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Abstract: Despite many millions of dollars being spent each year to support undergraduate research
experiences for students in the sciences, there has been little in the way of solid evaluation of these
experiences. Recently, research has surfaced that addresses this issue and provides tools that are
useful for researchers and evaluators to assess the gains students make from participation. This paper
offers a new tool that can be used to measure student gains as a result of participation in these
experiences. We discuss the development of the tool and use confirmatory factor analysis to evaluate
the quality of the tool for measuring change over time in student confidence.
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1. Introduction

Recent international reports advocate for the engagement of undergraduate students in authentic
research in preparation for the science, technology, engineering, and mathematics (STEM) workforce
and to face the global challenges of the 21st century as scientifically-literate citizens [1–5]. Reflecting this
emphasis, as well as the substantial resources (e.g., funding, faculty, and student time) made available to
support undergraduate research (UR), students are gaining greater access to these high-impact learning
practices through apprenticeship-like undergraduate research experiences (UREs) and course-based
undergraduate research experiences (CUREs). A recent US survey of student engagement found that
approximately one-in-two senior life science majors participated in some form of faculty-sponsored
research during their educational careers [6], and it is likely that the number of students engaged in
research experiences will continue to grow with the increasing popularity of UR as part of both majors’
and non-majors’ post-secondary science curricula [7].

Undergraduate research “provides a window on science making, allowing students to participate
in scientific practices such as research planning, modeling of scientific observations, or analysis of
data” [8]. In comparison to “cookbook” lab activities that may not engage students into authentic
scientific inquiry, UR experiences are characterized by involving students in the process of doing science
through iterative, collaborative, and discovery-based research efforts that rely on disciplinary research
practices [7,9,10]. As a form of situated learning [9,11], UR embeds learning in authentic situations to
help hone students’ cognitive skills through use and support of their abilities to increasingly interact
as members of the research community [12].

Scholarly attention to the efficacy and impact of UR increased over the past two decades for both
accountability purposes in reporting to funding agencies [13] and to document and refine key design
features in support of educational outcomes [7,14]. Recently, an emerging base of educational research
reported on numerous short- and long-term personal and professional benefits for students engaging
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in UR [15]. Commonly-identified positive outcomes include increased research-related skills [13,16–18]
familiarity with the research process [17], positive affect toward science (e.g., self-confidence; valuing
science) [9,19], degree completion [20], intentions to pursue graduate school and careers in STEM [21],
and understanding the culture and norms of science [9,22]. Evidence also suggests that UR supports
the retention and advancement of underrepresented groups in STEM and professional careers [23–25].

Most commonly, evidence of student outcomes is collected using self-report survey data after
completion of the UR experience ([8,26]). UR survey studies often rely on poorly-developed
measures limiting the valid assessment of cognitive gains, a point raised by other researchers [8,27,28].
In particular, UR studies regularly use Likert-scale ratings that offer unequal or coarse-grained
categories (e.g., [13,29]) requiring respondent interpretation, increasing the potential for bias [30,31].
For example, it may be difficult to ensure that UR students perceive the differences between “little
gain” to “moderate gain” equal to the distance between “moderate gain” and “good gain” when
evaluating their respective proficiencies. Most current UR studies also rely on single post-experience
administration (e.g., [16,28,32]) since the surveys are designed to measure only the gains after UR
experiences. Therefore, currently-available assessments for students’ perceived research skills do not
allow to compare baseline and post-interventional data for estimating changes in student outcomes [33].
Additionally, the ubiquity and ease of use of Likert-type items, it can be suggested that insufficient
attention has been paid to rigorously evaluating survey psychometrics [34].

While most research suggests that students benefit from engaging in UR activities, recent calls
have been made for improvements in documenting participant progress to strengthen the research
base [8]. Despite the recognized challenges of self-reports [28] and questionable value of this data in
studying UR [8], surveys are of particular practical use in evaluating research experiences as they:
(a) require lower investments of time, resources, and assessment experience in collecting and analyzing
than other data forms (e.g., interviews, observations) [35]; (b) can be used to collect information from
large samples of UR participants [28]; (c) lend insight to student competencies (e.g., the ability to
use lab techniques) that may not be easily assessed using direct measures (e.g., evaluation of oral
presentations, performance tests) alone [36]; and (d) have been justified as a general measure of
achievement [34]. Given this, need exists for generalizable, well-designed, and validated surveys that
document UR student progress and program efficacy.

This article describes the development and testing of the Undergraduate Scientists—Measuring
Outcomes of Research Experiences student survey (USMORE-SS). As part of a large national project
focused on understanding how students benefit from UREs, the USMORE-SS was designed as an
instrument that includes a common set of items (e.g., self-reported research-related proficiencies,
views of UREs) to track student progress over their research experience(s) and permit generalizable
comparisons across institutions, as well as site-specific questions to inform departments and
administrators about given program features of interest (e.g., professional development activities).
Although a discussion of the broader range of survey results is outside the scope of this article,
evidence is provided here to the validity of the USMORE-SS instrument in documenting undergraduate
researchers’ self-reported skills. As our colleagues in the sciences are regularly asked to provide
evidence to programmatic effectiveness for quality assurance and refinement purposes, the aim of
this article is to report on a validated self-report survey tool that can be used to confidently measure
student outcomes.

1.1. Instrument Development and Administration

Development of the USMORE-SS was through an iterative process where we developed new
items or modified ones from earlier assessments of UR [13,16,37,38]. A multi-step, iterative design
approach to survey development was undertaken [39], including data collection on URE student and
research mentor experiences to establish content validity. Multiple revisions occurred throughout the
design process based on field-testing and faculty feedback.



Educ. Sci. 2017, 7, 87 3 of 16

In order to collect greater detail about the cognitive and affective gains students believe they
make during UR, survey items were constructed based on research from two national mixed-methods
studies. The first investigated UR as part of the transition from student to practicing scientist in the
fields of chemistry and physics (Project Crossover NSF DUE 0440002). Respondent survey (n = 3014)
and interview (n = 86) data were used to outline long-term outcomes conferred to UR participants
from the perspective of individuals who went on to research-related careers [32]. Those data, drawn
from a subset of items, provided some background to the residual benefits of early research training.
The USMORE study focused specifically on UREs and how they lead to learning and development of
career interest. Since 2012, data gathering has been continuous over the 5-year study with a sample
of more than 30 colleges and universities that support UREs in the natural sciences through formal
or informal research programs. In an effort to provide an encompassing view of UREs, data for all
aspects of the project were collected from more than 750 student researchers; and more than 100 faculty,
postdoctoral researchers, or graduate student mentors and program administrators, using multiple
forms of quantitative and qualitative data to allow triangulation of data sources [40]. Data collection
included: pre/post- experience surveys and semi-structured interviews, weekly electronic journals,
in-situ observations using student-borne point-of-view (POV) video and performance data to assess
student learning progressions [36].

During our initial investigations, we asked student researchers about the gains they expected or
received based on involvement in their UREs. In addition, we asked lab mentors (faculty, post-docs,
graduate students) about their expectations and evaluations of gains their student researchers made
during the experience. Right away, themes emerged that helped us to make sense of our initial data
on participant outcomes. Similar to faculty accounts reported at four liberal arts institutions, it was
indicated that student research participants were expected to gain knowledge, skills, or confidence
related to: (a) understanding of the scientific process and research literature; (b) how to operate
technical equipment and do computer programming; (c) how to collect and analyze data, and (d) how
to interact and build networks in the professional community. Through the first year of the study, we
collected information on these gains through responses to open-ended interview and survey questions
for each of the categories we identified. We were not sure if each of the categories we developed
items for would hold up under factor analysis, but we knew we were capturing the most common
activities occurring in these experiences. By summer 2013, we finalized these items and have used
the same set in data collection since that time. Items fell into each of seven broad categories, nested
in the four themes above, including: reading of primary literature, data collection, data analysis,
data interpretation, scientific communication skills, understanding of research/field, and confidence.
Item stems for each of these categories are listed in the Appendix A.

As mentioned, a limitation of existing UR evaluation methods is the use of coarsely defined rating
scales that require respondent interpretation, which can inadvertently increase bias [34]. To address
this early in the study, students and research mentors were asked in the pre-surveys and interviews
about the greatest anticipated gain and what types of evidence would demonstrate whether the gain(s)
were made. Often participants indicated that the degree of independence in task completion as a
key indicator of skill proficiency. To align with this, we created a scale with response options based
on level of independence, which included: No Experience (lowest), Not Comfortable, Can complete with
substantial assistance, Can complete independently, and Can instruct others how to complete (highest). For the
knowledge (or understanding) and confidence items that would not be appropriately represented using
this scale, options included: No [understanding or confidence], Little, Some, Moderate, and Extensive. In an
effort to increase scale reliability with these options, the knowledge and confidence items were written
as actions (e.g., rating their confidence to “Work independently to complete ‘basic’ research techniques such as
data entry, weighing samples, etc.”). Prior to use in the formal study, mentor feedback (n = 7) was solicited
to evaluate scale appropriateness and clarity, with slight modifications made based on feedback.

The USMORE-SS was developed to include partnered pre- and post-URE versions to provide
information on students’ expected and actual experiences, as well as changes in research-related
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skills and knowledge and academic or career intentions. While there are limitations to students’
realistic assessment of their abilities upon entering a research project due to a lack of professional
experience [28], baseline and post-intervention data offer greater fidelity in measuring the effects of
UREs by: (a) taking students’ background or beginning skills into account to estimate net gains [34],
and (b) providing multiple estimates of (then) current aptitudes rather a single reflection of gains
over time [41]. Similar to other self-report data [13,17,28], the USMORE-SS provides a broad indicator
to the cognitive, affective, and conative impact of UREs on participants, rather than a substitute for
direct performance data (e.g., tests, skill demonstration). More broadly, we believe this tool should
be used with complementary direct and indirect (e.g., interviews, observations) measures to evaluate
the nature of these experiences and how they lead to learning [42]. The results reported here are
based on data from students who completed the partnered pre- and post-experience surveys with
the finalized survey items. The finalized USMORE-SS includes 38 questions which were intended to
quantify student gains in the seven areas of research skills gained through UREs. To make this tool
useful to a broad audience of those running UREs, the structural validity needs to be tested.

1.2. Study Aim

While the goal of the larger study is to increase our understanding of how undergraduate research
experiences influence students’ skills and academic/career choices, the main goal of this paper is to
share the survey instrument (USMORE-SS) with others interested in evaluating their research programs
and provide strong support for its use. In this paper we investigate various psychometric properties of
the USMORE-SS including reliability, structural validity, and longitudinal measurement invariance.

2. Materials and Methods

In this section we present information on the sample of UR participants we collected data from
and our factor analysis of the scales included in the USMORE-SS instrument. The intent here is
to present the structure of the scales so others can use these scales to evaluate their UR programs.
All subjects gave their informed consent for inclusion before they participated in the study. The study
was conducted in accordance with the Declaration of Helsinki, and the protocol was approved by the
Ethics Committee of Indiana University (Protocol 11120007580).

2.1. Sample

Data gathering with the surveys was continuous between summer 2013 and summer 2016 with
a total of 507 undergraduate researchers from 43 different institutions completing the USMORE-SS.
For the purpose of generalizability, Institutions were selected to provide diversity in educational
mission (n = 6 liberal arts institutions, n = 7 Master’s granting institutions, n = 25 Doctoral/research
institutions, n = 4 research organizations), geographic location, academic field, timing (i.e., summer and
academic-year) and program type (e.g., externally- and internally-funded student research programs).
In terms of sample demographics, roughly half (48%) were female and 59% self-identified as Caucasian,
9% Asian, 8% Black/African-American, 6% Latino/a, 1% American Indian, and 18% as multiple
ethnicities. Nearly 85% of respondents were in their third or fourth year as undergraduates at the
time of the survey, and 44% had previously participated in at least one URE. Participants’ majors
were physics (25%), biology (23%), chemistry (19%), multiple STEM majors (19%), other STEM majors
(e.g., engineering, Earth science; 16%), and non-STEM majors (2%).

2.2. Data Collection

Student participants were recruited through faculty or administrators working with formal
programs (e.g., NSF REUs, university-sponsored initiatives) or informal URE opportunities
(e.g., student volunteers) across the US. Faculty and administrators interested in having their students
participate in the pre/post-survey study could decide to (a) provide their students’ contact information
for us to directly solicit participation and distribute the surveys, or (b) distribute the surveys themselves
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via email link. The survey was hosted via Qualtrics, an online survey platform. Students who completed
the survey received a $5 gift card, per administration, for their participation.

2.3. Analytic Procedure

We evaluated the USMORE-SS through two phases. First, we examined descriptive statistics of
the pre- and post-survey items to explore possible outliers and to examine the proportion of missing
data. We conducted Kolmogorov-Smirnov tests to examine the normality of the items using IBM
SPSS 23. This phase is meant to determine which type of estimation method is most appropriate
for our data to test structural validity and measurement invariance. For example, the maximum
likelihood robust estimation method is more appropriate for the data violating normality assumption
than the maximum likelihood estimation method to avoid the problem of underestimating standard
errors [43–46]. We also investigated internal consistency reliability of the whole test and each of the
hypothesized sub-constructs in the survey by referring to Cronbach’s α.

The second phase of analysis consisted of three steps:

• testing adequacy of the hypothesized seven-factor model for pre- and post-surveys;
• testing longitudinal measurement invariance between pre- and post-surveys; and
• comparing latent means between pre- and post-surveys only if the finally established

measurement invariance model is adequate for doing so.

The first step is important as it provides evidence for the adequacy of using the subscale scores
which represent different aspects of research-related skills. The second step is necessary to compare
latent means of each subscale. If the second step results are adequate to move on to the third step,
we can validly test the change (ideally, gain) in students’ research skills after a URE. All steps in the
second phase were conducted using MPlus 7.0. The survey items in the USMORE-SS was treated as
continuous because they are ordered categorical variables with five response options [47].

2.3.1. Confirmatory Factor Analysis and Longitudinal Measurement Invariance

Similar to Weston and Laursen’s [28] analysis of the URSSA instrument, for Phase 2, we selected
the confirmatory factor analysis (CFA) framework. Compared to exploratory factor analysis (EFA) used
by many researchers when developing scales [48,49], CFA provides a stronger framework grounded on
theories rather than relying on data itself [50,51]. In this study, we identify a plausible factor structure
of the USMORE-SS beforehand based on the interviews and survey contents and, thus, EFA was not
considered. In the current version of the instrument, seven constructs were formalized, including:
reading and understanding of primary literature, collecting research data, analysis and interpretation
of research data, programming skills, scientific communication, understanding of the field and
research process, and confidence in research-related activities. In our original conceptualization,
we thought that programming skills would reside as a part of analysis and interpretation of research
data, but in our early analysis we realized that these are measuring potentially related, but separate
constructs. CFA also provides a more trustworthy solution for evaluating instruments including
multiple constructs and we can directly test the adequacy of the hypothesized factor structure using
the range of fit indices provided in CFA [50]. CFA also facilitates testing method effects that cannot be
tested under the EFA framework, for example, by imposing correlation between error variances [52].
In addition, CFA is more flexible than EFA in testing every aspect of measurement invariance [53].

In practice, CFA delineates the linear relationship between hypothesized construct(s) and multiple
observed indicator variables. Suppose that the number of observed indicators is m and the number of
hypothesized constructs is k (always < m). A CFA model for the above case can be mathematically
expressed as:

O = τ + λξ + δ (1)

Here, O denotes a p × 1 vector-valued observed variable of the multiple indicators, while ξ

denotes a k × 1 vector of the hypothesized constructs. τ, λ, and δ represent a p × 1 vector of intercept,
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a p × k matrix of factor loadings, and a p × 1 vector of unique factor scores, respectively. Equation (1) is
analogous to a linear regression model (Y = a + bX + e; Y: outcome variable, X: predictor, a: regression
intercept, b: regression weight, and e: random error). An intercept represents the score of each item
when the score of the hypothesized (latent) score is zero while a factor loading indicates the strength
of the relationship between the latent construct and each of the observed items. Each factor score
includes both the random error and the uniqueness of each item.

The three parameters (τ, λ, and δ) are the main interest of factorial invariance, which is a special
case of measurement invariance under a factor analysis framework. To study longitudinal change
across our two waves of data collection, factorial invariance can be tested by putting the pre- and
post-survey in one model [54–56]. Figure 1 illustrates a longitudinal factorial invariance model of one
factor with four indicators for pre- and post-survey conditions. Factorial invariance is established
when τ, λ, and θ (a diagonal matrix of unique variances which is the variance of δ) are equivalent
across different times. The change in the observed scores (O) is considered to originate from the change
in latent constructs (ξ) without any differential functioning of the measurement. Typically, factorial
invariance is investigated with comparing four hierarchically nested models: (1) configural (equal
structure); (2) metric (equal factor loadings); (3) scalar (equal intercepts), and (4) strict invariance (equal
unique variances) models [53,57,58]. We followed this sequence of modeling to test the longitudinal
measurement invariance between the pre- and post-surveys.
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Figure 1. Longitudinal measurement invariance model under a confirmatory factor analysis framework.
Following the typical method of expressing a structural equation model, the variables in a circle
indicates latent variables while the variables in a rectangle are observed variables.; PR: pretest;
PS: posttest; ξ: latent variable (factor); Oi: ith observed variable; λOi: factor loading of the ith observed
variable; τOi: intercept of the ith observed variable; δOi: unique factor score of the ith observed variable;
θ: unique variance of the ith observed variable; When sequentially testing metric, scalar, and strict
invariance, the equality of the corresponding factor loadings, intercepts, and unique variables can be
expressed by dropping the time indicators, PR and PS, from the tested parameters.

2.3.2. Evaluating Structural Validity and Measurement Invariance

In order to evaluate the adequacy of the tested CFA model, we referred to the commonly used
model fit indices: (1) chi-square statistics (χ2) at the α = 0.05 level; (2) the comparative fit index (CFI);
(3) the root mean square of approximation (RMSEA); and (d) the standardized root mean squared
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residual (SRMR). A non-significant χ2 (p > 0.05) indicates a good model fit [59], however, χ2 overly
rejects an adequate model when the sample size is large [50,60,61]. Meanwhile, other fit indices indicate
how adequate the tested model is, independent of the sample size. The criteria for acceptable model fit
are the RMSEA ≤ 0.08, the SRMR ≤ 0.08, and the CFI ≥ 0.90 [50,62].

Using the established CFA model for both the pre- and post-surveys, we sequentially tested
configural, metric, scalar, and strict invariance models. Each pair of two nested models (e.g., configural
vs. metric invariance models) is typically compared by the difference in the χ2 fit statistics as well as
the differences in the CFI, RMSEA, and SRMR (∆CFI, ∆RMSEA, and ∆SRMR). In this study, we report
Sattora-Bentler χ2 difference test because we used the maximum likelihood-robust (MLR) estimation
method [63]. Given the same problem of the test based on χ2 (i.e., falsely rejecting an adequate model
with large samples), we consulted the criteria ∆CFI, ∆RMSEA, and ∆SRMR suggested by Chen [60].
Although χ2 rejects the tested invariance model, we can go further for the higher-level invariance
model based on ∆CFI, ∆RMSEA, and ∆SRMR. When sample size is greater than 300, as in this study,
the model with more invariant constraints is rejected with ∆CFI ≤ −0.010 and ∆RMSEA ≥ 0.015
regardless of the tested parameters. Yet, the criteria of the SRMR is different between metric invariance
(∆SRMR ≥ 0.030) and scalar/strict invariances (∆SRMR ≥ 0.010). To summarize, we used the criteria
for ∆CFI, ∆RMSEA, and ∆SRMR suggested by Chen [60] to determine the adequacy of each of the
tested invariance models instead of relying on chi-square difference tests, which is known to be too
sensitive to negligible misfit.

3. Results

3.1. Descriptive Statistics and Normality Test

A total of 507 students completed the pre-survey since summer 2013. Of these students,
338 completed the post-survey (retention rate of 67%). No outstanding outliers exist in the data
and the percentage of the missing data were less than 1.4% for the pre- and post-surveys. Table 1
provides descriptive statistics for each item in the pre- and post-surveys. Among all items, the average
scores of the third item (PRO3) of the hypothesized construct, Programming Skills were the lowest
for both pre-survey (Mean = 2.51; SD = 1.15) and post-survey (Mean = 2.81; SD = 1.21). On average,
participants obtained the highest scores on the first item (CON1) of Confidence of your Research Related
Abilities for both pre-survey (Mean = 4.31; SD = 0.81) and post-survey (Mean = 4.64; SD = 0.59).
The skewness values across all items of the pre- and post-surveys ranged from −1.24 to 0.17 and from
−1.74 to −0.05, respectively. Kurtosis values and the results of Kolmogorov-Smirnov test indicated
that few of the pre- and post-survey items met the assumption of normality, which suggests use of an
estimation method robust to non-normality (i.e., MLR; Yuan & Bentler, 2000 [45]).

Table 1. Descriptive statistics of the pre- and post-survey items.

Construct Item
Pre-Survey Post-Survey

Mean (SD) Skew. Kurt. Mean (SD) Skew. Kurt.

Reading and Understanding
Research Literature

RD1 3.85 (0.91) −1.20 2.10 4.18 (0.79) −1.09 1.94
RD2 3.90 (0.68) −0.90 2.53 4.12 (0.59) −0.29 0.85
RD3 3.61 (0.75) −0.56 0.85 3.89 (0.72) −0.57 1.12
RD4 3.32 (0.82) −0.38 0.59 3.58 (0.79) −0.27 0.05
RD5 3.17 (0.88) −0.47 0.21 3.48 (0.80) −0.40 0.41
RD6 3.25 (0.91) −0.46 0.30 3.52 (0.84) −0.29 −0.14
RD7 3.75 (0.75) −0.38 0.63 4.11 (0.68) −0.37 0.01
RD8 3.53 (0.95) −0.94 0.84 4.00 (0.73) −0.87 2.09
RD9 3.44 (1.01) −0.74 0.31 3.79 (0.88) −1.04 1.65

Collecting Research Data

COL1 3.21 (0.93) −0.49 0.43 3.65 (0.85) −0.54 0.81
COL2 3.10 (0.92) −0.32 0.45 3.50 (0.88) −0.24 0.29
COL3 4.18 (0.74) −0.70 0.65 4.46 (0.64) −0.97 0.81
COL4 3.18 (0.90) −0.17 0.48 3.78 (0.83) −0.37 0.28
COL5 3.10 (0.87) −0.17 0.39 3.60 (0.79) −0.15 0.01
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Table 1. Cont.

Construct Item
Pre-Survey Post-Survey

Mean (SD) Skew. Kurt. Mean (SD) Skew. Kurt.

Programming Skills
PRO1 2.73 (1.18) −0.02 −0.90 3.12 (1.18) −0.40 −0.70
PRO2 2.68 (1.13) −0.01 −0.81 3.01 (1.17) −0.26 −0.75
PRO3 2.51 (1.15) 0.17 −0.86 2.81 (1.21) −0.13 −0.96

Analyzing and Interpreting
Research Data

ANI1 3.58 (0.85) −0.84 1.30 3.92 (0.73) −0.73 1.61
ANI2 2.92 (1.06) −0.30 −0.46 3.24 (1.07) −0.39 −0.22
ANI3 3.18 (0.96) −0.56 0.23 3.48 (0.90) −0.62 0.70
ANI4 3.43 (0.83) −0.87 1.46 3.80 (0.72) −0.73 1.80
ANI5 3.65 (0.87) −0.87 1.33 4.10 (0.73) −0.85 2.01
ANI6 3.07 (0.91) −0.47 0.27 3.49 (0.80) −0.21 0.41

Scientific Communication

COM1 3.79 (0.80) −1.05 2.06 4.14 (0.65) −0.87 3.08
COM2 3.62 (0.87) −1.03 1.60 4.02 (0.68) −0.54 1.10
COM3 3.64 (0.84) −0.92 1.62 3.95 (0.61) −0.13 0.17
COM4 3.52 (0.87) −0.78 1.14 3.80 (0.65) −0.16 0.01
COM5 3.45 (1.00) −0.75 0.44 3.95 (0.72) −0.79 2.21

Understanding of the Field and
the Research Process

UND1 3.90 (0.76) −0.63 1.06 4.14 (0.64) −0.26 −0.01
UND2 3.42 (0.83) −0.23 −0.05 3.93 (0.71) −0.44 0.59
UND3 3.76 (0.77) −0.50 0.63 4.22 (0.58) −0.05 −0.35
UND4 3.78 (0.82) −0.43 0.11 4.28 (0.60) −0.30 −0.15
UND5 3.65 (0.92) −0.56 0.06 4.11 (0.78) −0.72 0.75

Confidence in your Research
Related Abilities

CON1 4.31 (0.81) −1.24 1.72 4.64 (0.59) −1.74 4.27
CON2 3.43 (0.95) −0.23 −0.35 4.04 (0.77) −0.70 0.70
CON3 4.05 (0.84) −0.83 0.83 4.47 (0.65) −0.84 −0.38
CON4 4.02 (0.86) −0.89 0.98 4.39 (0.67) −1.06 1.98
CON5 3.38 (1.02) −0.33 −0.30 3.92 (0.86) −0.71 0.57

Note: SD: Standard deviation; Skew.: Skewness; Kurt.: Kurtosis; The content of each item is available in Appendix A.

3.2. Internal Consistency Reliability (Cronbach’s α)

As a measure of internal consistency reliability, we calculated Cronbach’s α for the whole survey
and each of the seven subscales (See Table 2). The set of 38 items had very high Cronbach’s α coefficients
for both pre-survey (0.95) and post-survey (0.94). Each of the sub-constructs also exhibited sufficiently
high Cronbach’s α coefficients for pre-survey and post-survey to be adequate based on the criteria of
good internal consistency [64].

Table 2. Cronbach’s α coefficients by sub-construct.

Construct Pre-Survey Pre-Survey

Whole test 0.95 0.94
Reading and understanding research literature 0.90 0.88

Collecting research data 0.80 0.78
Programming skills 0.90 0.88

Analyzing and interpreting research data 0.88 0.84
Scientific communication 0.89 0.84

Understanding of the field and the research process 0.86 0.81
Confidence in your research related abilities 0.86 0.81

3.3. Construct Validity

We tested the seven-factor model based on the conceptual model we used to develop the survey
(see Figure 2) using a maximum likelihood-robust (MLR) estimation method since the normality
assumption was violated for most items. Table 3 presents the model fit indices of the original correlated
seven-factor model. While the χ2 value rejected the original model at the 0.05 alpha level and the CFI
(0.858) was not acceptable, the RMSEA (0.067) and SRMR (0.062) were acceptable for the pre-survey.
A similar pattern manifested for the post-survey with a significant χ2 value, an unacceptable CFI,
and acceptable RMSEA (0.068) and SRMR (0.068). Although not all of the fit indices consistently
indicated that the model is acceptable based on the suggested criteria, we considered that the criteria
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might be too stringent for an adequate but complex model [65–67]. In addition, the size of standardized
factor loadings was between 0.454 and 0.930 for the pre-survey and between 0.536 and 0.892 for the
post-survey. Although there is no ‘golden rule’ for an acceptable size of factor loadings, Tabachnick
and Fidell [68] suggested a cutoff value of 0.32 which is consistent with the suggestion in Comrey and
Lee [69]. Using these values, all of the items in the pre- and post-survey appear to have substantial
linear relationships with the hypothesized construct each is associated with. We concluded that the
originally constructed
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Table 3. Results of confirmatory factor analysis (CFA) and measurement invariance tests.

χ2 df p SCF RMSEA 90% CI of RMSEA CFI SRMR

CFA Original Model
Pre-survey 2090.701 644 <0.001 1.177 0.067 0.063–0.070 0.858 0.062
Post-survey 1658.014 644 <0.001 1.143 0.068 0.064–0.072 0.821 0.068

Measurement Invariance Models
Original Model

Configural 5661.093 2645 <0.001 1.077 0.047 0.046–0.049 0.837 0.062
Metric 5692.874 2676 <0.001 1.078 0.047 0.045–0.049 0.837 0.064
Scalar 5841.955 2707 <0.001 1.078 0.048 0.046–0.049 0.831 0.064
Strict 5999.585 2745 <0.001 1.085 0.048 0.047–0.050 0.824 0.074

Note: All models were estimated using the maximum likelihood-robust (MLR) estimator; χ2: Chi-square value
for testing model fit; df : degrees of freedom of the chi-square test of model fit; p: p-value of the chi-square test of
model fit; SCF: Scaling correction factor for MLR; RMSEA: root mean square error of approximation; 90% CI of
RMSEA: 90% confidence interval of RMSEA; CFI: comparative fit index; SRMR: standardized root mean square
residual.; ∆RMSEA: difference in RMSEAs between constrained and unconstrained models; ∆CFI: difference in
CFIs between constrained and unconstrained models; ∆SRMR: difference in SRMRs between constrained and
unconstrained models.

A seven-factor model is adequate for both the pre- and post-survey rather than making
model adjustments.
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3.4. Longitudinal Factorial Invariance

Using the original seven-factor model, we tested the longitudinal factorial invariance between the
pre- and post-survey following the typical sequence: configural, metric, scalar, and strict invariances.
Based on the same rationale for the CFA analysis, we accepted that the configural invariance model is
sustainable based on the acceptable RMSEA (0.047) and SRMR (0.062) although it had a significant
χ2 value and low CFI (0.837). Metric invariance holds since the RMSEA and the CFI did not change
with ∆SRMR below the cutoff value (≥0.030) although the Satorra-Bentler chi-square difference test
between configural and metric invariance models was not significant (∆χSB

2 = 34.315, p = 0.312).
For the next step, even though the Satorra-Bentler chi-square difference test (∆χSB

2 = 153.278, p < 0.001)
was significant between metric and scalar invariance models, the RMSEA and the SRMR stayed
the same and the CFI decreased slightly (−0.006). Thus, scalar invariance was considered to hold
between the pre- and post-survey. For the comparison between scalar and strict invariance models,
the Satorra-Bentler chi-square difference test (∆χSB

2 = 153.278, p < 0.001) was significant. Yet,
there was no change in the RMSEA, while ∆CFI (−0.007) and ∆SRMR (0.010) were below the criteria.
We concluded that strict invariance holds between the pre- and post-survey. These results imply
that the URE did not affect participants’ interpretation of the survey items substantially. As a result,
comparing latent means before and after the URE is legitimate.

Table 4 provides unstandardized factor loadings, intercepts, and unique variances in the
established strict invariance model. Given that each of the seven constructs are latent variables without
established scales, we need to set metrics for each to overcome this issue (i.e., scale indeterminacy
problem). Although it is possible to set this metric in two different ways; (a) by fixing one of the factor
loadings to 1 or (b) by setting the latent construct variance to 1—we chose to fix one of the loadings to
one, a very common approach. The loadings can be interpreted as any other factor loadings, where the
parameter estimates are the slope value from regressing each item on the overarching factor.

Table 4. Unstandardized measurement parameter estimates of the strict invariance model.

Factor Loading Intercept Residual Variance

PE (SE) PE (SE) PE (SE)

λRD1 1.00 (0.00) τRD1 0.00 (0.00) θRD1 0.47 (0.04)
λRD2 0.85 (0.05) τRD2 0.60 (0.22) θRD2 0.22 (0.02)
λRD3 0.93 (0.06) τRD3 0.02 (0.25) θRD3 0.31 (0.02)
λRD4 1.10 (0.08) τRD4 −0.95 (0.34) θRD4 0.32 (0.02)
λRD5 1.21 (0.09) τRD5 −1.53 (0.38) θRD5 0.31 (0.02)
λRD6 1.23 (0.09) τRD6 −1.56 (0.36) θRD6 0.35 (0.02)
λRD7 0.91 (0.07) τRD7 0.25 (0.27) θRD7 0.31 (0.02)
λRD8 1.23 (0.09) τRD8 −1.16 (0.36) θRD8 0.37 (0.03)
λRD9 1.29 (0.09) τRD9 −1.57 (0.37) θRD9 0.46 (0.03)
λCOL1 1.00 (0.00) τCOL1 0.00 (0.00) θCOL1 0.43 (0.04)
λCOL2 1.06 (0.04) τCOL2 −0.34 (0.13) θCOL2 0.38 (0.03)
λCOL3 0.58 (0.06) τCOL3 2.33 (0.23) θCOL3 0.38 (0.02)
λCOL4 1.00 (0.09) τCOL4 0.02 (0.33) θCOL4 0.43 (0.04)
λCOL5 0.98 (0.08) τCOL5 −0.02 (0.29) θCOL5 0.36 (0.03)
λPRO1 1.00 (0.00) τPRO1 0.00 (0.00) θPRO1 0.25 (0.03)
λPRO2 0.97 (0.03) τPRO2 0.00 (0.09) θPRO2 0.25 (0.04)
λPRO3 0.85 (0.03) τPRO3 0.18 (0.09) θPRO3 0.56 (0.06)
λANI1 1.00 (0.00) τANI1 0.00 (0.00) θANI1 0.33 (0.02)
λANI2 1.09 (0.08) τANI2 −1.00 (0.29) θANI2 0.74 (0.05)
λANI3 1.19 (0.07) τANI3 −1.11 (0.28) θANI3 0.41 (0.04)
λANI4 1.11 (0.06) τANI4 −0.53 (0.25) θANI4 0.22 (0.02)
λANI5 1.10 (0.06) τANI5 −0.25 (0.24) θANI5 0.30 (0.02)
λANI6 1.19 (0.07) τANI6 −1.17 (0.26) θANI6 0.31 (0.02)
λCOM1 1.00 (0.00) τCOM1 0.00 (0.00) θCOM1 0.35 (0.03)
λCOM2 1.49 (0.11) τCOM2 −2.06 (0.44) θCOM2 0.16 (0.02)
λCOM3 1.47 (0.11) τCOM3 −2.00 (0.45) θCOM3 0.10 (0.01)
λCOM4 1.49 (0.11) τCOM4 −2.21 (0.43) θCOM4 0.14 (0.01)
λCOM5 1.26 (0.09) τCOM5 −1.31 (0.38) θCOM5 0.51 (0.05)
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Table 4. Cont.

Factor Loading Intercept Residual Variance

λUND1 1.00 (0.00) τUND1 0.00 (0.00) θUND1 0.31 (0.02)
λUND2 1.23 (0.07) τUND2 −1.31 (0.28) θUND2 0.37 (0.03)
λUND3 1.39 (0.09) τUND3 −1.59 (0.36) θUND3 0.15 (0.01)
λUND4 1.48 (0.10) τUND4 −1.94 (0.42) θUND4 0.16 (0.01)
λUND5 1.46 (0.10) τUND5 −1.98 (0.43) θUND5 0.36 (0.03)
λCON1 1.00 (0.00) τCON1 0.00 (0.00) θCON1 0.28 (0.02)
λCON2 1.38 (0.09) τCON2 −2.44 (0.40) θCON2 0.34 (0.03)
λCOM3 1.14 (0.06) τCOM3 −0.83 (0.30) θCOM3 0.28 (0.02)
λCON4 1.17 (0.07) τCON4 −1.04 (0.35) θCON4 0.27 (0.03)
λCON5 1.36 (0.10) τCON5 −2.43 (0.44) θCON5 0.47 (0.04)

Note. λi: factor loading of item i; τi: intercept of item i; θi: residual variance of item i; PE: parameter estimate;
SE: standards error of the parameter estimate. The first factor loading of each factor set has loading set to 1 and
intercept set to 0; others in the set are calculated relative to this. RD: Reading and Understanding Research Literature;
COL: Collecting Research Data; PRO: Programming Skills; ANI: Analyzing and Interpreting Research Data;
COM: Scientific Communication; UND: Understanding of the Field and the Research Process; CON: Confidence in
your Research Related Abilities.

3.5. Latent Mean Comparison

Under the strict invariance model established in the previous step, we compared the equality
of the latent mean score of each sub-construct between the pre- and post-surveys. The means and
standard deviations are presented with effect sizes in Table 5. Participants scored significantly higher
on each sub-construct of the post-survey than on the corresponding sub-construct of the pre-survey
(for all subscales, p < 0.01), which implies that the participants’ perceived research skills on every
aspect measured by the survey were substantially improved after participation in UREs, with effect
sizes ranging from 0.39 to 0.74. Based on the standard suggested by Cohen [70], most of them lie
between medium (0.5) to large (0.8) effects while two of them were between small (0.2) and medium
effects. However, the effect sizes cannot be directly compared among the sub-constructs because the
units of the latent means may not be comparable across the sub-constructs.

Table 5. Estimated latent means of the seven sub-constructs in the strict invariance model.

Sub-Construct
Pre-Survey Post-Survey

Effect Size
Mean SD Mean SD

Reading and Understanding Research Literature 3.86 (0.55) 4.15 ** (0.46) 0.52
Collecting Research Data 3.19 (0.63) 3.66 ** (0.55) 0.74
Programming Skills 2.74 (1.06) 3.15 ** (1.07) 0.39
Analyzing and Interpreting Research Data 3.58 (0.60) 3.92 ** (0.51) 0.56
Scientific Communication 3.84 (0.52) 4.07 ** (0.36) 0.45
Understanding of the Field and the Research Process 3.86 (0.47) 4.19 ** (0.33) 0.70
Confidence in your Research Related Abilities 4.29 (0.55) 4.66 ** (0.39) 0.66

Note: SD: Standard deviation; Effect size was calculated by dividing the difference between pre- and post-survey
means with the pre-survey standard deviation; **: Post-survey score is significantly higher than the pre-survey
score at p < 0.01.

4. Discussion

In this manuscript, we present and statistically evaluate the survey we generated for the purpose
of providing reliable self-report data for measuring changes in students’ skills through participation
in undergraduate research. We contend that our instrument addresses common limitations faced by
extant survey tools. Rather than using Likert scales that offer unequal or coarse-grained categories,
our response scales are defined by the level of competence students have for each skill. The definition
of these scales was informed by faculty perceptions of student expertise in the research setting and
extensive interviewing of students, mentors, and faculty across various science disciplines. Using this,
respondents can more easily identify their competencies with less potential for interpretive bias.



Educ. Sci. 2017, 7, 87 12 of 16

In comparison with other tools intended only for a single post-experience administration (e.g., URSSA),
our instrument was developed as a pre/post measure to establish baseline information and monitor
self-reported changes in students’ skills over the course of a single or multiple research experiences.
The longitudinal measurement invariance test results also indicate that the same interpretation of the
survey items held before and after the URE. Hence, future studies can confidently use the USMORE-SS
to measure the level of student research skills before and after the URE experiences and compare the
scores legitimately. Finally, few other instruments demonstrated their suitability to assess student
skills or growth as a result of participation in UREs. We employed a rigorous CFA-based analysis to
examine the psychometric properties of the USMORE-SS and the results presented here indicate the
suitability of the instrument for estimating URE students’ self-rated abilities.

4.1. Limitations

The significant limitation with this tool, and most others, is that it relies on self-report to measure
student gains. While we do have data from graduate student and faculty mentors, we believe these
measures are also flawed in that they lack prior knowledge of students’ skills and are significantly
more difficult to collect. As this research continues, we plan to explore the comparisons between
student and mentor data to investigate any differences in ratings between these groups. Additionally,
since our items measure students’ levels of confidence in given skills. It is possible that students with
the same skills may rate their comfort in teaching a skill to others differently based on their levels
of confidence.

4.2. Future Work

Successfully implementing educational practices requires the articulation of measurable goals,
followed by rigorous evaluation that documents effectiveness and impact and guides future decision
making [71]. With the increased emphasis internationally on UR in higher education (e.g., [1,5]), it is
essential that reliable assessment tools are made available to faculty and program administrators to
monitor student development. The USMORE-SS is a generalizable and validated instrument that
was designed to offset common limitations in existing UR survey data allowing for better estimates
of student skill trajectories. While self-report indicators should be complemented with other more
direct measures, as possible, for a more comprehensive understanding of student outcomes [16,36],
this study demonstrates the value of the USMORE-SS for providing insight to self-perceived gains and
can help inform faculty how to “best” support participant learning.

Additionally, there are a number of analyses we plan to address the noted limitations and to
extend this research. We are actively working on analyses that compare results from these survey
items with an assessment tool we developed to provide direct evidence to the development of students’
experimental problem-solving skills over a research experience [42]. As mentioned, we also plan to
pursue a detailed comparison of student ratings and mentor/faculty ratings. Future extensions of this
work will involve specific analyses to identify the association between programmatic characteristics
(e.g., mentorship strategies, day-to-day activities) and student gains.
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Appendix A

Table A1. USMORE Student Survey Questions.

Reading and Understanding Research Literature

RD1 Conducting searches for research literature related to your research project (this does NOT include programming or
technical guidance unless directly from a peer-reviewed published article)

RD2 Reading research articles in the discipline (i.e., physics/chemistry)
RD3 Reading research articles in the relevant sub-discipline (i.e., particle physics/organic chemistry)
RD4 Identifying the theoretical purpose to why given methods or techniques are used in the literature
RD5 Interpreting and critiquing the results and findings presented in literature
RD6 Identifying further information necessary to support research-related results in the literature
RD7 Interpreting visual representations of data (i.e., graphs, diagrams, and tables) provided in research literature
RD8 Discussion of research literature within ‘informal’ group setting (i.e., research group or journal club)
RD9 Create written or oral summaries of research article

Collecting Research Data

COL1 Developing your own research questions or hypotheses
COL2 Developing your own research plan
COL3 Using basic research techniques (i.e., those often learned in early classes—data entry, weighing of samples, etc.)
COL4 Using advanced research techniques and methods in your field of study
COL5 Trouble shooting theoretical/technical errors in research during data collection

Programming Skills

PRO1 Computer programming for data collection
PRO2 Computer programming for statistical analysis/modeling of numerical data
PRO3 Computer programming for analysis of non-numerical data (e.g., image processing, chemical analysis)

Analyzing and Interpreting Research Data

ANI1 Qualitative/descriptive analysis of results
ANI2 Statistical analysis of research results using established stat software
ANI3 Interpreting statistical analysis of research in the field
ANI4 Interpreting research-related results
ANI5 Representing data in a visual form common for the research field (i.e., the construction of graphs, tables, and diagrams)
ANI6 Trouble shooting theoretical/technical errors in research after interpreting the data

Scientific Communication

COM1 Discussion of research plans or results within ‘informal’ group setting (i.e., research group or journal club)
COM2 Writing up research methods
COM3 Writing up results
COM4 Writing up a discussion of the results

COM5 Making an oral presentation on research you participated in within a ‘formal’ group setting (i.e., professional meeting,
undergraduate research conference)

Understanding of the Field and the Research Process

UND1 Understanding of the overarching discipline (i.e., chemistry/physics) in which your research is conducted
UND2 Understanding of the sub-discipline (i.e., particle physics, organic chemistry) in which your research is conducted
UND3 Understanding of the elements of work involved in science research
UND4 Understanding the process of science in your field (i.e., “how science research is done”)
UND5 Understanding the social or cultural practices of your field (i.e., “how scientists act or behave”)

Confidence in your Research Related Abilities

CON1 Working independently to complete "basic" research tasks (e.g., data entry, weighing of samples, etc.
CON2 Working independently to complete advanced research techniques and methods in your field of study
CON3 Working in the lab setting with other individuals to complete tasks
CON4 Discussing results with mentors
CON5 Suggesting next steps in the research process
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