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Abstract: This research discusses a single case study of a first-grade Latino English Learner (EL)
student, Allen (pseudonym), from a larger inquiry-based intervention on inversion and mental
reversibility development. The purpose of this case study was to develop a better understanding
of the relationship between Allen’s English language proficiency and his ability to solve inversion
and compensation mathematics tasks. The integration of multiple paradigms confronting radical
constructivism and sociocultural theory of learning via culturally relevant pedagogy provided
us with a multi-faceted set of perspectives in understanding the interconnection between Allen’s
cultural and linguistic background and his development of algebraic reasoning. Through conceptual
and retrospective analyses, we found that Allen’s language features are highly correlated with the
development of his thinking strategies and his ability to solve mathematics tasks. Implications of this
study include the development of teaching strategies that address critical issues in mathematics, such
as the individual differences of learners, specifically ELs from Latino background. We suggest further
research is needed in the field of language acquisition and access to STEM related concepts.

Keywords: English Learners; Latina/o students; language proficiency; inversion and compensation
mathematics tasks

1. Introduction

Today at least 350 different languages are spoken by students in U.S. schools [1]. Speakers of
other languages have been historically categorized through different labels in the U.S. education
system, such as students with Limited English Speaking Ability (LESA), Limited English Proficient
students (LEP), English Language Learners (ELLs), and English Learners (ELs). For the purposes of
this study and the statistics presented in this paper, English Learners are defined as persons for whom
English is not their primary language [2]. Although ELs can have a variety of primary languages,
approximately 80 percent of ELs in the U.S. are Spanish speakers from Hispanic heritage cultures (i.e.,
Hispanic) [1,3]. Hispanic is the term officially adopted by the U.S. Census Bureau to classify students
who are from Latin American roots. Even though we argue that this is an imposed definition, based
on the use of Spanish as primary language of communication, we will keep the Hispanic definition
when reporting demographic data from the U.S. Census Bureau. At the same time, we will use the
term Latino when referring to Allen’s (pseudonym) cultural heritage because this term better describes
his Latin American roots. Allen is a first-grade English Learner (EL) student and the focus participant
for this case study.

In 2015, the average mathematics scores of Hispanic students was 18 points below White students
in fourth-grade, and 22 points below White students in eighth-grade [4]. Although the difference
between Hispanic and White students does not directly compare EL students to White students,
the high percentage of ELs that are Hispanic indicates a cause for concern for ELs in Mathematics.
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In the same year, the achievement gap in mathematics between non-ELs and ELs was 25 points in
fourth-grade and 38 points in eighth-grade [4]. These discrepancies between ELs and non-ELs further
indicate ELs’ unequal access to mathematics achievement success and note a critical issue in education.

The purpose of this paper was to better understand factors that may contribute to the problem
of ELs’ unequal access to mathematics achievement. Specifically, we were interested in how English
language proficiency levels and cultural or linguistic differences may affect ELs’ mathematics
achievement in algebraic reasoning. Thus, this study used a single case study design to analyze
how different factors may have affected one Latino EL’s (Allen) mathematics achievement. Details
pertaining to this problem, and factors that may contribute to it, are presented in the next section.

1.1. Problem Statement

The U.S. is home to a number of students from different ethnicities and with different levels of
proficiency with the English language. Coley [5] suggests that these students may have difficulty
accessing classroom instruction due to a lack of critical home experiences, delineating a critical issue
in mathematics education. Ginsburg and Pappas [6] found that children from low Socioeconomic
Status (SES) homes struggled when engaging in a type of mental activity necessary for latter success in
algebraic reasoning described as mental reversibility (i.e., 2 + 7 = 9 is inversely related to 9 − 7 = 2).
Findings from their study suggest that students from low-SES homes are missing some critical
experiences that may support the development of this activity in early elementary school and evidence
a critical need to support students with several characteristics (described as co-factors) (i.e., household
where English is not the first language, race, household income) that might prevent them from
succeeding in school mathematics. Two-thirds of ELs (i.e., students receiving extra English language
instruction in school) come from low-income families [4], indicating that EL status may be a prominent
co-factor of low SES. Allen is one of these students. Ultimately, without addressing this critical issue of
equal access to early algebraic reasoning in mathematics education, our society’s STEM-oriented fields
will continue to be underrepresented by diverse individuals, limiting our society’s ability to address
multi-faceted social concerns in future generations [7,8]. This case study seeks to address part of this
critical issue in mathematics education by considering how one EL first-grade student is able to access
and learn critical foundations in Algebra by developing language features through tasks that elicit
early forms of mental reversibility.

In hopes of closing these aforementioned discrepancies, the National Mathematics Advisory
Panel [9] suggested elementary educators focus their instructional practices on three critical algebraic
foundations to promote all students’ opportunities for success in latter Algebra courses and support
STEM oriented careers. One of these critical algebraic foundations is fluency with whole numbers,
which encapsulates: (a) (de)composition of number, (b) basic operations on number, and (c) operational
properties of number [9]. Coupled with this suggestion and the findings from Ginsburg and Pappas [6],
we focused this particular study on the design of effective fluency of whole number tasks at the
early elementary grade levels for ELs who are struggling in mathematics (based upon participants’
standardized achievement on TEMA tests). We focused on whole numbers because we consider mental
reversibility an underlying mental activity that students would need to rely on for latter success in
fluency with inverse operations of whole numbers, a critical area of Algebra.

We define mental reversibility as the individual’s underlying mental actions that allow a person to
understand the relationship of an action and its effect [10]. Individuals describing operatively inverse
relationships (whereby one operation undoes the effect of another, e.g., 4 + x = 7 and 7 – 4 = x) or
compensation between numbers (whereby an operation returns to an equivalent state, e.g., x + 3 =
7 + 4) rely on mental reversibility [10–12].

We want all our students to have opportunities to construct reversible actions when acting on
a mathematical object (i.e., whole numbers) so they can construct critical foundations for Algebra.
With this goal in mind, we considered the role of English language in the development of mental
reversibility. While we know about the aforementioned achievement gaps between these different
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student populations and areas in mathematics that we should focus on, we do not yet know how
mental reversibility develops in young children, what role languages play in these children’s ability to
access these mathematical concepts, nor how these intervention tasks could best be designed to ensure
equitable access. Thus, in this case study, we investigated how one Latino EL first-grade student, Allen,
changed his counting, grouping, and strategy development when engaging in mental reversibility
tasks over time. Specifically, our research questions were twofold:

1. How did Allen’s culturally embedded mathematics perception and his English language
proficiency level interplay with his ability to solve inversion and compensation mathematics
tasks?

2. Considering Allen’s cultural and linguistic differences, how can educators facilitate the
development of algebraic reasoning and address individual differences of ELs like him?

To answer these questions, we researched about the multisemiotic nature (multiple modalities)
of mathematics [13,14], focusing on the mathematics register—including vocabulary, word problems,
and syntax—and its connection to the development of mental reversibility in ELs like Allen.

In the next sections, we define the inversion and compensation mathematics tasks that were
the focus of this study and offer a review of literature and theories about mathematics register
and its connection with linguistic and culturally relevant pedagogy, to address the development of
mathematics strategies we observed in Allen, a Latino EL first-grade student.

1.2. Literature Review

We reviewed the literature to better understand current research relative to mental reversibility.
Specifically, we looked at research on inversion and compensations tasks in earlier grades similar to
those used in the design of this study and how these tasks relate to Algebra concepts in elementary
school. We also reviewed the literature to better understand current research relative to mathematics
register and how ELs gain access or are limited in mathematics tasks. We found three main themes,
which encapsulate this review. First, we contextualized our research through the definitions of early
algebra and mental reversibility, which provide the background to understand Allen’s performance
in these tasks during our study. Second, we reviewed how cultural and societal perceptions about
mathematics affect student’s thinking and learning. Third, we considered how mathematics register
and the language of school mathematics may have played a role in Allen’s achievements in this study.
Finally, we provide concluding remarks to connect these three main research fields together, on which
we built our conceptual framework and situated our methods and analyses for this study.

1.2.1. Early Algebra and Mental Reversibility

Mental reversibility was initially defined broadly by Piaget as structurally understanding the
operations to allow for reversible actions (as cited by [15]). Inversion is one of the simpler forms
of mental reversibility (e.g., understanding how subtraction inversely relates to addition), but
Hackenberg [16] argues that an individual’s ability to solve inversion tasks may not be relying on
true mental reversibility. Thus, Hackenberg suggests that individuals would be required to solve
both inversion and compensation tasks (i.e., understanding how to bring an equal state between two
relations) when relying on mental reversibility.

Common misconceptions students experience when initially solving inversion tasks come
from their inability to coordinate operations with numbers when solving inversion problems [17].
For example, students either generalize that all inverse relations use the same number and return to
the original state (i.e., 4 + 5 − 5 = 4) or operations were skipped or changed in their strategies [17].
Also, young students struggle to comprehend relational terms (e.g., more, less, and the same) when
solving inversion tasks [18]. To support early forms of algebraic development and support students’
coordination of operations and numbers and use of relational terms, findings suggest that students
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begin with additive and subtraction experiences with simple expressions before students are required
to combine multiple operations and numbers in more comprehensive expressions [19].

Younger children have not typically been given compensation tasks. Hackenberg [16] notes
that some older children are able to engage in inversion tasks and compensation tasks. Essentially,
inversion tasks only require students to reverse their operational reasoning, whereas compensation
tasks require students to understand the operational structure of the problem, as these problems do
not indicate a starting and ending point [16]. Thus, for a student to solve compensation tasks he or she
would need to construct relational structures of the operations and numbers coordinated, which is
more difficult than simply reversing the order of an additive or subtractive operation.

In Algebra, the interdependent relationship between mathematics and language requires students
to translate everyday language to algebraic expressions, and then back again to explain their reasoning
or understanding. Recent findings suggest that young students are capable of constructing algebraic
generalizations, paying attention to the explicit language and use of conjectures in solving operation
problems [19–22]. Students as young as preschool-age have been found capable of transitioning their
everyday experiences to mathematical experiences when developing an additive-subtractive inversion
principle [19].

Similar findings from Carraher, Schliemann, Brizuela, and Earnest’s [20] study, with second-grade
through fourth-grade students, suggest that students drew from familiar experiences to develop an
early awareness to negative integers. Blanton, Brizuela, Gardiner, Sawrey, and Newman-Owens [21]
found that students enrolled in second-grade could attend to co-varying relationships if they began
in kindergarten generalizing from familiar contexts and with only one variation in a quantity before
transitioning towards more abstract situations and with co-varying quantities.

These studies show that educators need to more explicitly bridge empirical generalizations around
young students’ use of conjectures towards abstract generalizations [22]. Therefore, ELs lacking
“typical” experiences and necessary English language levels of proficiency in which to access school
Algebra may be limited when developing abstract generalizations about mathematics relationships.
This is an important point related to the research in this paper, because the authors hope to contribute
to the research on algebraic development by looking at how an EL’s algebraic development may
compare to a typical algebraic development and how mental reversibility may develop from empirical
experiences and transition towards abstract experiences with young children.

1.2.2. Cultural Perceptions in Mathematics

A study by Bush and Ohio University [23] found five cultural factors that affect mathematics:
(a) societal influences; (b) parent attitudes, values, and beliefs; (c) teacher attitudes, values, and beliefs;
(d) student perceptions and beliefs; and (e) language. A common thread through these factors is
the beliefs and perceptions in mathematics developed in the student’s personal background. We
adapted these five main factors to the purpose of this study, and considered them while engaging in
compensation and inversion tasks with Allen.

One social and cultural perception about mathematics is that it is a “universal language”. There
is a misperception that mathematics is based only on a language of numbers and symbols [24].
Although mathematics may seem to be number-based, there is the underlying cultural element of
mathematics [25] that suggests individuals’ reliance upon language and culture needs to be considered
when designing mathematics pedagogy.

Another common perception about mathematics is that student experience with numbers and
equations in mathematics is the only key factor in accessing mathematics understandings. This is not
true. The discrepancy between student performance on verbally formatted problems and numerically
formatted problems strongly suggests that verbal factors contribute towards students’ success in
solving word problems. Hence, students’ language background relates to their performance on
mathematics word problems [26]. Although students who are ELs come to school with varying degrees
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of numerical and verbal experiences that foster their mathematics abilities, they face many obstacles
that affect their ability to access their mathematics understandings [27].

One such obstacle is constructing interactions between numerical and verbal experiences.
Lager [28] explains that students’ mathematics reasoning and their ability to abstract their mathematics
understandings are based upon their ability to construct relationships between their mathematics
and language understandings. For instance, students’ understanding of mathematical relationships
between concrete experiences, semi-concrete graphical illustrations, abstract symbolic representations,
verbal language, and written expressions of mathematical ideas are more capable of developing
abstract conceptual understandings in mathematics.

When students solve word problems that connect to their own life experiences, they are able
to build many of these relationships. For example, when students are asked to count candies in a
jar, students would need to be familiar with the context of candy in a jar so they can attach it to an
experience when verbally describing their results and developing abstract mathematics concepts.
Through these types of word problems, students can develop mathematical concepts, as students’
specific working mathematical knowledge and ability to abstract this knowledge through English
language develops when word problems are set in meaningful contexts [27].

Culturally responsive teachers connect mathematical concepts by connecting contexts with
students’ experiences and cultures [29–32], as we will further argue through our conceptual framework.
This connection between home and school languages and cultures could include, but is not limited
to, introducing contexts in mathematic word problems that are culture specific to students through
the use of media (e.g., images or videos) or by exchanging unfamiliar contexts with a context that
is more relevant to the students’ personal or cultural experiences. Mathematics problems that are
culturally relevant help students better understand the structure and relationships of the problems,
which increases the chances of student success [33–35].

1.2.3. Mathematics Register and the Language of School Mathematics for ELs

As discussed above, language is a key factor in developing an abstract, conceptual understanding
of mathematics [28]. One of the challenges for ELs in learning mathematics language is that it is
acquired quite often in school and not through social, conversational interactions [24]. While ELs
in early elementary grades are working on expanding their first language and English language
competence, at the same time they are introduced to a completely new language, which is the language
of school mathematics. In school, ELs are exposed to mathematics concepts and to verbal descriptions
of them, which require the acquisition of a new set of linguistic competences.

When ELs are required to read a mathematics prompt, they experience two different language
challenges: first, they culturally mediate mathematics via their interpretations of the mathematics
terms in order to develop a more comprehensible and familiar vocabulary [28]; second, they interpret
numbers and words to identify and/or develop effective strategies when solving a problem. Adding to
the challenge is the fact that the reading level of mathematics texts are often higher than the intended
grade level, even though the mathematical concepts themselves are developmentally appropriate [36].

Moreover, ELs’ development of domain specific vocabulary and syntax may also hinder reading
comprehension of word problems. These aspects of the mathematics register present several challenges
due to the complexities of the English language. One complexity is the existence of multiple meanings
for mathematic vocabulary and multiple terms that mean the same thing [37,38]. For example, “add
them up,” “the sum,” “the total,” “in all,” and “altogether” are phrases used in reference to the addition
operation, but these are not terms used in everyday language. In Algebra, “less than” can be used to
mean x < 5, as in “a number less than 5” or x − 5, as in “5 less than a number.” The complexity of such
mathematical terms can lead ELs to create a logical, yet incorrect, solution path which may lead to
further misunderstandings or misconceptions [28]. In addition, it is important to consider that students
may lack basic mathematics concepts in their first language or they may have already developed
mathematics misconceptions in their first language that can cause confusion [25,39,40]. In order
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to reduce confusion caused by multiple mathematics language registers and increase conceptual
understating, connections should be made between terms or expressions in both languages [41].

The structure of word problems may also create language issues for ELs. For example, there are
three structural types of quantity unknown problems for addition and subtractions: (a) result unknown
(e.g., 8 + 4 = x, 12 − 4 = x); (b) change unknown (e.g., 8 + x = 12, 12 − x = 8); and (c) start unknown (e.g.,
x + 4 = 12, x − 4 = 8) [42]. Result unknown problems can be referred to as the computational form of
the equation because the unknown quantity is isolated, which increases efficiency in problem solving
strategy [33,42]. Artut [43] found that children made more mistakes with start unknown problems
than result unknown. When interpreting these findings, Artut [43] proposed that children may have
failed in start-unknown problems because they could not determine the initial count of objects with
direct modeling strategies. Using inversion properties, students can rewrite change or start unknown
problems in equivalent computational forms. For example, the start unknown problem x + 4 = 12 can
be changed to the equivalent inversion equation 12 − 4 = x. Reading comprehension issues in word
problems may affect ELs’ ability to infer the structural problem type or hinder flexibility in creating
equivalent computational forms [37,42].

The complexity of the mathematics register clearly emerges in the articulation of word problems,
and in the vocabulary and syntax choices that characterize mathematics texts, which may further
explain ELs’ inability to perform at the same level as their English-speaking peers when solving
mathematics problems. One possible solution to language issues in word problems is for teachers
to be more linguistically responsive [44,45]. Linguistically responsive teachers are cognitively aware
of the language or linguistic diversity of their students and advocate practices that support ELs [44].
Previewing mathematics prompts to avoid misunderstandings due to language is one example of being
linguistically responsive. Another example is by using “you language” (e.g., you are given 8 apples,
rather than Eric is given 8 apples). Artut [43] found that using “you language” in word problems
helped guide preschool children to correct answers. This is particularly important in this study, as we
sought to explore how language becomes a critical factor for ELs’ ability to access mathematics concepts
and how the attempts of the teacher-researcher (the third author) to be linguistically responsive affected
learning outcomes. Hence, the interaction between language, culture, and mathematics was a critical
consideration in this study.

1.2.4. Summary of Literature Review

Considering the three main fields of research (early algebra and mental reversibility, cultural
perceptions in mathematics, and mathematics register and the language of school mathematics for
ELs) presented in this literature review, integrating mathematics and language teaching is the key to
promote developmentally appropriate practice for ELs in mathematics assessment and instruction and
to increase performances of ELs’ mathematics achievement [46–49]. Unfortunately, the integration
of mathematics and language registers is not incorporated in most classrooms due to the fact that
the majority of students and teachers in the U.S. are non-ELs [28] or lack appropriate training in ESL
strategies. Thus, this is a critical area for reform in U.S. schools.

There are three fundamental areas in which reform in mathematics and language registers should
take place: curriculum design, assessment, and staff development [50]. This study seeks to address
how teachers can integrate curriculum reform within their own classrooms, which may directly impact
the student experience. We discussed in the literature review the importance for and the means to
integrate mathematics register and algebraic tasks (e.g., inversion tasks, compensation tasks) into
linguistically and culturally relevant pedagogy. In integrating these, we would anticipate ELs having
more means to access and solve inversion and compensation tasks, and more means for ELs to abstract
the mathematical concepts through their use of language.

Numerous empirical works [30–35,42,44] support the integration of mathematics and language
teaching and argue for the development of culturally and linguistically responsive pedagogy. However,
few have considered how students may develop algebraic reasoning through these forms of pedagogy.
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Thus, this study seeks to contribute to the literature by examining how one Latino EL first-grade
student engages in compensation and inversion tasks during after school mathematics intervention.

1.3. Conceptual Framework

For this particular case study, we drew explicitly from a blend of two paradigms: The Radical
Constructivist Paradigm [51], to explain Allen’s cognitive changes when learning mathematics, and
the Sociocultural Paradigm [52], to explain Culturally Relevant Pedagogy [53] when designing a
mathematics intervention for an EL. In this section, we will explain these paradigms and related
theories. We will also clarify how we integrated these paradigms and theories into our methods, task
design, and analyses.

1.3.1. Radical Constructivist Paradigm

Aspects of Allen’s psychological understanding are described through the Radical Constructivist
lens. Essentially, when researchers utilize the Radical Constructivist paradigm, they frame their work
within the assumption that mathematics knowledge is actively constructed through engagement
with mathematical concepts. Further, each individual’s construction of his or her mathematical
concepts informs his or her own unique mathematical reality, which can be quite different from another
individual’s mathematical reality.

There is a relationship between the role of concepts and their re-presentations (i.e., the means
in which an individual’s mathematical concepts are represented) through linguistic interactions [51].
Von Glasersfeld [51] proposed that an individual’s psychological understanding of a concept is
coordinated between compatible sound-image (e.g., the phonetic transcription [‘wΛn] and the graphic
representation of the number “1” correspond to the concept of “one”) and re-presentation of a specific
word or mathematical concept. For instance, if children hear the word “rhinoceros” they may consider
a grey animal with a horn on its head, who lives in Africa. The concept of “rhinoceros” is a result of
an association between the re-presentation brought forward by the child and the word “rhinoceros.”
It should be noted that the re-presentation of the animal could have been formed by experience,
images, or a vicarious description [51]. Students who are ELs may not have associations between a
perceived sound and a concept, which would prevent them from bringing forth a re-presentation. In
this case study, we investigated associations between a first-grade EL’s mathematics concepts and
language development by analyzing Allen’s re-presentations and words used when engaging with
compensation and inversion tasks.

1.3.2. Sociocultural Theory of Learning and Culturally Relevant Pedagogy

The second paradigm from which we drew when framing this study is the sociocultural paradigm,
as we utilized Culturally Relevant Pedagogy when designing tasks and analyzing student interactions
with these tasks. Lev Vygotsky [52] best described the sociocultural approach as mathematical learning
to be the function of culture (i.e., social life and human social activity). Social interest is a natural
instinct in human beings, who from early childhood years begin to seek contact with other people [54].
Adler underlined the importance of social interest in all “tasks” or periods of life and suggested a
holistic approach when understanding the human being. Ladson-Billings, as cited in [55] (p. 62),
defined culturally relevant pedagogy as “an approach to teaching and learning that empowers students
intellectually, socially, emotionally, and politically by using cultural referents to impart knowledge,
skills, and attitudes.”

For our research, we considered how an EL’s natural, cultural, and linguistic social activity sphere
interacted with his ability to solve inversion and compensation tasks. We analyzed how ELs might
better access inversion and compensation tasks through culturally relevant pedagogy, by adapting
the teaching approach to use cultural referents and identifying how the changes affected learning
knowledge, skills, and attitude.



Educ. Sci. 2017, 7, 57 8 of 25

1.3.3. Blending the Radical Constructivist and Sociocultural Paradigms: An Emergent Perspective

Based on the sociocultural paradigm, the social context of educational tasks plays a prominent
role in learning. Applying the sociocultural paradigm to mathematics education, the social and cultural
background in which the inquiry-based intervention was performed were considered a crucial factor in
holistically evaluating a Latino EL’s response to the algebraic tasks [56]. In other words, it is essential
to reflect on a Latino EL’s interaction with other social agents such as classmates, parents, educators,
and members of the local community, thus avoiding approaching the individual in isolation [57,58].
It is also critical to consider how these social agents are affecting each student’s own mathematical
realities through the Radical Constructivist lens.

In the attempt to blend the Radical Constructivist paradigm, and the Sociocultural paradigm,
we considered how the association between mathematics concepts and sound-image interact with
three main areas in which culturally relevant educators demonstrate pedagogical understanding of:
(a) conceptions of themselves and others, (b) conceptions of social relations, and (c) conceptions of
knowledge (see Figure 1).
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Figure 1. Sociocultural Constructivist English Learner (EL) Intervention Framework. A theoretical
framework for mathematics intervention with ELs, adapted and integrated from Von Glasersfeld [51]
and Grant and Ladson-Billings [55].

To visually represent our theoretical framework as seen in Figure 1, we started with the
consideration of the three main areas in which culturally relevant educators demonstrate broad
pedagogical understanding during mathematics interventions: (a) teachers’ conceptions of themselves
and others (teachers understand that learning happens in a community); (b) teachers’ conceptions
of social relations (teachers are aware of the connections between themselves and ELs and between
ELs and their peers); and (c) teachers’ conceptions of knowledge (teachers facilitate learning through
multifaceted means and assessments) [55]. These are each represented as the plain text within each
of the grey boxes in Figure 1. We expanded these teachers’ conceptions within the cultural relevant
pedagogy to include the experiences of ELs, as indicated by the bold text included in the three
grey boxes.

Von Glasersfeld’s [51] radical constructionist paradigm, in which an individual’s conception of
knowledge is constructed by the re-presentation of concepts based upon sound-image, is delineated
within the dash line box. The black connector in Figure 1 shows that the teachers’ and ELs’ conception of
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themselves, social relations, and knowledge will filter and integrate the re-presentation of concepts and
sound-image. We argue that this re-presentation (in the dashed box) is connected to both teachers’ and
ELs’ conceptions of themselves, social relations, and knowledge. Through this consideration, teachers
would be able to offer instructional scaffolding opportunities for ELs learning and, consequently,
multifaceted forms of assessment, validating multiple forms of students’ expression and understanding,
as seen in the bottom box of Figure 1.

In this blend of the Radical Constructivist paradigm and Culturally Relevant Pedagogy, culturally
relevant teachers would inquire within their own knowledge acquisition process, understand that
their knowledge is not static (i.e., may be different than an EL’s and may change in time), and for this
reason must viewed critically [55]. In this way, educators will be able to incorporate ELs’ perspective
and provide opportunity for ELs to develop their own knowledge system and see assessment as a way
to show their mastery of particular concepts (e.g., compensation and inversion tasks) instead of just a
number on their records.

2. Materials and Methods

In this section, we provide a brief overview of the methods applied in this case study, which is
part of a larger study. The larger study included 11 students enrolled in kindergarten to second-grade
in an elementary school in the West Mountain Region of the United States and was approved by
the Utah State University Institutional Review Board (protocol number irb-6849, 22 July 2015). The
students were purposefully chosen and participated in five concurrent teaching experiment groups
throughout an academic term [59]. This larger study aimed to establish and measure the key defining
characteristics of tasks meant to promote children’s construction of mental reversibility. Throughout
the teaching experiments, students participated in no more than 28 sessions. As part of the on-going
analysis of the 11 participants, we advanced questions regarding the development of one first-grade
student, Allen. In particular, we were interested in the interplay between Allen’s culturally embedded
mathematics perception and his English language proficiency level when determining his ability to
access and solve problems during the teaching experiment sessions.

2.1. Participants

Allen is a Latino student enrolled in a first-grade classroom (in Spanish nouns have genders,
therefore, with Latino we refer to a male student and with Latina to a female student from Latin
American heritage). He was six years and four months old at the onset of the study. Based on the
federal criteria for students who qualify for free or reduced lunch and Allen’s family income range and
household size, we categorized Allen as coming from a home designated as low-SES. Becka is a Latina
student enrolled in a first-grade classroom. She was also six years and four months old at the onset of
the study. Based on the same criteria mentioned above, Becka also came from a home designated as
low-SES. Both Allen’s and Becka’s families indicated on a school demographic form that they spoke
primarily Spanish at home, which categorized them as ELs. Allen and Becka both received EL services
at school daily, prevalently through pull out intervention model. Allen and Becka’s teachers did not
indicate the students’ English proficiency level.

After the screening interview, we determined that Allen and Becka were able to count nine items
sufficiently and Allen used his fingers to attempt to find a missing addend during an inversion task.
Becka quickly gave an inaccurate solution for the missing addend task and justified that she “saw it”
when asked how she knew this answer to be true. Further, it seemed that Allen and Becka were able to
subitize up to 10 items, but depended heavily upon “known” patterned items [60]. Based on Allen and
Becka’s similar age, use of strategies, and demographic information, we chose both students to work
together. Due to Becka’s inconsistent attendance, we chose to focus this study primarily on Allen’s
strategy development relative to changes in tasks.
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2.2. Research Design

This is a case study, which we understand as “the empirical study of human activity” [61] (p. 454)
to evidence Allen’s relatively–in comparisons with his peers- equal access to mathematical concept
development through a change in his use of strategy. Initially, Allen was purposefully chosen to be
part of the larger study as a result of his participation in three screening interviews. Analyses of these
interview findings indicated that: (a) he was not capable of relying on inverse operations abstractly
when solving problems and explaining his reasoning, but evidenced early strategies that allowed
him to solve additive inverse problems; (b) his standardized score in the Test of Early Mathematics
Ability (TEMA-3) [62] was in the cut-off range from 70 to 95 (his score was 84) [59]. The TEMA-3 is a
norm-referenced test designed to measure mathematics ability levels for children between the ages of
3 years 0 months and 8 years 11 months [62]. Standardized scores and percentile rankings from the
TEMA-3 were used, as these scores control for age. TEMA-3 standardized scores have a mean of 100
with a standard deviation of 15. This standardized assessment provided us a measure in which to
categorize students as “struggling” in mathematics.

For this case study, we collected quantitative and qualitative data, in the form of: (a) participant
observation during the teaching experiment sessions; (b) field notes, collected at the end of the teaching
experiment sessions and watching the videos of Allen’s sessions; (c) student interviews, collected
three times during the study (screening interviews, midterms, and final interviews); and (d) TEMA-3
scores. Through this data, we explored Allen’s learning of key characteristics. The quantitative data
(the TEMA-3 scores and the statistics from the coding sessions) will be described qualitatively for this
case study, as our focus was on the insight provided through an in-depth qualitative analysis of Allen’s
responses. In this sense, we did not compare Allen’s TEMA-3 scores with the results obtained by other
students in the larger intervention study, but rather analyzed each occurrence (e.g., Allen could not
count down from 10 to 1) in its specific context (e.g., the language used to ask Allen to count down
from 10 to 1).

In each interview and teaching experiment session, we used two video cameras and one audio
recorder to record Allen’s verbal and empirical responses. During the first interview, Allen was asked
to perform subitizing tasks used in MacDonald and Wilkins’ [60] teaching experiment sessions to
determine how perceptual activity may relate to Allen’s number understanding and early operational
thinking. The second interview included counting tasks modeled after Steffe and Cobb’s [63] teaching
experiment tasks to determine flexible manners, in which children use counting when understanding
number. The third interview included the TEMA-3 [62] to determine Allen’s standardized mathematics
ability level. Allen participated in 23 teaching experiment sessions over the course of one academic
term. He engaged with tasks that were designed to elicit counting and subitizing with the objective to
solve inversion and compensation tasks.

2.2.1. Teaching Experiment Sessions

The purpose of using a teaching experiment is to build a second-order thinking model of
a student’s learning from our interpretations of their interactions with mathematics tasks [64].
A second-order thinking model depicts a researcher’s inferred perspective of a student’s mathematical
reality. This reality is based on the mathematical concepts and activity that the students used in
previous tasks to build towards subsequent strategy use and development in later tasks. This
methodology was chosen because it aligned with the Radical Constructivist paradigm this study was
grounded in. Allen’s interactions with task design features were observed by a “witness” (a graduate
researcher) in each session who interrupted ineffective interactions by asking questions to help Allen
reflect on his responses or a peer’s responses. The teacher-researcher” (the third author) engaged the
students with the tasks and essentially led the sessions. Allen participated in 23 teaching experiment
sessions with Becka. For each teaching experiment session, the teacher-researcher and the witness
worked semiweekly for about 15–20 minute after school with Allen and Becka.
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2.2.2. Tasks

During each teaching experiment session, Allen engaged in subitizing [60], counting [63],
inversion [65], and/or compensation activity [66]. Subitizing and counting activities were elicited to
indicate early development of mental reversibility that may relate to later abstract development
of mental reversibility [60,63]. Thus, tasks that elicited these types of activity were utilized to
better understand how multiple modalities may allow students equal access to mental reversibility
development. The numbers used in these tasks were chosen in accordance with each student’s
conceptual analysis with simple (de)composition tasks.

To elicit each of these four types of activity (e.g., subitizing, counting, inversion, and
compensation), variations of tasks were utilized. As analyses informed the research team of changes in
Allen’s responses, they also informed the need for slight changes in task designs. Thus, the tasks were
developed at the onset of the study, but changes to these tasks were made to provoke changes in Allen’s
second-order thinking model. The changes made to the tasks were in response to an analysis of Allen’s
responses during the sessions and after the sessions. Essentially, when Allen relied on re-presentations
(i.e., fingers, drawings, movement of counters, language) we considered how these re-presentations
could inform us of Allen’s mathematical understandings and the degree of abstraction relative to these
understandings. This also informed us of social conceptions of himself as a student of mathematics
and the relative norms established around these conceptions. Throughout the conceptual analyses
and retrospective analyses meetings, the first and third author would meet bi-weekly to discuss these
possible social norms and mathematical understandings. The teacher-researcher changed tasks as a
result of these meetings and forms of analyses so that language and context of the tasks were more
culturally relevant (i.e., closely aligned with Allen’s language and home experiences).

Allen and Becka engaged in subitizing, addition, subtraction, identity, negation, inversion [18],
and compensation tasks. For the purpose of this study we recall Clement’s [67] (p. 400) definition of
subitizing, as the act of “instantly seeing how many,” or the ability of “direct perceptual apprehension
of the numerosity of a group”. Tasks varied by context, number, visibility of counters, and whether
parts relative to the whole were discussed with Allen and Becka sequentially or concurrently. More
addition, subtraction, and compensation tasks were used with Allen to build from a +1/−1 type of
reasoning towards more abstract inversion thinking. For this paper, only two tasks will be discussed
(compensation and inversion tasks).

2.3. Analytical Procedures

We started the analysis using Maxqda 12 software, a management program for qualitative data
analysis. Maxqda 12 is a Window-based software for categorization of themes and managing data. We
used Maxda 12 because its user-friendly interface allowed us to code video and audio segments of the
data, establish new in vivo codes, and visualize the interceptions between different codes. Maxqda 12
also allowed the research team to code the data and organize it into themes and patterns that were
collectively shared.

The data was organized in a logical and useful way according to these three main categories:
(a) the TEMA scores PDF files; (b) the interviews video files; and (c) the teaching sessions video

files. We explored the data through conceptual and retrospective analysis guidelines. We began the
interpretation by using an open coding technique, which allowed us to consider “all potentials and
possibilities contained within them” [68] (p. 160). An eclectic coding [69] was employed in our second
cycle of coding. We synthesized the variety and number of codes into a more unified scheme. Through
the different cycles of coding and member checking phases, we identified three main emerging themes:
(a) teaching strategies; (b) language features; and (c) thinking strategies. We looked at the subcodes
connected with three main themes and further analyzed and synthesized them. We used the statistic of
subcode function in Maxqda 12 to verify and visualize the frequency and the percentage of occurrence
of the three main themes, and their relations.
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2.3.1. Conceptual Analyses

When analyzing the video footage from each session, we described what students might
understand based upon the various strategies they employ [70]. To accomplish this goal, we engaged
in conceptual analysis where, through analysis of observed student responses, we inferred mental
operations Allen may be using and/or developing [51]. Our approach is particularly relevant when
considering the semantic connection between Allen’s constructed algebraic operations, graphical
re-presentations, and descriptive re-presentations. Throughout this conceptual analysis, we paid
close attention as to how his responses suggested development of certain mathematics concepts. We
also examined Allen’s descriptions in Spanish and English where he referred to his formal schooling
experiences when engaging with tasks.

2.3.2. Retrospective Analysis

We complemented our conceptual analysis procedure with retrospective analysis to better
understand overarching trends in Allen’s use of strategies and inferred cognitive changes. In a
retrospective analysis, researchers conduct a historical analysis of video records, meaning they look at
how the experiential models of students’ mathematical thinking change over time [71]. While we used
conceptual analysis to analyze Allen’s responses between tasks and sessions, we used retrospective
analysis to analyze the changes that occurred over longer periods of time and at the conclusion of the
study [71]. Three times throughout the study, all the authors of the research team engaged in coding
both transcriptions of Allen’s responses and organized them in an excel sheet. The excel sheet format
was utilized to determine relationships between Allen’s responses and task characteristics. In the first
retrospective analysis session, the research team brought open codes to the meeting and categorically
grouped these to determine larger categories. In the second retrospective analysis session, qualitative
data were reviewed and discussed relative to categorical codes and student responses. Further, codes
were color coded to determine changes between sophisticated activity (i.e., “counting to”) to more
rudimentary activity (i.e., “counting all”) and vice versa.

We also used retrospective analysis to analyze the interconnection between Allen’s and researchers’
personal, social, and knowledge conceptions [55]. Changes in Allen’s learning and re-presentation
were considered in light of researcher changes in task language and context. These changes in colors
were used to help the research team focus on specific shifts in our second-order thinking model for
Allen relative to culturally relevant pedagogical changes. In the final retrospective analysis session,
the first author revisited all of the video data that she found to be of interest relative to Allen’s use of
language, re-presentations, and conceptual material.

2.4. Limitations

For the purpose of this research, we focused on one specific participant of a larger study. This
provided us insight to an in-depth set of questions regarding Allen’s access to mathematical concepts
throughout the course of the study. However, as a general limitation of a case study, the results cannot
be generalized to the rest of the participants of the larger study, nor to the wider population of EL
students in the school [72].

Other limitations to the study can be the researcher’s own subjective feelings and positionality.
The first author approached this study as a Sicilian-Italian, first generation college student, female,
multilingual (Italian, Spanish, and English) and multicultural recent graduate in Curriculum and
Instruction, with specialization in cultural studies and bilingual education. She brought to this research
project her experience teaching, tutoring, and observing K-12 students in Italy and in the United States
for the past 15 years. The second author approached this study as a white, female doctoral student in
Mathematics Curriculum and Instruction. She brought to this research project 15 years of experience
in teaching, tutoring, observing, and task development as an English as a Second Language (ESL)
endorsed elementary teacher in low SES (Title One) schools with large Latino EL populations. The



Educ. Sci. 2017, 7, 57 13 of 25

third author approached this study as a white, female, early childhood mathematics researcher and
educator. She brought to this research project 17 years of experience in teaching, tutoring, coaching,
and observing elementary school students and teachers as a classroom teacher and instructional
specialist working in fully inclusive school settings. Furthermore, her previous research, investigating
cognitive mechanisms (e.g., subitizing) early childhood children utilize when developing number
and operational understandings informed her perspective when working with students. Shifts in
these perspectives stemmed from her reflection upon her students’ ability to access mathematical
concepts via her use of language. We acknowledged our different backgrounds and we consider our
personal, social, and knowledge conceptions [55] while we interpreted the data of this mathematics
intervention study.

We also acknowledge the difficulty to replicate this study, which could be time consuming [72].
In order to answer these potential threats to the validity of the study, we acknowledged the researchers’
positionality, used multiple theoretical lenses when informing our design and analysis, and used
member checking during all phases of data collection and analysis. In addition, we recurred to the use
of Maxqda 12 software to build a coding platform that could be used as a term of comparison for the
larger study and for future specific case studies on ELs in mathematics research.

3. Results

In retrospective analysis, we learned that the term “language” was an open code identified by
each member of our team as a crucial concept in our interpretation of the data. Therefore, we decided to
focus further on the code “language” making it our key category and consider the connections between
this code and the correspondent subcodes. Through the Code-Subcode-Segments Model function we
checked the frequencies of intersections between Language Features and various subcodes. We found
out that Language Features was in use more often in connection with the subcode Phrasal Verbs. Hence,
it emerged that among the different language features the use of specific phrasal verbs represented a
crucial element that interplayed with Allen’s ability to solve inversion and compensation mathematics
tasks. Using structural coding [69] we considered the connection between the Language Features
and another subcode, Culturally Embedded Mathematics Perception, in relation to our specific research
question. Due to its relevance, we considered phrasal verbs and culturally embedded mathematics
perception emergent subcategories. We assigned different colors to the Culturally Embedded Mathematics
Perception subcode to monitor the code-co-occurrence with the Phrasal Verbs category. The following
examples illustrate where Cultural References and Linguistics Features interplayed with Allen’s ability to
solve the mathematics task.

3.1. Examples of Task Design that Prevented Allen Equal Access to Mathematical Concepts

In the first example, which is a transcript section from Allen’s first screening interview, the
student was asked to count backwards starting from ten. This task came directly from a TEMA-3 [62]
assessment item.

Teacher-Researcher: Remember how rocket ships count off? How they count
backwards like that?

Allen: [shakes his head to indicate he does not understand]

Teacher-Researcher: Like three-two-one blast off!

Allen: [nodding].

Teacher-Researcher: Yah? Can you do that when you start at ten for me?

Allen: [seems disengaged, he plays with his chair and seems not to understand
what he has been asked to do].

Teacher-Researcher: Like ten, nine, . . .

Allen: I can’t do.
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Teacher-Researcher: you can do that; can you try?
Allen: Nope!

(Student’s interview, PRE_03ScreeningInterview_part2_1, minute 03:07–03:31)

The teacher-researcher’s reference to rocket ships counting down before blasting off did not seem
to align with Allen’s past experiences which seemed to prevent him from understanding what was
expected of him. A visual re-presentation of the example may have helped Allen to connect the concept
to his sound-image of a rocket ship or a different cultural context may have helped Allen understand
the premise of the backwards-counting task.

In the second example—a transcript from Allen’s tenth session—Allen is given a compensation
task to solve. In this excerpt, the Cultural References and Phrasal Verbs seemed to play a decisive role in
Allen’s ability to solve this problem. The teacher-researcher introduced the compensation task and
gave Allen four pieces of paper with some counters on them (see Figure 2). Underlined words are
meant to highlight the teacher-researcher and witness’s use of phrasal verbs. Phrasal verbs are verbal
constructions formed by one verb and one preposition. The word altogether is in italics because we
observed that Allen was not familiar with its meaning at the beginning of the study, but he began to
use it by the end of the study.

Teacher-Researcher: We are going to do a balance activity today.
Allen: What’s balance?
Teacher-Researcher: Did you ever put weights on a balance scale? And when
you put more weights on one side, it dips down and the other one goes up?
[While talking, the teacher-researcher opened up her arms mimicking a balance
scale with her hands. She moved her left hand down while moving her right
hand up as they were the two parts of a balance scale].
Allen: [shakes his head to indicate he does not understand]
Teacher-Researcher: Did you ever do that, Allen?
Allen: No! [shakes his head]
Teacher-Researcher: We are going to pretend that these papers (see Figure 2) are
like that.

(Teaching Sessions, Allen_1_19_16a, minute 0:49–1:12)
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Teacher-Researcher: If I have on this side [points to Figure 2d] four and
something [points to Figure 2c], and on this side, I have three [points on Figure 2b]
and two [points to Figure 2a]. What do I need here [points to Figure 2c] to make
that balanced?
Allen: Um, six?

Teacher-Researcher: You think a six should go here? So, six and four is in one
hand, and three and two is in the other hand. Are they balanced?
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Allen: [shakes head to indicate “no”]

Teacher-Researcher: No. What could we put here [points to Figure 2c] to make
four and something balance with three and two.

Allen: [holds his hands up like a balance scale] uh,

Witness: Which one is more right now?

Teacher-Researcher: Yeah, which one has more? We’re talking about both these
mats. Which one has more...these two mats [points to Figure 2c,d] or these two
mats [points to Figure 2a,b]

Allen: Think you put two right here [points to Figure 2c].

Teacher-Researcher: You think two, how come? What tells you that two should
go there? Did you see that somewhere else?

Allen: Um, [shakes head to indicate “no”].

Teacher-Researcher: No? So, let’s try this Allen, if I put two here [places two
counters on Figure 2c], what do I have over here? On this side of the scale [points
to Figure 2c,d]?

Allen: Six.

Teacher-Researcher: Six? What do I have on this side [points to Figure 2a,b]?

Allen: Two.

Teacher-Researcher: No, on this side of the scale [points to Figure 2a,b]?

Allen: Oh, five.

Teacher-Researcher: Five. Ok, where do you see two on this side of the scale?

Allen: [points to the two counters on Figure 2a]

Teacher-Researcher: Ok, so we matched these two [points to a and c], they
would be equal, wouldn’t they? Right, are these two [points to Figure 2b,d]
equal though?

Allen: [shakes head to indicate “no”]

Teacher-Researcher: No. So, what can we do to make these two equal?

Allen: Take one off. Take one away . . . [Indicating which counters by pointing
to Figure 2d]

Teacher-Researcher: Ok, well let me tell you this, watch. If I take one away,
I cannot take it off altogether I have to put it over here. Now, are these two
matched?

Allen: [shakes head to indicate “no”]

(Teaching Sessions, Allen_1_19_16a, minute 1:52–5:43)

Allen demonstrated difficulties in engaging in the activity due to the cultural reference of a
balance scale. The teacher-researcher attempted to help Allen visualize a scale through motions,
however he was not able to understand the concept of a balanced scale until a verbal description of
quantities such as “more” and “equal” were introduced. This verbal description may have helped
Allen re-present the concept in terms he was familiar with, thus facilitating understanding [51]. An
understanding of the cultural reference alone did not help Allen complete the task in which he spent a
significant time accessing the mathematical concepts intended in the task. This is consistent with the
research that both language and mathematical understanding play a role in comprehension of word
problems [18,21,24,31].
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Phrasal verbs are particularly common in spoken English language; however, they constitute
one of the most complex elements of the English language for ELs [73,74]. The use of phrasal verbs
(underlined portions of the transcripts) at the end of the intervention period may have interfered in
the exchange of information with Allen. When Allen used the phrasal verbs “take off” and “take
away”, he used them both to mean “remove”. If we apply this definition to the teacher-researcher’s
response, the result is a contradiction of “I remove one, I can’t remove one”. In this case, it is proposed
that the use of cognate verbs (e.g., English “remove”/Spanish “remover”; English “cancel”/Spanish
“cancelar”; etc.) in addition to the phrasal verbs (e.g., take off, take away) might have been able to
provide Allen with equal access to the mathematical concepts and allow him the ability to connect
these concepts with different English and Spanish verbal expressions [73,74]. Thus, we considered our
use of phrasal verbs as a contributing factor to Allen’s ability to access the mathematics in the tasks
and changed the language features we used in our task designs.

3.2. Examples of Task Design that Allowed Allen Equal Access to Mathematical Concepts

Through our initial retrospective analysis, we recognized the aforementioned concerns with
our use of cultural context and language, and modified our task design to allow Allen access to
mathematical concepts. For instance, we replaced questions and prompts in phrasal verb form (e.g.,
How many you take off? How many altogether?) with questions and prompts that used more direct
or cognate verbs (e.g., How many you remove? How many total?). Furthermore, we changed the
context of many of the tasks to align with Allen’s own cultural experiences. For example, after asking
Allen about the activities he does with his family to celebrate birthdays, we found out that he was
familiar with the cultural experience of filling and breaking a piñata. In the discussion with Allen,
the teacher-researcher also asked Allen and Becka what shape their favorite piñata would be. From
these conversations, one of the inversion tasks was changed; Allen was asked how many candies
were in a Unicorn shaped piñata before more candies were added. The change in cultural reference
may have helped Allen to understand the structural form of this start unknown word problem [42].
A compensation task was changed so that Allen was asked an equal sharing question with cupcakes on
trays, a cultural reference he was familiar with, as we found out while engaging in a dialogue about his
family’s cooking habits and birthday parties he had attended outside of school. The latter task changed
and Allen’s interaction with these types of tasks is described in more detail in the following excerpt.

In this excerpt, Allen is in his fourth and final task for this session. This task was designed to
provoke attention to the differences between the groups, not the differences between the total sets
of counters by providing a difference of only one or two counters in subsets of groups. For example,
in this task, Allen has eight cupcakes on one side of his mat and six cupcakes on the other. Becka’s
cupcake mat has seven cupcakes, which is one more and one less than either side of Allen’s mat. The
students are told that Becka needs more cupcakes so they have the same number of cupcakes. In earlier
tasks, Allen has struggled to use Becka’s strategy of totaling the number of cupcakes for each student
and then adding up from the smaller to the larger total in order to find the number of missing cupcakes.
We used double-sided counters, featuring red on one side and yellow on the other. Allen begins to
solve this by counting counters and then loses track of his counting, prompting him to begin counting
all counters again. Thus, to help him re-establish the total counters in each side, the teacher-researcher
restates the problem below.

Teacher-Researcher: This is eight [points to counters on one side of the mat in
front of Allen] and six [points to the counters on the other side of the mat in front
of Allen]. You [indicating to Becka] have seven [points to counters on one side
of the mat in front of Becka] and you need some more over here [points to the
empty space on the other side of the mat in front of Becka].
Allen: [counts the seven counters on one side of the mat in front of Becka] put
one here and . . . [points to the empty side if the mat in front of Becka]. [Counts
the counters on the mat in front of him].
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Becka: Eight—no we need eight. We need eight, Allen!

Teacher-Researcher: What do you think [points to Allen]? You said put one
here . . .

Becka: It doesn’t make sense.

Allen: [Places one counter on the empty side of the mat. Then, places a second
counter on the same side of the mat. Looks at the mat in front of him and seems
to nod a bit as if counting.] What’s altogether here?

Teacher-Researcher: I am not telling you that. I am telling you have eight and six.

Allen: [Counts the counters on both sides of the mat in front of him before
looking at the counters on the mat in front of Becka. Places five more counters on
the side of the mat in front of Becka so there is a total of seven counters on each
side of the mat in front of Becka. When Allen initially places the final counter on
the mat he turns it over so it is yellow and then turns it back over so it is red like
the other six counters on this side of the mat] Got it . . . got it . . . got it . . . got it.

(Teaching Sessions, Allen_4_12_16d, minute 12:46–13:41)

Upon review of this excerpt, it seems that Allen was attempting to use the differences between
the groups at first, as he counted the seven and then he stated “put one here” before counting the other
part. This strategy was more difficult, as Allen would need to consider the operational structure in
a non-directional manner [16]. However, Allen then switched to count the total in the larger group
(the mat in front of Allen) and counted on from the smaller group (the mat in front of Becka). This
strategy was quite typical relative to the literature on algebraic reasoning development, as it seemed
Allen was able to access the task additively before inversely considering the relations on both cupcake
trays [19]. Regardless, these new strategies Allen was developing evidences of changes in his ability
to access multiple reasoning strategies elicited through access of the mathematical concepts in the
task. This shift in how Allen is both utilizing mathematical language and accessing the mathematical
concepts suggests the changes made to the tasks to be more culturally relevant were effective, thus
supporting the idea that teachers need to be culturally relevant in their mathematics instruction and
intervention [29–35].

3.3. Teaching Strategies, Language Features, and Thinking Strategies

In subsequent retrospective analyses, we used the statistic of subcode function in Maxqda 12, to
calculate and visualize the frequency and percentage of occurrence within the three main emerging
themes: (a) teaching strategies; (b) language features; and (c) student thinking strategies. Intersecting
the statistics of subcodes with qualitative analyses, we reported each main code and subcode statistic
qualitatively, we grouped the subcodes in categories, and we interpreted the results to determine more
in-depth forms of how teaching strategies, language features of tasks, and Allen’s thinking strategies
interacted. In the following sections, we discuss the three themes and the interaction between them.

3.3.1. Teaching Strategies

We identified four types of teaching strategies during the mathematics intervention with Allen:

1. Explaining Thinking (31%): teaching strategies that focus on “asking the students to explain
thinking” and “teachers suggesting answer/strategies”.

2. Naming Tasks (24%): teaching strategy that focuses on relating possible solutions to the name
associated with the task.

3. Using instructions (24%): teaching strategies regarding giving instructions on how to complete a
task. These instructions were either differentiated (directly connected with the task and explained
as such to the student) or implicit (implied).
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4. Asking questions (19%): teaching strategies that include asking questions that were general in
nature (e.g., how many do you see altogether?) or specific in nature (e.g., where do you see two
on this side of the scale?).

A total of 77 uses of a teaching strategy were coded over the course of Allen’s 28 teaching sessions.
The most frequent teaching strategies used in the study are: asking Allen to explain his thinking,
naming tasks, and using differentiated instructions and general questions. To deliberately explore
and develop the most effective tasks for Allen’s algebraic development when enacting these teaching
strategies, we addressed Allen’s individual differences in mathematics register, cultural experiences,
and English language proficiency. We then considered how these teaching strategies and changes in
tasks interacted with Allen’s algebraic development.

3.3.2. Language Features

We observed that the language features that influenced Allen’s mathematics development can be
described through three main categories:

1. Vocabulary (35%): synonyms, literal translations from primary language, and unknown words.
2. Syntax (33%): phrasal verbs, prepositions, question structure, and subject pronouns.
3. Culture (31%): cultural and contextual influences in story problems.

Considering the incidence of each language feature, we found that vocabulary is the language
feature that affected Allen’s mathematics development the most (35%). In particular, synonyms, literal
translations from primary language, and unknown words were influential with regard to vocabulary
(e.g., altogether, equal, share fairly). Syntax was influential when phrasal verbs, prepositions, question
structure, and subject pronouns were introduced during a task (e.g., take off, take away, take out, spill
over, slide over, polling down, check out, pull off, pull down, brought over, turn around, hold on).
Culture was determinant when within cultural influence, perception and story problems interplayed
with Allen’s ability to solve mathematics tasks (e.g., the references to the rocket ship and the use of the
piñata). Following the principles of culturally relevant pedagogy, we questioned the linguistic and
cultural assumptions [75] we used in the mathematics interventions that could have prevented Allen
from performing compensation and inversion tasks.

3.3.3. Allen’s Thinking Strategies

Allen’s thinking strategies, observed during the sessions with Allen, concern three main forms
of re-presentations: Manipulatives (44%), Verbal (35%), and Visual (21%). These findings suggest
that the use of manipulatives has the most influence (44%) on the development of thinking strategies
during mathematics interventions. The most relevant manipulative strategy we observed is the use of
fingers to count and to explain the rationale to solve the task. Verbal strategies were spoken strategies
or actions by Allen. The most recurrent verbal strategies were: explaining thinking, rephrasing the
questions and the possible answers, and the use of counting as a mnemonic action. For the visual
category, we observed an extensive use of counters to represent Allen’s use of patterns, shapes, or
actions, rather than as a counting mechanism.

3.4. Connections Between Teaching Strategies, Language Features, and Student Thinking Strategies

From a thorough consideration of our research questions in connection with the data emerging
from the statistics of subcode, we observed that all three main themes of the analysis (i.e., teaching
strategies, language features, and Allen’s thinking strategies) related to Allen’s ability to engage with
the mathematics and solve inversion and compensation tasks. In order to better understand the
connections or relationships between each of the themes, such as teaching strategies that may have
prompted Allen’s development of language or thinking strategies, we considered and analyzed the
co-occurrence of these themes.
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For this purpose, we used two Maxqda 12 features. First, we ran the code relation browser.
Through the code relation browser, we were able to visualize how often overlapping codes occurred,
which allowed us to consider relationships between the three main codes: teaching strategies,
language features, and student thinking strategies. The code relation browser computed the number
of intersections of the codes. From the code relation browser, we found that the segments in
which these three main codes intersections are represented by the following subcodes: suggesting
answer/strategies, using differentiated instructions, asking to explain thinking, naming tasks, using
implicit instructions, phrasal verbs, counting with fingers and counters, and explaining thinking.

The results we obtained through the code relation browser, were confirmed through the
co-occurrence model function in Maxqda 12, which clarified the nature of these intersections between
the three emerging themes. Teaching Strategies and Thinking Strategies are interconnected through
Language Features, and in particular through the linking subcodes, listed in order of relevance (in
terms of frequencies of intersections between the three emerging themes): verbal student thinking
strategies (35); explaining teaching strategies (24); syntax language features (20); and manipulative
student thinking strategies (20).

To focus our analyses of these results, we discuss the interconnections between only the top
three subcodes listed above. Our findings suggest a strong connection between the emerging themes
“explaining teaching strategies” and “verbal student thinking strategies”. This was evident when
Allen adopted the teacher-researcher’s language and when the teacher-researcher provided Allen
connections between his verbal strategies. For example, during one of the teaching sessions that
targeted subitizing, the teacher-researcher hid counters under a mat (see Figure 3a). Then she quickly
lifted up the paper and showed the mat to Allen, while asking “how many counters there were under
the paper?”
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Figure 3. Amount and position of counters as showed by the teacher-researcher to Allen during a
subitizing task: (a) the teacher-researcher hid three counters on the left and three on the right side of
the mat; (b) the teacher-researcher hid four counters on the left and two on the right side of the mat;
(c) the teacher-researcher hid four counters on the left and three on the right side of the mat.

The teacher-researcher repeated the task (Figure 3b). Allen answered correctly by stating “six” for
both task a and b. The third time this task was given to Allen (Figure 3c), the teacher-researcher asked
Allen to complete the task by asking “how many counters there were under the paper” and then to
explain his thinking.

Teacher-Researcher: So, tell me what these groups told you “about seven”.
Allen: [looked distracted]

Teacher-Researcher: Before you said you knew it was six because you saw three
and three (Figure 3a), and then you knew it was six because you saw four and
two (Figure 3b). Is there something in here you saw that told you it was seven?

Allen: [pause, looking at the mat] I saw the four and the three, when you put
altogether makes seven.

(Teaching Sessions, Allen_3_3_16b minutes 3:36–4:15)
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From this excerpt, it seems that Allen is incorporating the teaching suggestion in his thinking
strategy and reflected on his past explanation and reasoning. From this teaching strategy Allen was
better able to elaborate upon his initial explanation. He also used the word altogether, which he
learned through the teaching sessions, to help explain his operations. Other similar transcriptions
of video footages seemed to also illustrate Allen’s tendency to adopt the teacher-researcher’s
suggestion as part of his thinking strategies. In other cases, when he did not incorporate the
teacher-researcher’s suggestions in part of his thinking strategy, he responded by simply agreeing with
the teacher-researcher. Quite often, teaching strategies such as the use of differentiated instruction and
suggesting answers occurred at the end of the task, as a sort of explanation or confirmation of Allen’s
use of strategy.

The connections between teaching strategies, language features, and student thinking strategies
confirm that the social and cultural background in which we performed the inquiry-based intervention
became a crucial factor in determining Allen’s response to the algebraic tasks [56]. This indicates that
an EL’s responses during mathematics intervention and instruction need to be considered holistically.
In other words, it is essential to reflect on an EL’s interaction with other social agents such as classmates,
parents, educators, and members of the local community, thus avoiding approaching the individual in
isolation [57,58].

4. Discussion and Conclusions

The purpose of this case study was to focus on the relationship between ELs’ language proficiency
and their ability to solve inversion and compensation mathematics tasks. We focused on Allen, one
first-grade Latino EL, who participated in a larger inquiry-based intervention focusing on inversion
and mental reversibility. Our research was twofold: first, we intended to inquire in which way Allen’s
culturally embedded mathematics perception and his English language proficiency level interplayed
with his ability to solve inversion and compensation tasks; second, considering Allen’s cultural and
linguistically differences, we investigated how educators can facilitate the development of algebraic
reasoning and address individual differences of learners like him. Answering our two main research
questions we found that:

1. Allen’s culturally embedded mathematics perception and his English language proficiency level
both interfere with his ability to solve inversion and compensation tasks. Findings to this study
suggest that Allen’s language proficiency level is closely connected with his ability to solve
mathematics tasks and to develop thinking strategies.

2. In order to facilitate the development of algebraic reasoning and address individual differences of
learners, educators need to consider students’ cultural and linguistic differences and implement
strategies in their instruction that support these differences.

In particular, we found that language features were a connector between teacher-researcher
teaching and Allen’s thinking strategies. Our results indicate that Language Features that the
teacher-researcher utilized informed her teaching and task design and then (dis)allowed Allen
opportunities to engage and develop particular thinking strategies during the intervention. For
example, the reference to the rocket ship did not serve as a contextual model according to which Allen
could perform backward counting from ten to one. In addition, the use of the phrasal verb “count off”
mislead Allen on the task he was asked to complete. However, the reference to the “piñata” problem
helped Allen to solve inversion tasks, thanks to his cultural experience related to this social life event.

The use of different language features, especially phrasal verbs and vocabulary, influenced the
way the teacher-researcher and witness suggested answers and strategies, asked Allen to explain his
thoughts, named tasks, and gave implicit and differentiated instructions during the sessions. In the
same way, these language features influenced Allen’s ability to engage with the mathematical concepts
and the degree of abstract strategy development when explaining his thinking (i.e., rely on finger
counting, visual representations, and counters). Finally, connecting these language features to multiple
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forms of re-presentations seemed to afford Allen an opportunity to construct multi-dimensional means
to access mathematics concepts. For example, when Allen used the phrasal verbs “take off” and “take
away,” he used them both to mean “remove.” Therefore, the use of a more descriptive verb such as
“remove” instead of “take off” afforded Allen access to the instruction to complete the task.

These findings, suggesting language features as a means to provide Allen access to these algebraic
tasks, echo findings from Carraher et al.’s [22] study. Essentially, Carraher et al. [22] found that
student developed conjectures as a mean to provide students explicit statements of mathematical
relationships. Furthermore, Carraher et al. [22] stated that without these conjectures in place, students
would not transition from empirical generalizations to abstract generalizations. With Allen, we found
that language features allowed Allen access to his own experiences and language when attending to
and conjecturing about empirical generalizations.

In our conceptual framework, we theorized the integration of the Radical Constructivist paradigm
and the Sociocultural paradigm, with particular attention to the contribution that culturally relevant
pedagogy can provide to make inversion and compensation mathematics tasks to ELs. We argued
that in the case of Allen, the association between his concepts and his sound-image was mediated by
language features and sociocultural experiences. Therefore, his re-presentation of concepts depended
on both figurative and linguistic features that were integrated through instructional scaffolding [13,14].
The findings of our case study supported our theoretical stance and provided practical examples
that could help culturally relevant educators to provide opportunity for ELs to develop their own
knowledge system and have a more equal access to the language and the tasks of school mathematics.

In this sense, the findings suggest that teachers should be linguistically responsive [42,43] by
considering the language of instruction (e.g., use of phrasal verbs, vocabulary, sentence structure,
questions used in mathematical tasks). They should also be culturally responsive [44–47] to their
students’ sociocultural background (e.g., math problems built upon students’ experiences, use of
visual aids) when teaching and assessing students’ skills to solve inversion and compensation
mathematics tasks. For example, teachers can use visual aids to better explain tasks and use a
more descriptive language (e.g., use the image of a rocket ship and model its function). In situations,
teachers may need to modify the language of the task without altering mathematical challenge of
the task [28,33,41,42,44,45]. In order to be both linguistically and culturally responsive, teachers will
need to get to know their ELs’ personal cultural and background story so they can incorporate that
knowledge regularly in lesson planning and enactment of mathematics tasks. In addition, teachers
need to consider their own positionality and thinking skills (e.g., teacher’s socio-cultural background,
their own thinking strategies, how they learned to solve compensation and inversion tasks, etc.).
Finally, teachers need to inquire within their own knowledge acquisition process, understand that
their knowledge is not static, and for this reason must be viewed critically. In this way, educators will
be able to provide opportunities for ELs to develop their own knowledge system through instructional
scaffolding and multifaceted task development.

In conclusion, although the findings of this study are limited to Allen’s case study, they imply
that educators’ following up with precise validation of students’ use of language and development of
strategies, modification of language during instruction to support student comprehension, and tasks
aligned with students’ cultural experiences would be beneficial to students’ mathematics achievement
when solving compensation and inversion tasks. An implication of this study is that the strategies
we observed at the beginning of the mathematics intervention session can increase the student’s
self-awareness of the specific situation and self-efficacy to succeed accomplishing the task in later
sessions. An additional implication worth noting is how students’ self-awareness and self-efficacy
may influence motivation when engaging with these tasks. Quite often EL students are given
interventions grounded in rudimentary tasks that limit their ability to reason in sophisticated manners.
These findings suggest ELs are capable of more sophisticated early algebraic tasks which may close
achievement gaps. We encourage more research in the field of mathematics and ELs, in order to further
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contribute to the development of instructional practices that can provide a more equal access to the
language and the tasks of school mathematics for ELs.
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