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Abstract: In this paper we advance a methodological approach for documenting the mathematical
progress of learners as an integrated analysis of individual and collective activity. Our approach is
grounded in and expands the emergent perspective by integrating four analytic constructs: individual
meanings, individual participation, collective mathematical practices, and collective disciplinary
practices. Using video data of one small group of four students in an inquiry-oriented differential
equations classroom, we analyze a 10 min segment in which one small group reinvent Euler’s method,
an algorithmic tool for approximating solutions to differential equations. A central intellectual
contribution of this work is elaborating and coordinating the four methodological constructs with
greater integration, cohesiveness, and coherence.

Keywords: collective; individual; coordinated analysis; practices; Euler’s method

1. Introduction

In this paper we advance a methodological approach for documenting the mathe-
matical progress of learners as an integrated analysis of individual and collective activity.
Our approach is grounded in the emergent perspective [1] and its expanded interpretive
framework [2] and further develops a methodology for integrating its analytic constructs.
Our primary research goal in this paper is to offer researchers an approach for coordinating
individual and collective analyses to gain explanatory and descriptive power, with the
intention to further understand the interactive process by which individual and collective
mathematical progress is made. Our epistemological stance is that learning mathematics
is a human activity of mathematizing, “social through and through” [1] (p. 181). We aim
to account for the complexity of mathematical progress, in this case the reinvention of an
algorithmic tool for approximating solutions to differential equations, by accounting for
not only the mathematical meanings that individual students form as they participate in
and interact with others in classroom activities, but also the mathematical reasoning that is
developing and living in the classroom collective space. We use the phrase “mathematical
progress”, as opposed to, say, learning, as an umbrella term that reasonably applies to both
individuals and the collective. Our use of the term “progress” includes both accomplish-
ments and changes, both of which can occur over shorter or longer periods of time. In this
way, progress can be demonstrated on a single task, as is the case here, or across multiple
class sessions. Further details are provided in the Methodology section.

In [2], we offered four constructs through which to delineate and map out mathe-
matical progress: two individual constructs and two collective constructs. That paper
served to introduce those four constructs for the purpose of expanding the original inter-
pretative framework for the emergent perspective; it also detailed methodological steps
for carrying out the analyses separately for each construct, with suggested possibilities
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for coordinating those analyses. We saw that paper as “a first step in developing a more
robust theoretical-methodological approach to analyzing individual and collective math-
ematical progress”, and we anticipated that “future work will more carefully delineate
methodological steps needed to carry out the various ways in which analyses using the
different combinations of the four constructs can be coordinated” [2] (p. 279). The purpose
of this theoretical–methodological report is to follow up on that promise and provide a
thoroughly coordinated and integrated analysis of collective and individual progress. The
methodological advance presented here, therefore, is the weaving of four constructs, as
opposed to our prior work, which reported each construct’s analysis one after the other.

To demonstrate the coordination of these four constructs, we analyze a very productive
10 min small group episode that occurred on the second day of class in a differential equa-
tions course, in which the small group essentially reinvented Euler’s method, which is an
algorithmic tool for approximating solutions to first order ordinary differential equations.
As such, this mathematically rich and productive episode offers an intriguing opportunity
to examine the individual and collective progress of this one small group and thereby
provides a paradigmatic example of how to carry out an analysis that interweaves indi-
vidual and collective mathematical progress. In so doing, we contribute to “the need for
multiple empirical techniques to advance, support, and constrain important claims about
developmental processes related to ongoing classroom activity” [3] (p. 299).

2. Theoretical Background

The foundational perspective for our line of inquiry is the emergent perspective
and an accompanying interpretive framework [1]. The emergent perspective, which is
a version of social constructivism, coordinates a social perspective on collective activity
with a constructivist perspective on the reasoning of individual students and has been
profitably leveraged by a wide range of scholars (e.g., [4–7]). Common across this work is a
coordination of individual and collective mathematical progress through the coordination
of two constructs, one for the individual and one for the collective.

The work reported here builds on and extends the coordination of individual and
collective progress from the original interpretative framework [1] to include coordination
across not just two constructs but four constructs (two for the collective and two for the
individual). Inspiration for creating an expanded interpretative framework came from
more recent theorizing about the value of coordinating different perspectives [8], the nature
and forms of classroom participation [9,10], and the emphasis on engaging undergraduate
students in disciplinary practices in inquiry-oriented mathematics classrooms (e.g., [11]).

An expanded interpretative framework for the emergent perspective is shown in
Figure 1, with four constructs for coordinating individual and collective progress shown
in the bottom row [2]. Social and sociomathematical norms, which appear in the first and
second rows under the social perspective of the expanded interpretative framework, are
foundational constructs for delineating the classroom microculture and are taken to be
reflexively related to an individual’s beliefs [12]. Because our analysis focuses on a 10 min
episode in one small group on the second day of class (and not on longitudinal classroom
data that would admit analyses of social and sociomathematical norms), we focus our
analysis within the bottom row of our expanded interpretive framework.

To further highlight the woven approach we take to report our integrated analysis
and to highlight the foundational influence of symbolic interactionism [13] in the emergent
perspective, we created the image shown in Figure 2. As we moved from our prior
work [2] to this analysis, we chose to change the wording of the four constructs to that
in Figure 2 for three reasons: (1) we wanted to highlight the unit of analysis (collective
versus individual), (2) we wanted to open up collective practices to include normative
reasoning that occurs over a shorter time frame within a single group of students, and
(3) we believe that using mathematical meanings (versus conceptions) is more consistent
with a focus on interactionism [13]. Thus, in this paper, our four constructs, shown in
Figure 2, for coordinating mathematical progress are: collective disciplinary practices,
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collective mathematical practices, individual participation, and individual meanings. The
imagery of interlocking puzzle pieces is intended to convey the centrality of interaction
and connection between the four constructs that is central to our analysis for characterizing
individual and collective mathematical progress.
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Symbolic interactionism, which is at the core of the emergent perspective, has three
basic premises: a person acts towards things on the basis of the meanings that the person
holds for those things, the meanings of those things arise out of the human interaction
that one has with others, and the person modifies these meanings through a process of
interpretation when encountering those things [13]. According to Blumer,

Interaction in human society is characteristically and predominantly on the sym-
bolic level; as individuals acting individually [or] collectively. . . they are necessar-
ily required to take account of the actions of one another as they form their own
action. They do this by a dual process of indicating to others how to act and of
interpreting the indications made by others. . . by virtue of symbolic interaction,
human group life is necessarily a formative process and not a mere arena for the
expression of pre-existing factors [13] (p. 10).

Thus, interactions are central in mathematical progress. It is precisely for this reason
that the center puzzle piece of Figure 2 is “Interactions”, for it is the interactions that
constitute the substance and glue allowing for the weaving and connecting of the four
analytic constructs. These facets of the phenomena under investigation are interdependent
and, in many ways, inextricable from one another. This position is consistent with early
writings regarding the emergent perspective and interactions that occur within small group
work [14]. More specifically, “Students’ constructions have an intrinsically social aspect in
that they are both constrained by the group’s taken-as-shared basis for communication and
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contribute to its further development”. Thus, learning opportunities within small group
work “can arise for children as they mutually adapt to each other’s activity and attempt to
establish a consensual domain for mathematical activity” [14] (p. 26). As a consequence, all
four constructs are in dialogue with each other throughout our analysis.

The construct of individual mathematical meanings is how we examine what ideas and
interpretations individual students develop in their mathematical work. Our view of an
individual’s mathematical meanings draws on symbolic interactionism, which holds that
meaning is not inherent and intrinsic to a concept, but rather takes form “in the process of
interaction between people. The meaning of a thing for a person grows out of the ways in
which other persons act toward the person with regard to the thing” [13] (p. 4, emphasis
added). Accordingly, Bauersfeld defined understanding as “the active construction of such
meanings and references supported by the social interaction within the culture. . . These
ascriptions of meaning are necessarily specific to the perceived situation” [15] (p. 274). Thus,
to analyze the mathematical meanings that an individual brings to bear and progressively
develops in their mathematical work with respect to a particular concept, we document the
individual’s mathematical enacted, developed, and enlarged ways of communicating that
concept. This does not happen statically or in isolation; rather:

Symbolic interactionism emphasizes the interpretative process involved in the
development of meaning as an individual responds to, rather than simply reacts
to, another’s actions. The response is based on the meaning an individual ascribes
to another’s actions. It is the emphasis on the interpretation that distinguishes
symbolic interactionism [16] (p. 135).

Within a small group or whole class discussion, a student interprets others’ mathe-
matical utterances by ascribing meaning to those utterances, which may or may not be
the meaning that the other person held or aimed to communicate. This occurs as students
enact and embrace various participatory roles in their joint mathematical endeavors.

The construct of individual participation is how we examine the ways in which an
individual student contributes to the mathematical progress that occurs within group
settings. Because meanings are social products arising out of the human interaction that
one has with others, we operationalize a student’s participation as the ways in which
they interact in either small group or whole class settings. This is broadly consistent with
Wenger’s use of participation within a community of practice to refer to “a process of taking
part and also to the relations with others that reflect this process. It suggests both action and
connection” [17] (p. 55). In the Methodology section we leverage the work of Krummheuer
to operationalize the kind of actions and connections that students embrace. In previous
research about advancing mathematical activity at the undergraduate level, we characterize
an individual’s “progression in mathematical thinking as acts of participation in a variety
of different socially or culturally situated mathematical practices” [18] (p. 51). Thus, the
interactions between an individual’s mathematical meanings for a concept both shape
and are shaped by their participation in the various activities and goals of the collective
communities of which they are members, both at the local, proximal level and the broader
disciplinary level.

Collective mathematical practices are normative ways of reasoning that emerge in a
particular community as its members solve problems, represent their ideas, share their
thinking with others, etc. This intentionally broad construct includes specific meanings
for concepts, use of strategies and procedures, interpretations of symbols, use of tools
and underlying metaphors, and even gestures [4]. Normative ways of reasoning were
introduced in the original interpretive framework for the emergent perspective as a way to
call to the fore the mathematical progress that comes to be taken as self-evident by members
of the classroom community [1]. Asserting that a mathematical idea is normative, or, in
other words, functions-as-if-shared [19], does not mean that everyone in the group has
identical ways of reasoning. Instead, it means that “particular ideas or ways of reasoning
are functioning in classroom discourse as if everyone has similar understandings, even
though individual differences in understanding may exist” [2] (p. 263, emphasis added).
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Moreover, the as if part of function-as-if-shared is consistent with Cobb et al.’s point
that “we cannot observe mathematical practices directly any more than we can directly
observe the meanings that individual students’ measuring activities had for them” [4]
(p. 148). We take a similar stance for our inferences about individual meanings expressed
through discourse.

A collective disciplinary practice refers to broad stroke ways in which mathematicians
typically go about doing mathematics. The following disciplinary practices are among those
core to the activity of professional mathematicians: defining, algorithmatizing, computing,
symbolizing, modeling, conjecturing, and proving [2,18,20–22]. We consider this construct
to be at a local group level but with a researcher eye towards the broader practices of
mathematics. Note that disciplinary practices are not characterized with an a priori framing
but rather are manifested in an emergent way in the classroom.

To relate the two collective-level constructs, we note that not all collective mathe-
matical practices are easily or sensibly characterized in terms of a disciplinary practice.
This is because collective mathematical practices capture the emergent, content-specific
aspects of student reasoning, whereas a disciplinary practice analysis reflects the kinds of
activities that are, in the eyes of the researchers, central to the students’ engagement in that
disciplinary practice.

3. Setting, Participants, and Additional Background

The data for this study come from a semester-long classroom teaching experiment
(following the methodology described in [23]) in a differential equations course conducted
at a medium-sized public university in the United States. We selected a 10 min small group
episode from the second day of class because of its potential to illustrate the coordination
of all four constructs as students in this small group reinvented an algorithmic tool to
approximate solution functions. There were four students in this group: Liz, Deb, Jeff, and
Joe (all names are pseudonyms).

There were 29 students in the class, all of whom were either pursuing a degree in
engineering, mathematics, or science and had previously taken differential and integral
calculus. Class met four days per week for 50 min class sessions for a total of 15 weeks.
The classroom teaching experiment was part of a larger design-based research project
that explored ways of building on students’ current ways of reasoning to develop more
formal and conventional ways of reasoning. In a previous analysis of this same class-
room, researchers analyzed the collective mathematical progress of the first 22 days of
instruction and identified six groupings of ideas that function-as-if-shared [24]. The second
grouping of ideas focuses on Euler’s method and included the following six ideas that
functioned-as-if-shared:

1. Using a recursive process yields graphs that are approximations, not exact,
2. The smaller time change increments that are taken in the method, the more accurate

the prediction/graph,
3. The exact solution functions use instantaneous rates of change where the approxima-

tion graph comprises linear stretches of rates of change,
4. The graph of the approximation goes up as the time increments are chosen to be

smaller (during portions where the solution is concave up),
5. The initial slope at time zero is tangent to the exact solution, and
6. The initial slope is the same no matter if the approximation is over a 1-year time

period or a half-year time period.

This prior analysis documents that the Euler algorithm was indeed a powerful tool for
these students to make warranted claims about the algorithm (e.g., the recursive process
yield approximations, smaller step sizes result in more accurate predictions) as well as
reasoned comparisons between different approximations and between the exact solution
and approximations (e.g., the initial slope at time zero is tangent to the exact solution).
As powerful and thorough as this analysis is, it leaves open the question of how this
algorithmic tool initially came to be. The integrated individual and collective mathematical
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progress presented here completes this storyline by providing a compelling analysis of the
origins of this algorithmic tool for these students.

As is often the case in classroom teaching experiments, the instructor is part of the
research team; in this case, the first author of this manuscript was the instructor. The
research project team made use of the instructional design theory of realistic mathematics
education (RME) to inform the design of the curriculum and instruction. Central to RME,
and one of the goals of the instructor, is the design of instructional sequences that challenge
learners to organize key subject matter at one level to produce new understanding at a
higher level [25]. In this process, new mathematics (for the learners) emerges through a
bottom-up process of guided reinvention (e.g., [22,26–29]). Another explicit intention of
the instructor was to initiate and sustain productive social norms for interactive discussion.
In particular, the instructor had a goal to create a learning environment in which students
felt safe in explaining their reasoning, however tentative, and were obligated to listen to
and to try and understand the reasoning of others.

Data for this paper are the video and transcript of Liz, Deb, Jeff, and Joe working
together, uninterrupted by the teacher or other students, through a task in their small group
on the second day of class. On the first day of class and followed up on the second day
of class, students, both in small groups and in whole class discussion, created what they
saw as reasonable population versus time graphs for a situation in which the population
had unlimited resources and reproduced continuously. Graphs depicting constant rate of
change were offered by the instructor as a possibility, but rejected by the students because
as the population increased, so would the rate of change. Instead, students argued for
exponential growth. The instructor then used their graphs as an opportunity to introduce
the rate of change equation dP/dt = 3P as a differential equation that was consistent
with their graphs and reasoning that the rate of change would increase as the population
increased. Students then worked on the task shown in Figure 3 for approximately 10 min
in their small groups. Recall that this was only the second day of class and students had
not been introduced to any analytical, numerical, or graphical techniques for analyzing
differential equations.
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4. Methodology

Our qualitative methodological approach began with the first author making a first
pass through the coding for all four constructs. We then proceeded along three phases of
work, using the preliminary coding as background and comparison. Each phase was carried
out collaboratively among the three authors, as opposed to approaches in which different
individuals code and then check for consistency. Our collaborative approach to analysis
draws on the method of interaction analysis [30]. Interaction analysis is an empirical
approach for investigating humans as they interact. In this approach, collaborative analysis
“is particularly powerful for neutralizing preconceived notions on the part of researchers
and discourages the tendency to see in the interaction what one is conditioned to see
or even wants to see” [30] (p. 44). Interaction analysis has a guiding assumption that
knowledge is not only fundamentally social in origin and use but is also situated in
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particular social environments; thus “expert knowledge and practice are seen not so much
as located in the heads of individuals but as situated in the interactions among members of
a particular community engaged with the material world” [30] (p. 41, emphasis added).
As such, interaction analysis is highly compatible with the emergent perspective and
symbolic interactionism.

In the first phase of our analysis, we immersed ourselves in the data with cycles of
watching the video, reading transcripts, and taking notes of relevant gestures, pauses,
or other non-verbal interactions among the four students. We organized the transcript
according to talk turns. Each time the speaker changed, a new turn number was assigned.
In the second phase of the analysis we created a table with columns for turn number
and speaker, transcript, and four additional columns, one for each construct. Each talk
turn was assigned the corresponding line number with the table. We also had a catch-all
notes column to record emerging insights or reflections. We then embarked on coding
the transcript per the four constructs, returning to the video and initial coding as needed.
Pragmatically, one construct was foregrounded at a time, but each was always there in
the table and hence we occasionally noted a code for one of the other constructs. We
then examined the coding across columns for relationships among the constructs. All
three authors discussed and refined the coding as a team for all four constructs until
consensus was reached.

In the third phase of the analysis, we told the story of the students’ collective and
individual mathematical progress. Our guiding question for this phase was: In what ways
did each construct influence or relate to the others? The imagery of the interlocking puzzle
pieces from Figure 2 kept our focus on the interactions among constructs. To address this
guiding question and create the storyline, we looked for notable milestones or shifts in
focus in students’ mathematical progress and divided the transcript into four segments
accordingly. We then wove together the story of that progress in terms of the interrelated
constructs. A perhaps useful metaphor for the third phase is that of a weaver, who takes
separate colors of threads and creates a pattern within a multi-colored blanket.

We next provide details on how we coded for each construct. Depending on the
construct, we used a combination of a priori codes and open coding [31].

5. Collective Mathematical Practices

Our first round of coding focused on the small group’s collective mathematical
progress. Consistent with others who have documented collective mathematical practices
(e.g., [5,6,32]), we used Toulmin’s Model of Argumentation [33]. Briefly stated, Toulmin
delineated six different aspects that comprise the structure of an everyday argument (Claim,
Data, Warrant, Backing, Qualifier, and Rebuttal). Numerous researchers in mathematics
education have used this framework to study mathematical argumentation (e.g., [34–36]).
However, here we use Toulmin analysis of student argumentation to document and justify
our claims about the progress of students’ ways of reasoning [5,24].

We began by coding the transcript for all Claims, Data, Warrants, Backing, Qualifiers,
and Rebuttals. Claims are assertions that a speaker(s) put forth as true, and the Data are
evidence to support that Claim. Typically, the Data consist of facts or procedures that
lead to the conclusion that is made. A Warrant speaks to the connection between the
Data and Claim. The Data–Claim–Warrant constitute the core of the argument. A Backing
provides further support for the core argument. A Qualifier speaks to the degree or level
of confidence in the Claim, and a Rebuttal is an objection that offers conditions under
which the Claim is invalid. In order to count as an argument, we required there to be at
least a Data–Claim pair (i.e., Claims with no supporting justification were not counted as
arguments). In total, we identified 16 different arguments in the 10 min small group work.
The majority of these are detailed in the next main section.

Next, we operationalized the small group’s collective mathematical progress by docu-
menting mathematical ways of reasoning that functioned-as-if-shared for this small group.
In this case, the collective mathematical progress is evidenced by the emergence of ways of
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reasoning that function-as-if-shared. To document collective mathematical practices, we
used of the methodology detailed in [19] (we refer readers to this chapter for details on the
method). This involved collaboratively analyzing the 16 arguments for instances in which
any of the following criteria were met: when the Backings and/or Warrants for a particular
Claim are initially present but then drop off (Criterion 1); or when a Claim shifts to Data or
Warrant in a subsequent argument (Criterion 2). In total, we identified the following four
mathematical ways of reasoning that functioned-as-if-shared:

• The initial rate of change is 30,
• 30 means 30 more rabbits in one year,
• The change in the population is 0.5 times the rate of change,
• The new population is the old population plus the change in the population.

6. Individual Participation

In order to document how individual students contribute to the mathematical progress
occurring in their community of practice, we leverage aspects of Krummheuer’s framework
of production design and recipient design roles [9,10]. This framework, which is compatible
with the emergent perspective, grows out of and in response to the theoretical stance
of learning-as-participation. Krummheuer claimed that learning-as-participation was
largely still in the abstract as a sensitizing concept, leaving a gap regarding methodological
tools when attempting to operationalize the stance to characterize empirical data. Thus,
Krummheuer developed the production and recipient framework to “describe different
roles of participation in everyday mathematics classroom situations” [10] (p. 82) with
the aim to substantiate and operationalize aspects of classroom interactions that can be
interpreted with the view of learning-as-participation. In this paper, we adopt and adapt
four participation roles from within his framework and offer four novel roles that grew out
of our analysis of this data set.

Krummheuer operationalized participation as two main types of interaction with the
developing mathematics within the community of practice: production and reception (we
did not make use of the recipient design roles in the present analysis because the data set
did not capture the nuances necessary for that type of analysis). The four roles within the
production design framing aim to characterize the originality of a person’s utterance in a
classroom setting. Krummheuer saw two main threads through which one can delineate
originality of an utterance: semantically (i.e., according to the content) and syntactically
(i.e., according to the formulation), which lead to the following categorizations:

• Author: the participant is responsible for both the content and formulation of an
utterance,

• Relayer: the participant is not responsible for the originality of neither the content nor
the formulation of an utterance,

• Rephraser: the participant attempts to express the content of a previous utterance in
his/her own words,

• Leverager: the participant takes part of the content of a previous utterance and
attempts to express a new idea (Krummheuer’s original terms for Rephraser and
Leverager were Spokesman and Ghostee, respectively. We changed the terms of these
two categories to fit with what we felt was a better match for our interpretation of the
categories’ intended meaning and to use a term without implied gender).

Although these formulations of production roles are useful in delineating variations
in how individuals in our data set were participating in mathematical activity, we found
them to be insufficient to account for an additional way in which students participated in
the mathematical discourse of their small group. In particular, our open coding indicated
the need for a new category of participation role—that of facilitator design. More specifically,
we identified four different ways in which these students facilitated the flow of ideas in
their small group:

• Focuser: the participant directs the group’s attention to a particular mathematical issue,
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• Elicitor: the participant attempts to bring out another’s idea,
• Checker: the participant seeks agreement or sensibility of an utterance,
• Summarizer: the participant pulls ideas together.

In order to carry out the analysis of individuals’ participation within their small group,
we considered each of the 64 talk turns to determine how it functioned in terms of either
production design or facilitator design.

Progress in individual participation can be evidenced in two ways. First, the ways
in which individual students participate are intertwined with the collective mathematical
progress, and hence accomplishments in collective mathematical practices are inseparable
from accomplishments in individual participation. Second, the method allows for examina-
tion of possible changes in how individuals participate (e.g., an increase in Authoring roles).

7. Individual Meanings

To analyze the progress in mathematical meanings that an individual brings to bear in
their mathematical work with respect to a particular concept, we document the individual’s
mathematical enacted, developed, and enlarged uses of that concept as expressed in their
discourse with others. In our data set, progress most frequently occurred as accomplish-
ment: data sets over longer time spans would also admit an analysis of changes in an
individual’s meanings.

In any data set in which students are doing mathematics there will likely be several
concepts at play, each of which might have multiple meanings for the students. Our first
step in identifying relevant concepts is to do what some refer to as an a priori analysis.
Although we did not formally do this for this analysis, we did start by grounding ourselves
in the mathematics that students would likely leverage and develop to solve the task at
hand. Rate of change in general and dP/dt in particular for this task were, perhaps not
surprisingly, identified as key concepts for reinventing the Euler method algorithm. To
state in slightly more general terms, the concepts and their associated meanings that we
analyzed had to be both present in the data and relevant for students to make progress.

Next, we turned to the literature [36–40] to gain insight into the wealth of meanings
that characterize a student’s mathematical thinking for that concept. While our coding
made use of findings and insights from the literature, we very intentionally did not limit
ourselves to these existing meanings and instead allowed ourselves to engage in open
coding as well. Our literature-informed open coding led to the following codes for the
different meanings of dP/dt that students engaged:

• as an instantaneous rate of change,
• as an indicator of the initial rate of change,
• as a ratio of two changes,
• as an indicator for how the population is changing,
• as a unit ratio,
• as a unit ratio that can decremented,
• as a quantity that can take on different values.

8. Collective Disciplinary Practices

The construct of collective disciplinary practices can be used to analyze many different
mathematical practices. For this paper our analysis focuses on the practice of algorith-
matizing, which we define as the practice of creating and using algorithms. This choice
was made because the mathematical progress of this small group work entails students
engaging in the first steps of creating an algorithm. These first steps lay the relational [41]
foundation for how to use P values and dP/dt values to approximate a future population
value. An expert will recognize students’ work as Euler’s method, although the students
do not as of yet know that what they are reinventing is in fact Euler’s method.

Through a process of open coding we went through the data looking for aspects of
students’ mathematical thinking that refer to values and relationships between these values
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that students were creating and using in their first steps in creating this algorithm. More
specifically, students’ creation of the Euler method algorithm tool involved the following:

• engaging in goal-directed activity,
• isolating attributes,
• forming quantities,
• creating and verbalizing relationships between quantities,
• investigating the generality of the procedure,
• expressing these relationships symbolically.

The first of these, engaging in goal-directed activity [3], might occur in many different
disciplinary practices. In our data this came to the fore when students acted in ways that
focused the group on particular aspects of the quantities and their relationships that would
be important for building the algorithm. Our use of quantity is compatible with Thompson,
who defines a quantity as an attribute with a measurable magnitude [42]. To build the
algorithm students needed to isolate attributes of the quantities. Students expressed
various meanings for dP/dt and leveraged these differently to create and explain steps in
building their algorithm. Mathematical progress, therefore, is as a form of accomplishment
when students isolate attributes, form quantities, and create and verbalize relationships
between quantities. The quantities included P, change in P, and changing dP/dt values.
The relationships described how these quantities were interconnected and could be used
to compute values of these quantities at later points in time. Towards the end of their
small group work, students started investigating the generality of the procedure, and
later in class and in a subsequent class students worked on expressing these relationships
symbolically. For extended data sets a researcher would be able to document changes
to the collective disciplinary practice of algorithmatizing (e.g., formalizing the method,
improving the approximation method).

9. A Coordinated Analysis through Four Constructs

In this section we exemplify a coordinated analysis of individual meanings, individual
participation, collective mathematical practices, and collective disciplinary practices. The
10 min small group work is divided into four segments: Getting started, Making first step
progress, Deciding to repeat, and Using smaller time increments. We separate the analysis
into these four parts to reflect the small group’s slight shifts in focus as they worked on
the task and reinvented the Euler method algorithmic tool. To visually highlight the four
constructs and to suggest the weaving that is created by the integrated individual and
collective analysis, we capitalize the first letter of argumentation elements (e.g., Data),
italicize participation roles (e.g., focuser), underline particular meanings (e.g., unit ratio),
and bold algorithmatizing activities (e.g., isolating attributes).

9.1. Segment 1—Getting Started

The first four minutes of small group work consists of 19 talk turns and the production
of four arguments. We start by detailing Argument 1, as this constitutes the basis for the
small group’s subsequent work and hence is the lynchpin for what follows. The totality of
Argument 1 occurs over the first 12 talk turns (see Figure 4) and involves contributions from
three of the four students. During this interaction, the group determines, with justification,
what the initial rate of change is. In addition to using this argument in our analysis of
collective mathematical practices, we weave together various individual participation roles,
individual meanings that emerge, and the start of the students’ collective disciplinary
practice of algorithmatizing. Because people often explicate the motivation or inspiration
before stating a Claim, it is not unusual for arguments to unfold in a manner such that a
Warrant or Backing comes before the Claim and Data. Moreover, parts of an argument
are often repeated, and a complete argument may develop over multiple lines. All of this
is the case in Argument 1. The transcript in Figure 4 includes our argumentation coding,
where the coded portion of each utterance is shown in regular font followed by the specific
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element of the argument (e.g., (C1) stands for the Claim in Argument 1) and non-coded
portions are shown in gray font.
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In attending to individual student participation within Argument 1, we see three of
the students take on different production roles. Liz is the author for three components of
the argument (Claim, Warrant, and Backing) because she is the first one to articulate the
respective ideas (lines 1, 4, and 9). Jeff (12) plays the role of relayer for the Claim (which
is that the initial rate of change is 30). Recall that a relayer is someone who restates a
previously articulated idea. This is significant in this case because it provides evidence that
Jeff shares and agrees with the Claim that Liz made. Jeff gives similar confirmation on what
we coded as Liz’s Warrant (see (9 Liz) in Figure 3). Joe, for his part, is also an author because
he is the first to articulate the Data (line 2), although in what we coded as Argument 3
his interpretation of what the 10 means is incorrect and inconsistent with his groupmates’
interpretation. Deb, who has seen this task before, intentionally pulls herself out of the
discussion and hence allows space for her groupmates to develop their own ideas while
she privately works the problem. Deb rejoins the discussion, however, in the next segment.

In attending to individual mathematical meanings within lines 1–12, we see two differ-
ent meanings articulated for dP/dt. In particular, in the Claim for Argument 1, Liz plugs in
the initial population value of 10 into the rate of change equation and obtains 30, which
she interprets to be the instantaneous rate of change. She says “the instantaneous rate of
change is 30” while sketching an exponential graph and pointing her pen to where the
graph intersects the vertical axis. In calculus, the notion of instantaneous rate of change is
often associated with the slope of the tangent line at a point, and this might be how Liz
interprets the 30; however, we do not have strong evidence for this graphical interpretation
of instantaneous rate of change. A second meaning that emerges for dP/dt is the change in
the population over the change in time, which we coded as a ratio of two changes. This dis-
crete, ratio-based interpretation is authored by Liz (line 7) and is the Claim for Argument 2,
which she provided in response to a question from Joe, “Are we trying to figure out
what P is?”
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With an eye towards the small group’s collective disciplinary practice, the development
of Argument 1 is also illustrative of the group’s participation in the disciplinary practice
of algorithmatizing. In particular, we see students contributing to two aspects of creating
an algorithm: engaging in goal-directed activity (i.e., focusing on finding the initial
rate of change) and isolating attributes (i.e., how to interpret the initial rate of change).
Engaging in goal-directed activity coincides with the participation role of focuser, and
isolating attributes coincides with articulating two different meanings for dP/dt, as the
initial instantaneous rate of change and as a ratio of two changes. Recall that a focuser is
one of four new facilitator roles that we found necessary to add to Krummheuer’s [10] set
of production and recipient roles in order to capture newly identified participation roles.

We define a focuser as someone who directs others’ attention toward a specific goal or
activity. Liz takes on this role in line 1 when she directs her and her groupmate’s attention
“To find out the rate of change initially, at that point in time, when time equals zero”. With
this statement Liz sets out a goal-directed activity of finding the initial value of dP/dt,
which an expert will see as a specific case of a component of the more general Euler’s
algorithmic tool. This goal is realized with Liz and Jeff agreeing that the initial value of
dP/dt is 30. Joe also acts as a focuser when in turn 6 he poses the following question to his
group: “Are we trying to figure out what P is?” With this question, Joe focuses his group
on what attribute of the problem situation they are trying to determine, P or dP/dt. Joe’s
question prompts Liz to articulate the meaning for dP/dt, namely as a ratio of two changes.
As we show in Segment 2, this is a powerful meaning for this group that enables them
to make use of isolating attributes of dP/dt to figure out a general approach to compute
the change in population, which is a necessary component of the Euler method algorithm.
Moreover, the two acts of the focuser lead to the argument’s Claim of actually finding the
initial rate of change and interpreting this value as a ratio of two changes, respectively.

As noted previously, in (12) Jeff acts as a relayer by restating the Claim that the initial
rate of change is 30, which is followed by Liz (13) asking her groupmates, “30, I mean does
that make sense?” This first instance of anyone in this group “checking in” with their peers
about their thinking gave rise to our identifying another new facilitator role, that of checker.
Acting as a checker can serve multiple functions in a group. For example, it can lead to
coherence among groupmates and build confidence in their ideas, it can open a space for
someone to ask a clarifying question, and it can be an opportunity for someone to disagree.
In this case, Liz acting as checker gives rise to Jeff indicating agreement, “Yeah, that makes
sense” (14), and for Joe to offer a counter argument, which we coded as Argument 3. In this
argument Joe asserts (incorrectly) that 10 is actually equal to 3P(t). Joe’s incorrect Claim
functions productively in the small group because it gives rise to Liz putting forth what
we coded as Argument 4, shown in Figure 5, in which she counters Joe’s interpretation of
what the “10” refers to.
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As a whole, Argument 4 relates again to the algorithmatizing aspect of isolating attributes
because it reasserts the meaning of 10 as the initial population and puts forth a new meaning
for the quantity dP/dt, namely as an indicator for “how the population is changing” (16 Liz).
Joe does not object to Liz’s argument; in the video, he appears to think quietly about what
has been said. Thus far, the meanings for dP/dt include as an instantaneous rate of change,
as a ratio of two changes, and as an indicator for how the population is changing. Develop-
ing meaning(s) for attributes that figure prominently in their mathematical work will serve
to ground their reinvention of Euler’s method as a product of their own reasoning and
sense making.
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Next, Liz and Jeff act as focusers in that they each ponder what now to do with the 30.
In particular, Liz (17) says, “So if we have that [initial rate of change is 30], the question
is how can we use that to help us figure out the population after, say, a half year has
elapsed?” and Jeff (18) says, “how would we work time into the equation to get the next,
uh, population or change in population?” As before, this particular facilitator role of focuser
promotes students’ goal-directed activity toward creating an algorithm. At this point,
Deb (19) joins the discussion and says to the group, “That is exactly what I did”.

9.2. Segment 2—Making First Step Progress

The next two and a half minutes of small group work consists of 21 talk turns and the
production of six arguments. During this segment, the small group makes considerable
progress on creating an algorithm, including the surfacing of two new meanings for rate of
change, engaging a range of participant roles, and establishing two ways of reasoning that
function-as-if-shared within their small group. As we did in Segment 1, we provide the
transcript that contains our argumentation coding (see Figure 6).

1 
 

 
 
Figure 6 
 

 
 
Figure 8 

Figure 6. Initial transcript for Segment 2.

The segment begins with Deb and Liz acting as relayers, noting that they “have the 30
to work with” (20 Deb, 21 Liz), where the 30 is in the initial rate of change. Recall that a
relayer is someone who repeats a previous comment. In this case, Liz and Deb repeat what
was previously in Argument 1 a Claim that needed to be justified. In saying that they “have
the 30 to work with”, Liz and Deb position the initial rate of change as a known fact. Within
Segment 1, deciding that the initial rate of change is 30 was a Claim that had to be justified;
now it shifts to Data in Argument 5, which is consistent with how Liz and Deb position
30 as a known fact. Thus, per Criterion 2 of the collective mathematical progress analysis
there is empirical evidence that 30 being the initial rate of change functions-as-if-shared. In
addition to the collective mathematical progress that Argument 5 accomplishes, Deb’s and
Liz’s contributions to Argument 5 verbalize the amount of change that occurs over the first
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half year. This is a significant step forward in algorithmatizing because these contributions
are isolating attributes, in particular the amount of change that occurs over a half year (we
are figuring “out the number of rabbits we are going to increase by in half a year” (32 Liz)).

Moreover, in the midst of being an author of an argument, Deb enacts the facilitator
role of checker. In particular, she asks her groupmates, “Am I making sense?” Simply
asking this question does not in and of itself justify charactering Deb as a checker. Instead,
her groupmates have to interpret this question as a genuine request, which is indeed
the case here. Deb’s checker move affords the emergence of the various meanings that
her groupmates are developing for rate of change, one of which leads to another way of
reasoning that functions-as-if-shared.

In line 24 Deb follows up her statement “The new amount of rabbits” with “plus the
old amount of rabbits”. Although this is a compound claim, we only include the first part
in Argument 5 because the Data, Warrant, and Backing all focus solely on the amount
of change after a half year. However, the second part of what Deb says (“plus the old
amount”), which we coded as the Claim for Argument 6, is significant for Jeff, for he
responds by saying, “I think so, so that would be 25, is that what you’re saying?” Jeff’s
response to Deb is one in which he acts a leverager because he takes part of the content of a
Deb’s argument (“the new amount of rabbits plus the old amount of rabbits”, which an
expert would recognize as the first iteration of Euler’s method) and mentally computes and
says out loud the next population value, which is something that Deb has not provided. In
this way, Jeff contributes to the group’s algorithmatizing efforts by forming quantities, in
particular the amount of rabbits after a half year.

Liz, rather than bring out the computation, in line 28 elaborates on what is for her the
meaning of the rate of change. Similar to Argument 5, the Data that Liz use (line 28) are
that the initial rate of change is 30, and she uses these Data to make a new Claim (30 can
be interpreted as 30 more rabbits in one year). With this comment Liz acts as a rephraser
because she expresses Deb’s idea in her own words. This results in her expressing for the
first time in their group a particular meaning for dP/dt, namely as the amount of rabbits
that will accumulate over a one-year time period, what we refer to as a unit ratio.

Interpreting rate of change as the amount of change that happens over a unit time
increment is consistent with what Thompson refers to as speed length [43]. Speed length
refers to a meaning for rate in which a person conceptualizes, say, 30 miles per hour as the
distance traveled in one hour. Similarly, we see here the initial rate of change of 30 means
for Liz the increase in the number of rabbits over a unit time interval. Hence, we refer to
this meaning of rate as a unit ratio. The expression of this comes with the Qualifier (“I don’t
know if I am going to say this right”) and a non-verbal checker role (looking to Deb and to
her other groupmates as if to seek affirmation).

The previous exchanges between the groupmates illustrate well the weaving of argu-
mentation, algorithmatizing, various participation roles, and meaning-making threads. In
particular, as a response to Deb’s argument in which the Euler method algorithm begins to
emerge and the interpretation of 30 as the initial rate of change functions-as-if-shared, we
see the groupmates take on the participation roles of relayer, author, checker, leverager, and
rephraser; we also see the interactive constitution of a new meaning for rate of change, that
of unit ratio. The collective progress in recognizing 30 as the initial rate of change (which
functions-as-if-shared in Argument 5) and the emergence of the unit ratio meaning of 30 are
building blocks for reinventing the Euler method algorithm because it begins to isolate and
quantify the amount of rabbits that needs to be added to the initial amount of rabbits. All of
this illustrates well the interplay between collective and individual mathematical progress.

As the discussion continues Deb (line 29) says, “So we’ll have 30 more rabbits”, and
Liz follows by saying, “But we only want to go a half a year”. With this contribution, Liz
acts as a focuser in that she directs her group’s attention to the need to know the population
increase over a half year, not over a full year. In so doing Liz introduces a refinement to
the unit ratio meaning of rate of change, namely as a unit ratio that can be decremented.
In refining this meaning of rate of change, she furthers their algorithmatizing progress by
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focusing their attention on the change that happens over a half year. This occurs through
Argument 9 in which the Claim is that the change over a half year is 15. The Data for
this Claim are that there are 30 more rabbits over one year. Thus, since the Data for this
new Claim were previously the Claim in Argument 8 per Criterion 2 there is evidence
that the unit ratio meaning for rate of change now functions-as-if-shared. As such, this
also functions as additional evidence for the collective algorithmatizing progress because
it is now a mathematical truth for this small group that 30 is the amount that would be
accumulated over one year.

Next, in line 32 Liz acts as summarizer by offering a Backing for the core of Argument 5.
“And so we’re really not figuring out the rate of change we’re figuring. . . Well this is the
rate of change and we’re using the rate of change to figure out the number of rabbits we
are going to increase by in half a year”. At this point, Joe, who has been largely a silent
participant, speaks up and expresses some confusion over what the initial population
is at time zero. In particular, Joe (line 34) says, “Well this doesn’t make sense to me
because if t is 0 then we have 0. But you said when t is zero we have 10”. Joe’s statement
here harkens back to the very first argument in which his groupmates worked with the
problem’s given statement that the value of the initial population is 10. At the time, Joe
apparently agreed with this when he contributed to the following Data to Argument 1,
“Oh, ok. This is where 10 rabbits at zero”. However, now by examining Joe’s comments in
line 10 (“It would be 10 = 3 t zero”) and in line 15 (“Wouldn’t 10 = 3P(t)?”) we see that Joe
is referring to 10 as the initial rate of change. Liz proceeds to correct him and says, “Well 10
is actually the population”.

Thus, it appears that the entire time that his groupmates were making progress, Joe
was not part of this progress. In particular, although our analysis establishes that two
ideas function-as-if-shared in the group up until this point, lines 10 and 15 indicate that Joe
was not part of this collective mathematical progress. Such a finding is wholly consistent
with what is meant by collective progress. Collective progress does not mean that every
member of the collective shares identical meanings. It means that the group functions “as
if” everyone is in agreement. Indeed, throughout the first episode and up until this point
in the second episode, Liz, Jeff, and Deb have acted “as if” Joe also was using 10 as the
initial population.

After countering Joe’s Claim that the initial population is zero, Liz in line 37 continues
with her Backing for Argument 5. “Well actually we’re going to multiply it by a half year”.
With this, Liz puts the finishing touch on reinventing the first step of Euler’s method (i.e.,
algorithmatizing). In particular, Liz verbalizes how to find the increase in rabbits after a
half year has elapsed (isolating attributes and forming quantities).

Next, Deb in line 38 follows up on what Liz just said and acts as both author and
summarizer by offering an explanation of her approach, which we coded as Argument 6
(see Figure 7).
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Figure 8 Figure 7. Transcript containing Argument 6.

In this final Argument in Episode 2, Joe, who previously was out of step with his
groupmates, now contributes to the group’s progress by adding a Backing (line 39) to
the core of the argument authored by Deb (lines 38, 40), likening the process to that of
compound interest. This contribution suggests he follows the argument put forth by Deb.
Within Argument 6, Deb leverages as Data the meaning of rate of change as a unit ratio,
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which previously was a Claim made by Liz. Hence, per Criterion 2 there is repeated
evidence that the unit ratio meaning for rate of change functions-as-if-shared. Finally,
Deb (38) acts as summarizer for the group when she contributes to the disciplinary practice
of algorithmatizing (creating and verbalizing relationships between quantities) by stating
in words the heart of Euler’s method algorithm (“multiply that [the number of rabbits
produced per year] by 0.5... and add it to the old population”).

9.3. Segment 3—Deciding to Repeat

The next part of the small group work consists of 19 talk turns and five arguments (see
Figure 8). Two of these arguments (Arguments 11, 12) are key to building the algorithmic
tool in terms of students determining how and why to repeat parts of the algorithm to make
it iterative. As such, the algorithmatizing activity of the students is focused on creating
and verbalizing relationships between quantities. As students solidify earlier ideas and
build new ideas, several different participation roles appear. In addition, this solidifying
process allows students to use various meanings for the rate of change dP/dt to describe
the creation of relationships between quantities.

 

2 

 

Figure 8. Initial transcript for Segment 3.

At the beginning of this segment Deb (line 41) authors the argument that the new rate
of change is 3 times the new population. Deb serves as the author for Claim, Data, and
Warrant and relayer for the Backing. Liz (line 42) functions as a checker, making sure that
everyone is on board, while Jeff (line 43) tests his understanding by acting as a relayer of his
previous Claim in Argument 7 that P at 0.5 is 25, although he then states, “and then you
get 55” (sic) instead of calculating the new dP/dt of 3 × 25 = 75.

Liz and Jeff’s contributions lead to Deb adding a Backing to Argument 11. This
Backing uses the earlier Claim from Argument 5 that the change in P, “the amount of
rabbits added on”, is 0.5 times the rate of change and the Claim from Argument 6 that the
new population is the old population plus the new amount “added on”. In this way, these
two statements have moved from Claim to Backing, satisfying Criterion 2, so that each of
these statements are now functioning-as-if-shared.

This transition of the earlier Claims from Arguments 5 and 6 to interpretations that
function-as-if-shared sets the stage for the generalization of these relationships needed
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to create the iteration of the algorithm. Following from Deb’s statement in (line 44),
Jeff (line 45) is the author of a new Claim (Argument 12) and a relayer of the ideas contained
in the Data for this Claim. The Claim of Argument 11 starts the iterative process by pointing
to the new rate of change at 0.5. The Claim for Argument 12 states that the entire cycle of
calculations should be repeated with the Data for Argument 12 highlighting the previous
calculation of multiplying dP/dt by 0.5 (Claim of Argument 5) and then adding the result
to the old P (Claim of Argument 6).

Deb (line 46) agrees with Jeff’s Claim, saying, “Exactly. I didn’t see all that. I had to
write it out”. Liz (line 49) then serves as an elicitor to further the clarification of the argument,
“What do you have right there? [indicating Deb’s paper]”. Deb (line 50) then serves as a
relayer, restating the previous calculations but with an emphasis on enacting them after
“0.5 time has passed”. Deb’s explanations in line 50 further serve the algorithmatizing
practices of forming quantities and creating and verbalizing relationships between
quantities. The quantities formed and the relationships created leverage Deb’s meanings
for rate of change. For example, she states in line 50, “You take. . . your old rate of change
which is really like rabbits per year” (a unit ratio meaning) and then “0.5 times this will
give me how many new rabbits I have accomplished” (a unit ratio that can be decremented
meaning). Deb continues, “I took the new population and put it in right here, and I have
the new rate of change” (a quantity that can take on different values meaning).

As the conversation continues, Liz (line 51) serves again as an elicitor drawing out the
reason for Deb to use a different value for dP/dt than they used previously, “And the reason
for putting in the new population would be what?” In response, Deb (line 52) continues her
explanation of the algorithmatizing by clarifying her meaning for rate of change, “Because
now my population is larger [pulls hands apart] and I know the population changes at a
constant of 3 times whatever that population is at that moment in time”. Here she draws
on the fact that dP/dt is a constant rate for each interval, but it changes from one interval
to the next based on the size of the population (a quantity that can take on different values
meaning).

In line 53, Liz then serves as a rephraser (attempting to express Deb’s ideas in her own
words) and a summarizer by pulling together ideas that have been stated earlier. In this way
Liz rephrases previously stated ideas about how to find the increase in population and add
this to the previous population to obtain the new population. See Figure 9.
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Jeff (line 56) acts as a relayer of his previous idea and a checker to see if others agree
that his idea is correct, “But then you would have to do it again, start over again?” This
seems to be in line with Liz’s thoughts as she immediately follows with an agreement and
clarification, “Then you start over again. So it’s kind of like if you wanted to shift it back
and say it’s like our new initial population but just a different—So we could label it time
equals zero if we wanted to”.

Deb acts as a checker, “Everybody agree?” Liz states agreement while Jeff and Joe
both nod their heads. In this way the group comes to a significant milestone in their
algorithmatizing activity. The quantities formed in Segment 2, the change in population
and the new population after 0.5 years, are quantities that can be newly established at
each 0.5 in that you can “start over again”. The idea to “start over again” brings together
the meaning of dP/dt as a quantity that can take on different values with the beginnings
of the algorithmatizing aspect of investigating the generality of the procedure.
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9.4. Segment 4—Using Smaller Time Increments

In this last segment, which consists of only five talk turns, the students consider using
a time increment of 0.25 instead of 0.5. Deb, who already has this figured out, prompts her
groupmates to determine the difference. See Figure 10.
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Here we see Deb act as an elicitor when she seeks to bring out her groupmates’ ideas
(“What’s the difference between. . .. . .”) in a rather teacher-like way. In response to Deb’s
question, Jeff and Joe become authors for the last argument of this 10 min session. Jeff
reaches across to point at the chart Deb is beginning to make (see Figure 11) and makes
the Claim that the two population estimates at t = 0.5 “are going to be different”. The Data
for his Claim are that “you have to include the other step”. Including this additional step
and recognizing that this now produces a different approximation is a key insight for the
collective disciplinary practice of reinventing the Euler method algorithm. In particular,
changing the time increment is a first step toward investigating the generality of procedure
because one aspect of generality is flexibility in the time increment used.
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Joe, who earlier had not been on the same page as his groupmates and contributed
much less than the others, now makes individual progress by providing a Warrant for
Argument 16, “Oh, because you have to start at 0.25”. Joe’s Warrant resonates with Liz’s
earlier utterance in line 57 when she summarized, “so it’s kind of like if you wanted to shift
it back [Joe refers to this as ‘start at 0.25’] and say, it’s like our new initial population”. Thus,
although Liz’s voice is not present in this exchange (she is busy writing down her thoughts),
Joe acts as a relayer of her ideas in his Warrant, which embraces the meaning of rate of
change as a quantity that can take on different values because with “starting over” comes
computing a new dP/dt value. The segment ends with Deb acting as a summarizer (again,
in a teacher-like way) with her brief statement, “Right, our increments have changed”.

Although this episode is brief, we see the interwoven nature among all four constructs.
The facilitator roles of elicitor and summarizer bookend the production of Data–Claim–
Warrant whose content push forward the collective disciplinary practice of algorithmatizing
by investigating the generality of the procedure and engage an important meaning for
dP/dt as a quantity that can take on different values. It is at this point that the instructor
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invites students back to a whole class discussion in which different groups report on their
progress. In a subsequent class the instructor invites students to express their algorithm
symbolically, which coalesces in expressing this as ynext = ynow +

(
dy
dt

)
|
now

∗ ∆t and
tagging their approach as Euler’s method.

10. Discussion and Conclusions

In this paper we further developed a method for documenting the mathematical
progress of learners as an integrated analysis of individual and collective activity using
the reinvention of an algorithmic tool for approximating solutions as a case example. In
so doing, we contribute to a growing body of research that is also working on this thorny
methodological and theoretical problem (e.g., [32,44–46]). The method developed here
illuminated the intricate connections between and interweaving of our analysis through
four constructs. For example, the students’ algorithmatizing propelled their mathematical
progression and was populated with particular arguments and mathematical meanings.
The students participated by stating arguments and meanings (e.g., as author, relayer) but
also by encouraging others to do so and by highlighting important issues (e.g., as elicitor,
focuser). The new facilitator roles of focuser, elicitor, checker, and summarizer we identified
are important both in shaping the in-the-moment and retrospective analysis. It also allows
researchers to examine relationships among the constructs, such as which meanings were
central to the development of the reasoning that functioned-as-if-shared or to a disciplinary
practice’s development. For example, in the analysis presented here the unit ratio meaning
for rate of change was the catalyst for making progress on reinventing Euler’s method
algorithmic tool.

We next step back and recap our extended analysis of the four segments to highlight the
integrated approach among constructs. In Segment 1 the focus of the initial arguments and
algorithmatizing is goal-directed activity towards isolating attributes of dP/dt. In particu-
lar, Claim 1 is the realization that 30 is the initial instantaneous rate of change, and Claim 2
is the recognition of dP/dt as a ratio of two changes. The role of focuser propels the goal-
directed activity, and the role of checker allows for the negotiation the students need for iso-
lating the attributes of dP/dt. The segment ends with a new meaning for dP/dt, this time in
the Warrant for Argument 4 that dP/dt tells how the population is changing. In Segment 2,
the small group makes considerable progress on creating an algorithm, including the
surfacing of two new meanings for rate of change (as a unit ratio and as a unit ratio that
can be decremented), engaging a range of participant roles, and establishing two ways of
reasoning that function-as-if-shared within their small group. Two of the arguments in
Segment 3 are key to building the algorithm in terms of students determining how and why
to repeat parts of the algorithm to make it iterative. As such, the students’ algorithmatizing
activity is focused on creating and verbalizing relationships between quantities. As
students solidify earlier ideas and build new ideas, several different participation roles
appear. In addition, this solidifying process allows students to use various meanings for
the rate of change to describe the creation of relationships between quantities. Finally,
in Segment 4, the students consider using a time increment of 0.25 instead of 0.5. In this
closing segment we see the confluence and synergy among all four analytical constructs.
The facilitator roles of elicitor and summarizer bookend the production of Data–Claim–
Warrant whose content push forward the collective disciplinary practice of algorithma-
tizing by investigating the generality of the procedure and engage the meaning as a
quantity that can take on different values.

We chose to present each of the four segments by leading with an argument (as
opposed to a particular meaning, for example). We did this because it offered an organized
and informative way to provide the reader with extended transcript data, and it allowed us
to capture the overall gist of what the students discussed. Thus, leading with an argument
offered a bird’s eye view and the relevant transcript data that could be linked and framed
within the various constructs. Moreover, leading with an argument provided a segue into
the more integrated and interwoven analysis that foregrounded the other constructs. We
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came to this approach via trial and error. That is, we experimented with leading with
different constructs but found it challenging to tell the story in an efficient and informative
way. Reflecting on this experience, we posit that because we are examining mathematical
progress, it is useful to start with a construct that drives the mathematics forward, both
for individuals and for the group. In our experience, starting the Results section with
Toulmin’s argument laid out the meanings and building blocks for the algorithm.

10.1. Implications and Limitations

The analysis suggests to us both curricular and pedagogical implications. For in-
stance, precisely because of the productive role that interpreting the meaning of 30 (the
initial rate of change) had for this group, changes have been made to the inquiry-oriented
differential equations curriculum [47]. The student materials now include the hint to in-
terpret the meaning of the initial rate of change, and the instructor materials now call out
explicitly the importance of the unit ratio meaning in the reinvention of Euler’s method
for making progress on reinventing the algorithm. Pedagogically, we conjecture that
the roles within the new facilitator design can be helpful to instructors in their class-
rooms as they establish expectations for ways that students can meaningfully support each
other in their small groups. For example, if an instructor uses named roles for students
(e.g., reporter, scriber, spy) one could create a new role, that of “monitor”. This student
could be charged with ensuring that everyone in their group gets a chance to talk, to have
their ideas heard, and that the group is helping each other learn from each other’s ideas.
This operationalization of “monitor” was inspired by the roles of elicitor and checker that
were identified in our analysis. In fact, one of us has begun integrating this named student
role and is experiencing some positive outcomes with it in the classroom.

We also acknowledge that various limitations exist with respect to our methodological
approach. To accomplish an integrated analysis of mathematical progress at the individual
and collective level, it was imperative to have data in which mathematical progress at
both individual and collective levels was evident. Thus, researchers who endeavor to
use the methodology offered through our integrated analysis must have access to data
for which the four analytical constructs are sensible to use. For example, throughout
the 10 min segment analyzed in this paper, the students in the small group explained
their mathematical reasoning and tried to make sense of others’ reasoning. Indeed, as
Gravemeijer stated, classrooms that leverage RME instructional design principles

encompass the obligations for students to come up with their own solutions,
explain and justify their solutions, to try to understand the explanations and
solutions of their peers, to ask for clarification when needed, and eventually to
challenge the ways of thinking with which they do not agree. The teacher’s role
is not to explain, but to pose tasks, and ask questions that may foster the students’
thinking, and help them in this manner to build on their current understanding
and to construe more advanced mathematical insights [48], (p. 220).

This description is consistent with classifications of what it means to teach using
inquiry in university mathematics classrooms [49,50]. We find it difficult to imagine,
for instance, that a lecture classroom with little to no observable student input would
provide the data necessary for the individual and collective analyses described in this
paper. Even with a rich data set, researchers may find it challenging to discern what grain
size is appropriate for this methodology. In this paper, we analyzed a 10 min small group
discussion with no teacher interaction; certainly, whole class discussions over longer time
periods would be appropriate to analyze in a similar manner. Such an analysis would allow
researchers to document changes in, for example, individual mathematical meanings and
participation roles over time.

10.2. Next Steps

We see two extensions of the work presented here. The first centers on who the actors
are in the interactions. Our data set did not include the teacher, but we see no reason that one
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could not use this approach to analyze a data set that includes the teacher, either interacting
with students in a small group or leading a whole class discussion. Argumentation is a
collective effort, and the teacher may, among other things, contribute to elements of an
argument (e.g., provide a Backing or connect students’ informal ideas and notation to
conventional terminology and notation) as well as offer questions and requests that help
students elaborate and/or clarify their reasoning [35]. These kinds of contributions could
aptly be captured with any of the four constructs, however, we see particular promise in
making use of the individual participation construct as the teacher seeds and supports
argumentation and connects students’ ideas to more formal and conventional terminology.
Our choice to analyze a short episode in which a group of students made considerable
progress, even without the intervention of the teacher, was, in our view, a strength because
it allowed us to refine and operationalize the method. In several related analyses, we and
others (e.g., [2,5,24,32]) did in fact include the teacher, and hence extending the approach
presented here to data sets that include the teacher has strong precedent.

The second extension centers on the research questions asked. In this analysis we
did not focus on equitable and inclusive participation. However, the level of detail in this
approach certainly would admit close examination of who contributed, both in terms of
number and nature of contributions, thus making strong connections between mathematical
progress and equity. For example, it would be straightforward to examine the number of
times that particular students (or the teacher) provided Claims (versus, say, Warrants and
Backings) or the number of times that particular individuals acted as summarizer or elicitor,
for example. A focus on equitable and inclusive participation could also examine whose
voice and ideas were taken up (or privileged) and by whom.

10.3. Conclusions

In conclusion, the methodological approach presented here provides a nuanced and
coordinated analysis of individual and collective mathematical progress. Although the
case we presented here focused on an inquiry-oriented course in differential equations,
the same methodological approach could be used in inquiry-oriented classrooms in other
content areas in the mathematical sciences (e.g., statistics) and even in other disciplines
(e.g., chemistry) with appropriate modifications to the framing and terminology used.
For example, the collective disciplinary practices will be different in statistics and chem-
istry and instead of using the phrase “individual mathematical meanings” one would use
the phrase “individual statistical meanings” or “individual chemical meanings”, but the
overall methodological approach remains the same. Thus, regardless of the content or
disciplinary focus, the coordination of individual and collective analyses allows researchers
to gain greater explanatory and descriptive power, and it also allows researchers to bet-
ter understand the interactive process by which individual and collective mathematical
progress is made.
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