
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traditional skills-based instruction [65]. In sum, teaching for relational goals is research-
validated and important to do in collaboration with marginalized families [9]. Therefore,
we focus on useful studies of effective teaching for relational understanding.

3.2. Teaching for Relational Understanding: Confronting the Dichotomies

The previous descriptions of effective teaching methods do not mention some that are
most debated [71]. The reason is that many dichotomies are not consistently explanatory,
such as student-directed versus child-centered approaches, using “real-world” problems
or not [67], or play versus intentional instruction [72]. So many discussions, even by
experts, e.g., [73] tend to phrase issues as debates between two incommensurable positions.
However, research indicates that both sides of these dichotomies can be used to teach most
goals and that synthesis is often the most productive strategy. Often, such dichotomies are
used for rhetorical reasons, of course, but in so doing can prevent a dialectical synthesis
that is the better pedagogical approach.

For example, teaching only non-constrained and higher-level skills may be counter-
productive given that “lower-level” knowledge may be necessary for effective learning and
use of higher-level processes, perhaps especially in hierarchical content domains such as
math, e.g., [39,74,75]. Further, researchers of color have argued that avoiding lower-level
skills and knowledge may not serve the needs of some communities because they have
not had equitable opportunities to learn them [76,77]. Therefore, effective teachers support
both differentiation and meaningful syntheses of goals and skills when appropriate [78],
and a focus on specific goals for a child when more appropriate.

The issue of play “versus” intentional teaching is one of the most pernicious false
dichotomies in early childhood [72,79–81]. Possible teaching approaches are varied and
nuanced, ranging from “free” or unstructured play to guided play to playful teacher-
directed instruction.

Starting with the most unstructured approach, math arises naturally and frequently
from children’s free play across a range of topics [82,83] and in children as young as
toddlers [84,85]. The effects on learning are less well known. More striking, children
in classrooms emphasizing math were likelier to be engaged at a higher-quality level
during free choice (play) time [20]. Thus, high-quality math and free play do not have to
compete for time. Doing both makes each richer. However, research in multiple countries
shows minimal math learning during free play [39]; without guidance, children may build
experiential foundations for later math learning but not explicit math concepts. Talking to
children about math in their play promotes learning [86,87]. Specifically, interactions that
are a good fit with what children are playing and those that engage children’s thinking and
discussions about math topics promote math achievement with no harm to their play [88].
Communication as to the math content is an important issue [31].

Therefore, seek and use teachable moments in everyday play and routines [89]. Attend
to all children, including very young children, who may not be seen as “doing math” [90].
However, recognize that these moments will constitute only a small portion of the math
activities needed in most situations. Further, they should contribute to the SLOs that serve
children’s learning needs [44].

Other approaches to play help children learn math reliably. A systematic review
of free play, guided play, and direct instruction found that guided play was particularly
important in math, with a greater positive effect than direct instruction on early math overall
and shape recognition specifically, and then free play on spatial vocabulary [91]. This is
consistent with research-validated experiments showing that unguided play or playful
teaching approaches are more effective than unguided play [92], especially for children with
fewer previous opportunities to learn math [93]. Notably, the guided approach supports
equitable education [94,95]. Further, programs based only on an “everyday” or “play”
approach to math education frequently show negligible gains. In comparison, academic
approaches have strong, consistent, positive effects [96] with no harm to social–emotional
development [97]. High-quality guided play, see also [98,99], includes having a clear
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learning goal, ensuring children have a degree of choice and agency, and using their
understanding of children’s thinking and interests to choose strategies, such as open-ended
questions, hints, prompts, and modeling [91,100].

Finally, a playful but intentional teaching approach is more effective in promoting
math learning than laissez-fair approaches or teaching based only on “teachable mo-
ments” [55,89,101–103], including in free play contexts, such as the block center [88,104]. This
is especially true for children with disabilities [105]. Later sections address intentional teaching.

Unsurprisingly, these issues and suggestions mirror similar findings in the debates on
discovery learning, in which unguided discovery is more effective than guided discovery
teaching [60,106–108] and better at developing concepts that direct instruction alone [109].

However, even direct instruction can play an important role in a multidimensional
pedagogical toolkit, especially at appropriate junctures with discovery- or inquiry-based
learning contexts [109,110]. As a simple example, direct instruction is necessary and
efficient for Piaget’s social-arbitrary knowledge, such as spelling “four”, writing “4” or
other mathematical symbols, conventions, or simple procedures. Physical knowledge
is learned by activity on objects. In contrast, logical-mathematics knowledge is learned
from thinking about one’s actions on the objects [111]. Intentional, playful experiences
and guided discovery approaches develop deep understanding and transfer needed for
relational understanding in all math topics [39,112]. Strategies from the pedagogical toolkit
are best deployed depending on the content, context, and children. For example, children
who explore math ideas playfully before intentional instruction use a greater variety of
strategies and attend to the features of problems more than those instructed first [113].

In summary, those teaching for relational understanding view children as active
learners who initiate explorations of and interactions with the surrounding world and
both adults and peers [26,33,114–121]. They avoid a preponderance of passive “reception”
of knowledge, understanding that children construct knowledge from a wide variety of
experiences [122], including direct instruction when it contributes to their learning. Such
experiences support learning and development and minimize wasted time in passive
experiences such as waiting [123]. Teachers support learning by using an equity lens
to watch and listen to children and the way they express their ideas [76]. By observing,
interacting, and being reflective, they base interactions and activities on children’s thinking
and learning [114,120]. In these ways, they promote joyful, engaged learning for all
children [124] from birth (we recognize that space limitations did not allow addressing
infants and toddlers) [33], we recognize that space limitations did not allow addressing
infants and toddlers.

3.3. Intentional Teaching and the Central Role of Children’s Thinking and Learning

A critical feature of teaching approaches that develop relational thinking is that they
base teaching on an understanding of children’s thinking and learning [5,125]. A research-
validated approach that does so and seamlessly integrates goals, children’s thinking, and
the teacher is the learning trajectories (LT) construct [39,40,56]. A LT has three interrelated
components: an educational goal, a developmental progression, and teaching practices
and activities. To attain a specific competence in a given subject or content area (the
goal), children progress through several levels of thinking (the developmental progression),
aided by intentionally planned environments, interactions, experiences, and challenges
(the teaching practices that create SLOs) designed to build the mental actions that enable
thinking at each higher level (and the Zone of Proximal Development) [126], and the Zone
of Proximal Development. Therefore, to support children’s development across content
areas, teachers need to understand the goals for children’s learning, children’s current
thinking in reference to those goals, and how to design learning opportunities to move
children from their current understandings toward the learning goal.

In this way, the Hierarchical Interactionalism theory posits that LTs are a particularly
fecund instructional approach. That is, each LT level is a pattern of thinking including
specific, mental actions-on-objects. Instructional environments or tasks present a problem;
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actions and strategies to solve the problem are represented. There is reflection on whether
the problem is solved, or partially solved, which leads to new understandings (mental
actions and objects, organized into strategies and structures) and actions [54]. Specific
learning trajectories are the main bridge that connect the “grand theory” of Hierarchic
Interactionalism [40] to particular theories and educational practice.

All three components of a LT can be misunderstood. Table 1 addresses misunderstand-
ings and myths to make the theory and its application clear.

Table 1. Myths and Understandings of Learning Trajectories.

Component Misunderstanding/Myths True Learning Trajectories

Goal Narrow behavioral objective

“Big ideas and proficiencies, central
and coherent, consistent with
children’s thinking, and generative of
future learning.
Math practices and investigations [33]
Positive dispositions

Developmental
Progression (DP)

Rigid sequence of skills in
“small steps”

Broad levels of learning; patterns of
thinking including concepts and
structures [31,54], skills, practices, etc.

Instructional Activities Rote-skill based or Generic

Connected to each level of the
DP–concepts, skills, and
problem solving.
Designed to promote thinking at that
level–the actions-on-objects (often
right in the activity—unitizing,
composing, etc.)

Learning Trajectories
Break down skills into
sequences, all followed in
lock step

Building up children from and
through their natural ways of
thinking (asset-based) [32].

The LT approach has been research validated in multiple studies for a wide variety
of math topics [32,92,127–135]. In most, teachers used all the strategies in the previously
described multidimensional pedagogical toolkit. Further, they combined brief, active,
whole-group sessions, individual work (sometimes using educational technology), inci-
dental learning throughout the day, and small-group sessions. The last was especially
important due to the personal involvement and close interactions, supporting their under-
standing and use of children’s thinking to differentiate instruction. Such formative assessment
is one of the most strongly empirically supported teaching approaches [67,136,137]. Forma-
tive assessment is the ongoing understanding of children’s thinking and learning to inform
and adapt instruction for groups and individuals. However, formative assessment is not
useful if teaching is not adapted based on that understanding [67,138]. Effective teachers
ask and answer the following questions: what do children need to learn, where are children
now, and how do I help them progress? [137]. Importantly, these questions align with the
three components of LTs: goal, developmental progression, and linked teaching activities
and strategies. This may be why LTs support and contribute to teachers’ professional
development and teaching prowess [139–141] and children’s learning [92,127,133,142,143].

Considering the validating studies cited, it is important to note that many have in-
volved a specific curriculum, so that the LTs may have been confounded by other differences
between the compared groups. Therefore, studies that rigorously compared LT-based in-
struction to the same instruction without a critical aspect of LTs address their specific
contribution. In most cases, these experiments validated the LT approach [144–148]. In the
case of no significant difference, the LT itself may have been under-researched, patterning
in one case [149].
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In summary, teachers who know how to use the three components of a learning trajec-
tory are more effective in supporting children’s learning [150]. Without such knowledge,
teachers of young children might offer tasks that are either too easy or too hard for children,
and this mismatch may limit children’s learning [39,151]. Playful, meaningful, content-rich
education based on learning trajectories benefits all children. Indeed, it is especially im-
portant for children with disabilities (CWD) [152]. CWD might operate at levels different
from their peers and quite different levels in one topic (say, counting) than others (such
as geometry). Learning trajectories offer different ways to introduce math topics, such
as arithmetic (e.g., counting, subitizing, or partitioning), so children can build on their
individual strengths. Learning trajectories’ levels are clusters of ideas and processes, not
just skills. So, children can both learn and show competence using a variety of modalities
and representations. Finally, learning trajectories can be aligned with formative assessment
and the Individualized Education Program (IEP) or the Individualized Family Service
Plan (IFSP) process. For all children with disabilities or math difficulties, tiered support is
important and validated as effective [153,154].

The remainder of this section consists of brief reviews of specific teaching strategies
for relational understanding. We start with additional research on formative assessment.

3.4. Formative Assessment

Formative assessment, the ongoing monitoring of student learning to inform instruc-
tion, was mentioned previously. Of the 10 instructional practices the National Mathematics
Advisory Panel (NMAP) researched, only a few had an adequate number of rigorous stud-
ies supporting them. One of the most strongly supported was teachers’ use of formative
assessment [67] so that teachers can monitor the class and individuals within it. Although
the youngest children in NMAP’s rigorous studies were in the upper primary grades,
other studies confirm that regular assessment and individualization are key to effective
education in general [155] and early math education [156,157] in particular, including
internationally [158]. Teachers should observe not just answers but strategies as well [159].
Second graders experiencing such individualization gained four months more achievement
than those in regular classrooms without formative assessment [156]. Consistent use helps
all children learn but helps marginalized children the most because instruction builds
on what they know and can do, and thus they learn more content and gain higher-order
competencies [137,160].

3.5. Group Size and Structure

Small-group work sessions can significantly increase children’s scores on tests aligned
with that work [161]. Small-group work is where formative assessment with LTs is particu-
larly effective [92,162]. One relevant finding is that these groups do not have to be small
(and certainly not individual): groups with two children may not be any more effective
than those with five at a time [163]. Children can also transfer the knowledge they learned
in small-group activities to tasks they have not been taught [164].

Learning centers can also contribute to children’s learning. They are most effective
when combined with other group sizes and structures and when carefully planned, intro-
duced, and guided by the teacher [165]. Finally, small class size has positive effects on math
achievement in grades K–3, especially when class size is 22 or fewer, children are from
marginalized populations, or reduction in class sizes is well planned and implemented in
consecutive grades [166,167].

3.6. Math Talk Discussions and Connections

Most educators agree that discourse aids development. However, some studies show
teachers of young children use language and feedback infrequently to teach concepts [168].

Effective teachers engage their students in mathematics discussions and use open-
ended questions more than less effective teachers. They ask students, “Why?” and “How do
you know?” They ensure multiple opportunities for children to talk with, not just listen to,
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teachers and interact with peers by applying research on productive dialogues, “think-pair-
share” strategies, to incorporate the best of such interactions between teachers and children
and between children, e.g., [169–171]. They expect students to share strategies, explain
their thinking, work together to solve problems, and listen to and understand one another.
They appropriately help students summarize critical ideas at the end of each lesson. They
explicitly discuss connections between the properties and relationships of mathematics
and connections between ideas and applications to everyday situations throughout the
day [88,92,157,162,172–179]. This is especially important for Latinx children [180] and other
marginalized groups.

Effective teachers encourage math talk throughout the day and do not limit it to the
common “number talk” [176]. Math talk often productively features sharing and analyzing
strategies. A recent finding regarding classroom strategy diversity is that encouraging such
diversity early in learning and working with children to use a smaller number of research-
validated, more sophisticated strategies is more effective than other approaches [159]. This
is a new theory, and the results are not causal, but the findings are consistent with several
previous studies on strategy use [181,182].

3.7. Adapting Activities and Implementation of Research-Validated Approaches and Curricula

Ann Brown [183] contrasted two ways to adapt a given activity or curriculum sequence.
The first, a lethal mutation, no longer captures the pedagogical essence of the intervention
and can be harmful. For example, “simplifying” a game by removing a step in which
children turn to their partner and ask, “Am I right?” limits peer interaction and removes
an opportunity for productive disagreement [39]. In contrast, the second, a productive
adaptation, positively reinterprets a curriculum, preserving this essence while tailoring the
learning experience to the strengths, needs, and characteristics of particular classrooms and
children [183]. For example, in a game, teachers might provide some children a number
cube with only 1, 2, 3, 1, 2, 3 on the six faces and others with numerals from 5 to 10
depending on their level of thinking [39]. Such formative assessment is discussed in the
next section.

This raises the question of the role of teachers in implementing research-validated
approaches and curricula. In contrast to the notion that individual teachers create all
aspects of the curriculum (which should not be expected) [184], systematic, scientifically
based practice is more effective than private, idiosyncratic practice [185]. This does not
imply using a “scripted” curriculum; rather, focusing on the shared scientific base is a more
effective and efficient way to improve education. Further, such scientifically grounded
shared practice is, somewhat paradoxically, more likely to generate creative contributions.
Teachers may modify shared practices, which will be accessible to discussion and further
research. Further and more extensively, productive adaptations and flexible curriculum
planning are necessary for teachers and children in different sociocultural contexts and
with different individual strengths, assets, interests, and needs [186]. From this perspective,
fidelity is being true to the research guidance and the vision of the curriculum as supporting
all children’s development, not compliance with a rigid script. Curricula, related resources,
and professional development need to highlight and support the research-validated ap-
proaches and strategies so that teachers can understand, implement, and adapt them for
their classrooms and support relational understanding.

3.8. Thoughtful Examples and Non-Examples

An oft-neglected, constructive activity is providing children with examples and non-
examples of a math concept so that they can discover for themselves the critical (defining)
attributes of the idea [107,187–189]. For example, “Wow! That’s not two horses. That’s
three horses!” This is especially important in geometry: varied examples (e.g., “tilted”
squares and obtuse triangles) and non-examples help children understand attributes of
shapes that are mathematically relevant as well as those (orientation, size) that are not [190].
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Challenging non-examples of shapes can be paired with an example, such as a triangle next
to a visually-similar quadrilateral with one short side [39].

A study of examples in arithmetic found that second-grade children notice structure
by analyzing worked examples, and they try to make sense of them based on prior knowl-
edge [191]. Therefore, the first worked example contrast is important as it confirms or
challenges their prior understanding. For example, using contrasting cases, such as having
students compare the problem 5 − 3 = 2 with 3 − 5 = −2, can help them notice important
features. Another study confirms the benefits of teachers asking children to compare and
contrast ways of reasoning used on problems of different problem types to evoke different
strategies [50]. Children then see and understand features of each problem that made one
way of reasoning easier for solving one problem type than another. Such comparisons
develop better problem solving and flexible mathematical thinking [50].

3.9. “Concrete” Manipulatives for “Abstract” Ideas

Teachers often move from “concrete” (e.g., using manipulatives) to “abstract” expe-
riences for children. Although generally research supports this sequence, there are some
critical nuances [125,192]. As an example of a study validating the approach, second
graders randomly assigned to be taught with manipulatives achieved and retained sig-
nificantly more on a place value comprehension test than students assigned to be taught
by conventional methods using algorithmic procedures and drill and practice [193]. In
addition, a case study of third graders with disabilities showed a relationship between the
sequence and a place value assessment, including generalization to new tasks [194]. For
example, just providing connecting cubes increased the math scores of second graders [195].

However, manipulatives do not guarantee success. Students taught multiplication
emphasizing understanding performed well whether they used manipulatives or sym-
bols [196,197]. Further, the students randomly assigned to be taught with symbols scored
higher on an immediate transfer test involving different factors [198]. Manipulatives do
not “carry” mathematical ideas. They may help in teaching concretely at first, but only if such
concrete teaching emphasizes quantitative or spatial ideas.

Why might concrete manipulatives help? The answer has an interesting twist. Many
would say that because they are physical objects that students can grasp with their hands,
this sensory characteristic makes manipulatives “real”, connected with one’s intuitively
meaningful personal self, and therefore helpful. However, concepts cannot be “read off”
manipulatives. Expert teacher John Holt said that he and his fellow teacher “were excited
about the [Cuisenaire] rods because we could see strong connections between the world of
rods and the world of numbers. We therefore assumed that children, looking at the rods
and doing things with them, could see how the world of numbers and numerical operations
worked. The trouble with this theory is that [my colleague] and I already knew how the
numbers worked. We could say, ‘Oh, the rods behaved just the way numbers do’. But if
we hadn’t known how numbers behaved, would looking at the rods enable us to find out?
Maybe so, maybe not” (Holt 1982, pp. 138–139). That is, the physical objects may be manip-
ulated without the concepts being illuminated. Concrete materials may help students build
meaning, but the students must reflect on their actions with manipulatives. Said in another
way, “understanding does not travel through the fingertips and up the arm”. [199] (p. 47).
They need teachers to reflect on their students’ representations for mathematical ideas and
help them develop increasingly sophisticated and mathematical representations.

Children have Sensory-Concrete knowledge when they need to use sensory material
to make sense of an idea [197,200]. For example, very young children need to count
objects they can see to count meaningfully [39]. Later, teachers can help them develop
Integrated-Concrete knowledge that connects concrete experiences to more abstract math
concepts. There is a shift in what the adjective “concrete” describes. Sensory-Concrete
refers to knowledge that demands the support of concrete objects and students’ knowledge
of manipulating these objects. Integrated-Concrete refers to knowledge that is concrete at
a higher level because it is connected to other knowledge, both physical knowledge that
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has been abstracted and thus distanced from concrete objects and abstract knowledge of a
variety of types.

Multiple studies have shown the benefit of supporting children in progressing from
Sensory-Concrete to Integrated-Concrete cognition [192,200,201]. Usually, teachers first de-
velop children’s Sensory-Concrete implicit levels of thinking, at which perceptual supports
are necessary and fundamental, and reasoning may be restricted to limited cases. Then
they learn explicit, verbally-enhanced generalizations and abstractions that characterize
Integrated-Concrete understandings, involving internalized mental imagery and linked
verbal schemes that generate operations and abstractions that are increasingly sophisticated
and powerful [192].

Too often, teachers use manipulatives to “make math fun”, where “manipulative math”
and “real math” are seen as different enterprises [202]. Justifications for their instructional
role are often that they are concrete and thus understandable. Research offers guidelines to
make manipulatives more effective [197,200,201].

• Model with manipulatives. Sensory-concrete support is useful if the manipulatives
help students investigate and understand mathematical structures and processes. For
example, students benefited more from using (bendable) chenille sticks than pictures
to make nontriangles into triangles [203]. They merely drew on top of the pictures, but
they transformed the chenille sticks, engendering more learning.

• Encourage appropriate play with manipulatives [204]. Is it reasonable to let children play
with manipulatives? Usually yes, sometimes no. Most teachers recognize that if
young children have not explored a manipulative on their own (say, toy dinosaurs),
getting them to address the teacher’s agenda (say, counting) can be inefficient and,
at worst, near impossible. Further, children can learn pre-mathematical foundations
through self-directed play, especially with structured manipulatives, such as pattern
blocks or building blocks [83,204]. However, these experiences are rarely mathematical
without teacher guidance, and teachers of young children often fail to extend children’s
thinking [168]. Counterintuitively, play can sometimes be counterproductive. When a
physical object is intended to serve as a symbol, playing with the object can interfere
with understanding. For example, having children play with a model of a room
decreased young children’s success in using it as a symbol in a map search task,
and eliminating any interaction increased their success [205]. Thus, the purpose and
intended learning with the manipulatives must be considered carefully.

• Ensure manipulatives serve as symbols. Students need to interpret the manipulative
as representing a mathematical idea. For example, connecting work based on place-
value blocks with verbal representations of number and arithmetic can help build
both concepts and skills successfully [204,206–208]. Further, too many attributes can
distract young children [206].

• Use drawings and symbols, moving away from manipulatives as soon as possible. Students
use manipulatives in second grade to do arithmetic, and many continue to do so even
in fourth grade [204,209]. That is a failure to move along the learning trajectory.

• Use digital manipulatives too. They can be more manageable, “clean”, flexible, and exten-
sible than their physical counterparts [200]. Further, children who used both physical
and software manipulatives showed greater sophistication in classification and logical
thinking than did a control group that used physical manipulatives only [210]. Other
studies support using physical and concrete manipulatives [200,211–213] as they can
reveal mathematical thinking in new ways [31].

In summary, research-based manipulative use is helpful when implemented consistent
with research. However, the caution is that although widely accepted notions such as
“concrete to abstract” often have a good deal of truth behind them, they can also become
immune from critical reflection [200].
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3.10. Practice

Research shows that teaching for relational understanding also develops skills. That
does not mean young children do not need practice [214]. Fortunately, research offers
clear guidelines. Rather than substantial time spent on drill, repeated experiences with
many contexts and different types of activities support generalization and transfer [40,215].
Moreover, distributed, spaced practice is better than massed (all in one session, repetition of
the same item repeatedly) practice [216,217]. Unfortunately, such practice is hotly debated.

Contrary to those who believe practice has no role and the so-called “science of math”
movement that promotes memorization through drill without caveats, practice should be
used at the correct developmental juncture and to the appropriate degree [218]. Because
competencies in subitizing, counting, and arithmetic combinations support math thinking
and learning throughout life, short, frequent practice sessions of facts and skills whose
conceptual foundations have been well learned and understood are recommended. Finally, a
classic conceptualization describes three levels of practice: the level of drill, application, or
problem solving [219]. Practice at the problem-solving level teaches all the competencies
of relational understanding. Meaningful practice develops more abilities and superior
skills [181].

3.11. Affect, Motivation, and Engagement

Recall that productive disposition was one of the goals of relational understanding:
a consistent view of math as sensible, useful, and worthwhile and of oneself as capable
and engaged [63]. Contrary to this goal, one US cultural belief is that math achievement
depends mostly on native aptitude or ability. In contrast, people from other countries,
such as Japan, believe that achievement comes from effort [220]. Even more disturbing,
research shows that the US belief hurts children and is not valid. Students who believe—or
are helped to understand—that they can learn if they try to work on tasks longer and
achieve better throughout their school careers than students who believe that one either
“has it” (or “gets it”) or does not [221]. This view often leads to failure, anxiety, and
“learned helplessness” [221,222]. Similarly, students who have mastery-oriented goals (i.e.,
students who try to learn and see the point of school to develop knowledge and skills)
achieve more than students whose goals are directed toward high grades or outperforming
others [67,223].

Children’s math anxiety predicts future math achievement over and above cognitive
math ability, especially tackling challenging problems [224]. This adverse effect may be
through children’s visuospatial system [225]. Surprisingly, children with high achievement
and high working memory may avoid using more advanced solution strategies due to math
anxiety [226]. Unsurprisingly, most of these mirror the pedagogical strategies discussed
previously, but the point here is that these have also been identified as improving children’s
attitudes and beliefs about math.

Fortunately, most young children have positive feelings about math and are motivated
to explore numbers and shapes [223]. However, after only a couple of years in typical
schools, they begin to believe that “only some people have the ability to do math”. Children
who experience math as a sense-making activity will build positive feelings about math
throughout their school careers.

Teachers can help by providing meaningful tasks that make sense to students and
connect with their everyday interests and lives. The right degree of challenge and novelty
can promote interest, and promoting and discussing skill improvement can promote a
mastery orientation. For example, researchers have estimated that students should be
successful about 70% of the time to maximize motivation [223].

A common core of characteristics of learning environments enhances students’ atti-
tudes and beliefs about mathematics [227–233].

• Use problems that have meaning for children (both practical and mathematical). (Note
that even instruction that increases, for example, memorization via drill in the short
run, may damage children’s motivation.)
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• Expect that children will invent, explain, and critique their solution strategies within a
social context.

• Provide opportunities for creative invention and practice and promote inquiry [234].
• Use manipulatives [195,235].
• Use technology [235–237].
• Encourage and support children progressing toward increasingly sophisticated and

abstract math methods and understandings and to understand and develop more
efficient and elegant solution strategies.

• Help children see connections between various types of knowledge and topics, with
the goal of having each child build a well-structured, coherent knowledge of math.

• Ensure that your expectations of and interactions with girls about math are positive
and equal to that with boys [238].

• Engagement of children with math difficulties is facilitated by playing games, using
number lines to represent whole numbers, using manipulatives and technology, and
learning a range of content beyond the number domain [235].

3.12. Collaboration with Families

Families influence children’s earliest development of math [8,39,110,235,239,240], pri-
marily through stimulating, informal, experiences developing foundational ideas [241,242]
and more intentional formal activities developing symbolic competencies [243,244]. Par-
ents’ math talk with their children about number and spatial ideas are related to children’s
talk about and achievement in those topics [245], with prompts to talk about math more
effective than statements [246]. Further, effective teachers promote reciprocal partnerships
with families and family engagement [120,239,247] because supporting parent-child math
interactions can make a meaningful difference, especially with math-anxious parents [245].
For example, one study compared business as usual to a school intervention and a school
plus home intervention and found significant effects only if the home intervention was
added to the school intervention [248]. Similar benefits of encouraging parents to play
math games at home have been validated [249]. Interestingly, in studies showing the home
math environment does not relate to children’s math competencies, the reason may be
strong early math education in schools [250]. This is especially important for families from
marginalized communities [240].

To provide culturally and linguistically relevant curricula and ensure equity, develop-
ers and teachers engage and learn from families and communities [251]. Curricula build in
communication supports to promote ongoing two-way partnerships to bring the school
into the home and vice versa [252,253].The following section addresses how to ensure
that curricula, classrooms, and teaching strategies are responsive to and representative of
children from culturally and linguistically diverse backgrounds.

4. Ensuring Pedagogy Represents Children from Culturally and Linguistically
Diverse Backgrounds

Reviewing studies that have focused on culturally relevant pedagogy and culturally
responsive teaching in early childhood mathematics education can support the creation
and implementation of inclusive curricula and experiences for children from culturally and
linguistically diverse backgrounds [1,31,36]. The keywords and phrases used to search for
articles in this and the following sections included culturally relevant pedagogy, culturally
responsive teaching, early childhood education, mathematics, culturally responsive mathe-
matics education, and combinations of the terms and phrases. Ladson-Billings proposed
the term Culturally Relevant Pedagogy (CRP) to describe a model of practice that “helps
students to accept and affirm their cultural identity while developing critical perspectives
that challenge inequities that schools (and other institutions) perpetuate” [254] (p. 469). She
outlined three elements of culturally relevant pedagogy: academic achievement, cultural
competence, and cultural critique, and observed “exceptional” teachers recommended by
parents and teachers and provided concrete examples of these elements in action [254–256].
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Teachers held high standards for children’s academic work but provided tools and strategies
for students who needed extra support to reach proficiency.

Building upon Ladson-Billings and others’ work, Gay [257] defined Culturally Re-
sponsive Teaching (CRT) with eight descriptors: validating, comprehensive and inclusive,
multidimensional, empowering, transformative, emancipatory, humanistic, and normative
and ethical. Gay [257] supported the veracity of these descriptors by weaving in stories
from researchers and practitioners of culturally responsive teaching as well as her own
experiences in the classroom as a culturally responsive educator. A qualitative metasyn-
thesis of math teaching strategies that support CRT and CRP reviewed 12 studies from
pre-kindergarten through 12th grade [258]. Five teaching practices supported CRT and
CRP: caring for learners as participants in their education, knowing and using the context of
students’ lives at school and home (funds of knowledge) [259], having cultural competency,
setting high expectations for learners and themselves, and using high quality, interactive
math instruction. Before instruction even begins, early childhood educators can engage
in CRT and CRP by validating and affirming the importance of cultural diversity in their
classrooms and building and sustaining positive cultural identities for all children [260]. As
a new field, such practices are at least partially research-based and need additional study
to establish research-validated pedagogies.

4.1. Culturally Responsive Classroom Environments

One element of practice that Gay outlined was “symboling”, [257] (p. 48) or including
positive visual imagery, classroom books, and other media from different racial, ethnic,
and cultural backgrounds. As mentioned, teachers can begin this practice before children
even enter the classroom. Once the educator knows more about the students, families, and
communities they will be working with, educators can ensure the classroom reflects the
learners’ experiences. As an example of this element, Gay described a kindergarten teacher
that asked her students’ families to send in photos for a classroom photograph montage.
Children were able to see photos from their families as well as from families from different
backgrounds doing different activities (sometimes culturally specific and sometimes not).
This same kindergarten teacher asked parents to donate two books to the classroom library
at the beginning of the school year. Parents were asked to donate a book about their own
ethnic group and a second book about another ethnic group. By including photos, books,
and media representation, this kindergarten teacher was creating a culturally responsive
classroom environment. Educators can also create culturally responsive classrooms by
encouraging the use of children’s home languages if students are bilingual or multilingual.
In math, one kindergartner class engaged in bilingual counting. One child pointed as
the other students said the numbers aloud in Spanish. After they laughed about their
pronunciations, they discussed that those learning a language do not sound like those who
are native speakers. Rosita, a native Spanish speaker, was asked to model, and the others
followed her [257] (p. 51). Studies confirm that bilingual counting or counting in Spanish
and then reporting the result in English supports students’ mathematical thinking [261].

Ethnomathematics is an approach designed to change deficit views to use indigenous
knowledge to benefit both indigenous and non-indigenous educational contexts [261].
Compared to approaches that tend to essentialize, considering all children in an ethnic
group, this approach builds from a local culture. An Alaskan native curriculum was based
on different aspects of the subsistence cycle, such as collecting or gathering foods, including
locating a good place to gather berries or collect eggs, estimating distance and time (how
far and how long will it take to get there), and estimating volume (how many filled buckets
will be needed), sorting by attributes such as type of berry, storing (other units of measure—
freezer bag full), use (recipes—measuring), and sharing/redistributing the food. An earlier
experiment validated the efficacy of this approach, providing initial validation [256].

Ladson-Billings [256] highlighted an elementary teacher who used rap song lyrics
as a way to teach poetry. By including media that her students were familiar with, the
students were able to see their cultural styles appreciated in the classroom. Similar appli-
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cation of music could be used in math, e.g., patterning, [92,262] and related fields such as
computational thinking [263].

In summary, early childhood educators can set the stage for academic learning by
creating culturally responsive classroom environments in which diverse backgrounds,
ethnicities, and cultures are acknowledged and celebrated [264–266]. Positive cultural
representation must also be featured in textbooks and other curricular materials [257].
Having culturally responsive stories and characters that students identify with ethnically
can inspire elementary students to engage more with mathematics and demonstrate more
mathematical behaviors [267].

4.2. Funds of Knowledge

Because CRT “builds bridges of meaningfulness between home and school experiences
as well as between academic abstractions and lived sociocultural realities” [257] (p. 37), it is
imperative that educators learn about their students’ home lives, families, and communities
and incorporate those elements into the classroom. One way that educators can learn about
the resources in students’ households is by conducting home visits [259]. When visiting
students’ homes, teachers should look for funds of knowledge within the household, or
the knowledge, cultural resources, and artifacts that families have developed over time
and that are essential to their daily routines. Educators may look for artifacts such as
family photos, books, household tools, or religious items [268]. They may ask about family
members’ occupations, places of travel, pets, or livestock. When observing households,
the teacher will need to center himself or herself as a learner of the family’s routines and
experiences while withholding judgement and avoiding stereotyping.

If home visits are not possible, educators can ask students and their caregivers about
their households through surveys or informal or formal interviews. Teachers should ask
about family traditions, languages used at home, family values, occupations, household
tools, educational activities, and any chores that children do to contribute to the household.
After collecting information about the funds of knowledge that exist in the child’s home,
educators should reflect upon how they can incorporate these funds into activities in
the classroom.

Mathematical funds of knowledge could include math that is involved in sewing,
gardening, cooking, construction, and time management; however, it may be difficult
for caretakers and educators to see the underlying mathematical principles in these daily
activities. That is, mathematics is a particularly challenging domain in which to incorporate
funds of knowledge [269]. During one home visit, a teacher noticed that a student was
selling Mexican candy to neighbors and friends [259]. The teacher decided to make a theme
around candy. Students compared Mexican candy and candy sold in the United States,
made graphs of their favorite types of candy, had a classroom parent visit the class to assist
in making candy, and then packaged and priced the candy to sell at a school event. The
teacher was able to add additional lessons in mathematics to a strength that the students
already possessed outside of the classroom.

Aguirre and Zavala [270] created a culturally responsive mathematical lesson analysis
tool that could be used with K–8 teachers. The tool contains an element titled “Funds of
Knowledge/culture/community support” that can be used to determine if/how the lesson
is connecting math to relevant aspects of students’ lives. A score of 1 indicates that the
lesson contains culturally neutral contexts and a score of 5 indicates that the hook, activity,
assessment, and closure involve strong connections to the students’ funds of knowledge
and community.

4.3. Critical Reflection: High Standards and Warm Demanders

To engage in CRT, educators must engage in critical reflection, confront, and eliminate
any deficit thoughts they may hold toward students from culturally and linguistically
diverse backgrounds and instead view differences as assets [271]. Durden and others [272]
charge teachers to “engage in critical reflective practice to examine [their] own ideological
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stance towards the children in [their] classroom[s]” (p. 224) including examining their
beliefs about bilingual education and any racial stereotypes they may hold. Early childhood
educators can use tools to engage in self-study that will help them examine their diversity
practices [273]. Math educators must set high expectations for themselves and adapt their
instruction based on their students’ needs [258] while also setting high expectations for their
learners. Teachers must be “demanding, yet supportive and encouraging” [257] (p. 64).

Ladson-Billings [254] called for culturally relevant pedagogy to be included in teacher
preparation programs, pointing out the “growing disparity between the racial, ethnic, and
cultural characteristics of teachers and students” (p. 483). This need for culturally relevant
pedagogy and critical reflection is underscored by recent research such as that by Essien
and Wood [274] who found that Black children experienced a number of microaggressions
including being treated as second-class citizens in early childhood education settings during
the pandemic.

4.4. Learning about Math in Students’ Homes

One way that early childhood educators can be culturally responsive is by conducting
home visits and learning more about how mathematics is taught in students’ homes. As
Moll et al. [259] described, home visits are critical in helping educators acknowledge,
appreciate, and incorporate strengths and values that students’ families foster in their daily
lives. Educators can then incorporate these values into classroom lessons, creating a bridge
between home and school life and learning.

Over a third of Latina mothers of preschool to first graders supported children’s
math learning at home by using daily living activities such as cooking, grocery shopping,
working on household finances, counting rosary beads, and sharing food with family
members [275]. Such support strengthened and expanded children’s understanding of
how math is embedded in their own daily activities. The researchers suggested that early
childhood educators and programs reinforce these positive math experiences in the home
and work toward building stronger family-school partnerships. For example, home visits or
surveys could reveal activities they could incorporate in the classroom. Further, they could
send home weekly newsletters highlighting a math concept to foster in daily activities,
such as looking for shapes when walking around the neighborhood [275].

Sonnenschien and colleagues [276] interviewed Chinese and Latina immigrant moth-
ers of young children (preschool through first grade) on their beliefs and practices about
math and their engagement in math-related activities at home. The researchers found that
both groups highlighted the importance of learning math and engaged their children in
learning math skills and concepts in the home. One difference that the researchers found
was that Chinese mothers had systematic, long-term plans for their children’s learning,
while Latina mothers did not often mention using a systematic approach over time. Early
childhood educators could help parents create their own plans for children’s learning or
send monthly suggestions of skills to work on and incorporate into their home lives.

Researchers working with Indigenous cultures in Australia found that Aboriginal
Teaching Assistants helped build community connectedness and relationships between
teachers and families [36]. More intensive teaching and combining direct teaching with
play-based opportunities, and using familiar contexts, also enhanced young Indigenous
students’ learning.

In summary, to provide culturally and linguistically relevant curricula and ensure
equity, teachers engage and learn from families and communities [251], building commu-
nication supports to promote ongoing two-way partnerships to bring the school into the
home and vice versa [252,253].

4.5. Children, Parents, and Caregivers as Experts in the Classroom

As Gay [257] described, CRT should be empowering. Teachers can empower students
by ensuring that students are “consumers and producers of knowledge” (p. 41). Students
can also be positioned as experts (as in the case of Rosita counting in Spanish). This allows
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students to move from passive recipients of knowledge to active learners and mentors who
are developing confidence and self-efficacy.

Early childhood educators can also invite parents and caregivers to the classroom to
serve as experts and capitalize on funds of knowledge in the community [277]. Parents and
caregivers can teach skills, crafts, lead culturally specific activities, read books, and support
math instruction.

4.6. Learning about How Math Is Taught in Other Cultures and Countries

Teachers who do not engage in culturally responsive mathematics education may hold
the belief that mathematics is culturally neutral [278]. Teacher education and professional
development sessions should work to deconstruct teachers’ views that may include “beliefs
about mathematics as a culturally-neutral subject, as universal truth, as a non-reasoning
system, and, as an exclusively European and Western discipline” [278] (p. 51). By learning
about the differences in how mathematics is taught and learned in countries and cultures
around the world, early childhood educators can understand and appreciate differences in
students’ thinking and provide students with multiple strategies to approach their learning
of mathematics.

An alternative teaching strategy that was used by early childhood educators in India
involved having the children use their fingers to count in ways different from other cul-
tures [279]. Children begin with the fingers of one hand, then the fingers of both hands,
and then extended to using the joints and finger lines of both hands for a total count of
40. If students or their families have recently immigrated, early childhood educators can
learn more about how children are taught mathematics in their countries of origin. Having
knowledge of cultural mathematical practices like this strategy from India could help edu-
cators and students by providing them with additional tools. Teachers with children from
multiple cultures should avoid imposing specific ways to count on their fingers, but rather
enrich children’s representations through discussions of different ways to show numbers.

Mathematics teacher educators can strengthen their programs by incorporating the
history of mathematics as well as the more contemporary contributions of people from
African, Latino/a, Asian, and Native American backgrounds [280]. This will allow teachers
to learn about the contributions of different racial and ethnic groups to mathematics, both
throughout history and in more recent times. Early Childhood Educators can share this
information with their students, helping children develop a more inclusive view of the
field of mathematics.

5. Caveats

As stated previously, this article is a “best evidence” synthesis from our perspec-
tives and research reviews. That is, of the myriad studies in early childhood math, we
selected studies on pedagogies that we deemed (a) strongly, more directly research-based
or research-validated and (b) useful in addressing important pedagogical issues in early
math. Although our goal as scientists was to ensure a full consideration of all evidence, this
review reflects our choices—an essential caveat. We look forward to constructively critical
reactions, the only way to move the field forward.

Space constraints limited our coverage of many topics and issues, such as teaching
with literature and other worthwhile approaches. Specific research on teaching math topics
and recommendations for future research in early math pedagogy can be found in other
reviews [32,33,35–37,39,40,281].

6. Final Words

Teachers matter more than other factors, and teachers in the early years matter the
most [282]. So, early math teachers must use the best pedagogical strategies [39].

Teaching techniques are tools and must be used carefully, thoughtfully, and appropri-
ately. Every strategy, from play to direct instruction, can be educative or mis-educative.
“Any experience is mis-educative that has the effect of arresting or distorting the growth of
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further experience” [283] (p. 25). For example, mis-educative experiences resulting from
inappropriate direct teaching may decrease sensitivity to the wide range of applications of
math ideas or develop automatic skills but narrow the range of other experiences with the
idea underlying the skill. Conversely, child-centered education that rejects the structures or
sequencing of subject matter content may be so disconnected as to limit later integrative
experiences. As Dewey said, “Just because traditional education was a matter of routine in
which the plans and programs were handed down from the past, it does not follow that
progressive education is a matter of planless improvisation” (p. 28).

Regardless of instructional approach or strategy, educators must remember that young
children’s ideas can be uniquely different from those of adults [31,39,284,285]. Early
childhood teachers must be careful not to assume that children “see” situations, problems,
or solutions as adults do. Based on their interpretations of children’s thinking, teachers
conjecture what the child might be able to learn or abstract from his or her experiences.
Similarly, when interacting with the child, they also consider their own actions from the
child’s point of view. This makes early childhood teaching both demanding and rewarding.
Such sensitivity, however, is necessary to fully benefit from this chapter’s pedagogical
suggestions, especially the core contention of the central role of children’s thinking and
learning, as well as the use of formative assessment, and a variety of teaching strategies
at each particular phase of learning. Knowledge of developmental paths in learning
trajectories can enhance teachers’ understanding of children’s thinking, helping teachers
assess children’s level of understanding and offer instructional activities at the next level
and thus offer meaningful and joyful opportunities to engage in learning.
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