Table displaying the nine questions, the average difficulty and average discrimination of each question, and the average \% of students who chose a particular response.

1. How many hydrogens are bonded to the element D.?
Provide a number answer.
2. How many lone pairs of electrons are represented in the Lewis dot structure of phosphorus?
3. and 4.

Consider the
following images to answer the questions that follow.
3. Electrons would be transferred from substance
A to substance B
*B to substance A
4. How many products are formed from the reaction of substance A and substance B?

a. 0
*b. 1
c. 2
d. 3

*a. 1
b. 2
c. 3
d. 4
6. Which of the following statements about propene, $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}$, is correct?
7. All of the following statements about ethene, $\mathrm{C}_{2} \mathrm{H}_{4}$, are correct EXCEPT
12. What is the hybridization of the carbon atoms numbered 1 and 2 , respectively, in the following structure?
13. The compound methylamine, $\mathrm{CH}_{3} \mathrm{NH}_{2}$, contains a $\mathrm{C}-\mathrm{N}$ bond. In this bond, which of the following best describes the charge on the nitrogen atom.
14. Which of the following statements about multiple bonds is true?
a. All nine atoms lie in the same plane.
b. The compound has a cis and trans isomer.
c. It generally acts as a Lewis acid.
*d. There are a total of eight sigma bonds.
e. All the carbon atoms are sp^{2} hybridized.
*a. The H-C-H bond angles are approximately 109.5°.
b. All of the hydrogen atoms are in the same plane.
c. There are a total of five sigma bonds.
d. The carbon atoms are sp^{2} hybridized.
e. The $\mathrm{H}-\mathrm{C}-\mathrm{H}$ bond angles are approximately 120°.
a. $\mathrm{sp}^{3}, \mathrm{sp}^{2}$
b. $\mathrm{sp}^{2}, \mathrm{sp}^{2}$
c. sp, sp
*d. sp^{2}, sp
e. $s p, s p^{2}$

a. +1
b. slightly positive
c. uncharged
*d. slightly negative
e. -1
a. A double bond consists of two sigma bonds.
b. A sigma bond results from the side-on overlap of p atomic orbitals.
c. A pi bond results from the head-on overlap of p atomic orbitals.
*d. sp^{2} hybridization in carbon is associated with one double bond and two single bonds.
e. A triple bond consists of three pi bonds

\% Difficulty	Discrimination	Response	
65	0.54	A to B	${ }^{*}$ B to A
Question 3 \% chosen	31.9	68.1	

\% Difficulty	Discrimination	Response				
44	0.44	0	1	${ }^{*} 2$	3	4
Question 1 \% chosen	20.5	17.9	46.1	12.8	2.5	

\% Difficulty	Discrimination	Response				
36.4	0.39	${ }^{*} 1$	2	3	4	
Question 4 \% chosen		37.7	57.7	4.4	0	

Textbook ${ }^{\text {a }}$ Chapter Numbers and Titles Covered in the Course

Chapter	Chapter Title
$\mathbf{1}$	Structure and Bonding: Acids and Bases
$\mathbf{2}$	Alkanes: The Nature of Organic Compounds
$\mathbf{3}$	Alkenes and Alkynes: The Nature of Organic Reactions
$\mathbf{4}$	Reactions of Alkenes and Alkynes
$\mathbf{5}$	Aromatic Compounds
$\mathbf{6}$	Stereochemistry at Tetrahedral Centers
$\mathbf{7}$	Organohalides: Nucleophilic Substitutions and Eliminations
$\mathbf{8}$	Alcohols, Phenols, Ethers, and Their Sulfur Analogs
$\mathbf{9}$	Aldehydes and Ketones: Nucleophilic Addition Reactions
$\mathbf{1 0}$	Carboxylic Acids and Derivatives: Nucleophilic Acyl Substitution Reactions
$\mathbf{1 1}$	Carbonyl Alpha-Substitution Reactions and Condensation Reactions
$\mathbf{1 2}$	Amines

${ }^{a}$ This organic chemistry course uses Fundamentals of Organic Chemistry

