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Abstract: Pancreatic cancer is a devastating disease that has a grim prognosis, highlighting the
need for improved screening, diagnosis, and treatment strategies. Currently, the sole biomarker for
pancreatic ductal adenocarcinoma (PDAC) authorized by the U.S. Food and Drug Administration
is CA 19-9, which proves to be the most beneficial in tracking treatment response rather than in
early detection. In recent years, proteomics has emerged as a powerful tool for advancing our under-
standing of pancreatic cancer biology and identifying potential biomarkers and therapeutic targets.
This review aims to offer a comprehensive survey of proteomics’ current status in pancreatic cancer
research, specifically accentuating its applications and its potential to drastically enhance screening,
diagnosis, and treatment response. With respect to screening and diagnostic precision, proteomics
carries the capacity to augment the sensitivity and specificity of extant screening and diagnostic
methodologies. Nonetheless, more research is imperative for validating potential biomarkers and
establishing standard procedures for sample preparation and data analysis. Furthermore, proteomics
presents opportunities for unveiling new biomarkers and therapeutic targets, as well as fostering the
development of personalized treatment strategies based on protein expression patterns associated
with treatment response. In conclusion, proteomics holds great promise for advancing our under-
standing of pancreatic cancer biology and improving patient outcomes. It is essential to maintain
momentum in investment and innovation in this arena to unearth more groundbreaking discoveries
and transmute them into practical diagnostic and therapeutic strategies in the clinical context.

Keywords: pancreatic cancer; proteomics; biomarker; chemotherapy effectiveness

1. Introduction

Pancreatic ductal adenocarcinoma (PDA) is an invasive tumor with similar incidence
and mortality rates. The incidence of PDA has increased worldwide in recent decades and
is expected to continually rise [1–5], already being listed as the seventh leading cause of
mortality by cancer worldwide [6].

By 2040, a 61.7% increase is expected in the total number of global cases [7]. The main
difference between PDA and other cancers lies in the genomic heterogeneity of the tumors,
which points to patient-specific tumoral genomic signatures [8]. This may explain the
obstacles that prevent the identification of patient phenotypes predictive of better or worse
prognosis. For instance, based on transcriptome analysis, the International Cancer Genome
Consortium currently divides PDA into three molecular subtypes: progenitor, squamous,
and aberrantly differentiated endocrine/exocrine types [9]. However, the decision from
a multidisciplinary team, e.g., whether a specific patient with resectable disease would
benefit from surgery, continues to be based on clinical information, laboratory tests, and
imaging. In recent years, proteomics has emerged as a powerful tool for advancing our
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understanding of pancreatic cancer biology and identifying potential biomarkers and
therapeutic targets [10].

Radical resection is the only potentially curative treatment for PDA [11]. Nonetheless,
even after curative resection, up to 80% of patients experience disease relapse, resulting in a
5-year survival rate of only 20–30% [12]. Pancreaticoduodenectomy is associated with high
morbidity (up to 60%) and an acceptable mortality rate below 5%, which strongly impacts
both the patient’s quality of life and health costs [13]. Several studies and clinical trials have
attempted to identify new biomarkers to improve therapies and formulate new healthcare
policies. Major hurdles have been revealed in the diversity of disease phenotypes and in
the costs of implementing new methodologies [14].

This narrative review on the application of proteomics-driven biomarkers in pancreatic
cancer is aimed to provide an overview of the current state of the art and discuss the
potential of proteomics in the early detection, diagnosis, and treatment of pancreatic
cancer. For less familiar readers, this review also touches on other topics, such as why we
should use proteomics to the detriment of other omics, as well as a round up of the major
proteomics-driven methodologies that can or are applied to this subject of interest.

2. Screening and Diagnostic Accuracy: Where Do We Stand?

Pancreatic cancer diagnosis currently relies on imaging methods like CT, MRI, US, PET,
and EUS, with detection sensitivities of 74%, 79%, 67%, 90%, and 94%, respectively [15].
However, these techniques lack significant prognostic value and do not guide therapeutic
solutions [16,17]. Imaging inconsistencies occur due to variable interpretation and subtle
early-stage cancer characteristics [17,18]. Emerging technologies like the advent of Artificial
Intelligence (AI), machine learning (a branch of AI), and radiomics have been explored to
address these issues [19]. These could potentially complement fluid-based biomarkers in
early PDAC diagnosis, as seen in promising but limited studies [20]. Extensive research is
underway to develop effective biomarkers for early detection, prognosis evaluation, and
treatment response monitoring to improve the survival rate of PDA patients [21].

When it comes to laboratory discoveries linked to pancreatic cancer, the landscape is
regrettably barren. Nowadays, there is still a necessity for the identification of more reliable
and specific biomarkers for pancreatic cancer diagnosis. Biomarkers, such as carbohydrate
antigen 19-9, also known as sialyl-Lewis (CA19-9), a carbohydrate antigen overexpressed
in pancreatic cancer cells, have been widely used. However, this biomarker lacks both
sensitivity and specificity, 80.8% and 89.1%, respectively [22,23], and with the predictability
of resectability with an AUC of 0.72 for a cutoff value of 92.77 U/mL [24]. One other
biomarker, also found to be wanting, is Mucin-16, also known as ovarian cancer-related
tumor marker CA125 (MUC-16), a transmembrane glycoprotein that is overexpressed
in pancreatic cancer. This last one though has a better track record in forecasting the
resectability of pancreatic cancer, with an AUC of 0.81 versus 0.66 compared to CA19-9 [25].
Another biomarker is the carcinoembryonic antigen (CEA), a glycoprotein usually produced
by normal cells during embryonic development, becoming undetectable or in very low
concentrations in normal adult conditions. However, in situations where inflammatory
processes manifest themselves and/or in the presence of tumors of the gastrointestinal
tract, it tends to increase [26]. Despite most research on CEA and its potential for predicting
outcomes in pancreatic cancer involving only a small number of patients, a study by Lee
et al. found that CEA could be a promising biomarker, particularly for those patients for
whom surgery is not an option [27]. Similarly, Tas et al. observed that patients with normal
levels of LDH, CA19-9, and CEA had a better outcome than other biomarkers combination,
and normal values of LDH and CEA were also associated with better survival [28].

3. What Can We Do Differently?

In medical research, all branches of molecular biology, the so-called “omics” (pro-
teomics, genomics, and transcriptomics, among others), have played their role in the
understanding of pancreatic cancer, as they study different aspects of biology at the molec-
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ular level. These different approaches are particularly important in the case of oncological
disease, as it is characterized by abnormal changes in cellular behavior (e.g., protein expres-
sion and protein activity) [29–31]. Each approach within the ‘omics’ fields offers unique
insights into the biology of organisms, not making one technique necessarily superior to
others. However, proteomics proves particularly useful in certain contexts due to its ability
to measure protein expression, activity, protein–protein interactions, signaling pathways,
and post-translational modifications directly [32–34].

Proteomics is the study of proteins and their functions, contributing to the under-
standing of the underlying mechanisms of various biological phenomena. Recent advances
in technology have led to the rapid growth and adoption of proteomics, already having
provided remarkable contributions in the fields of biology, biotechnology, and medical
research. In the medical field, these methodologies have benefited from a wide range of
applications. They have been used for disease diagnosis and biomarker identification,
which involves studying the levels or patterns of proteins in different biofluids. This allows
for a deeper understanding of various diseases, the impact of individual proteins, and how
their expression, structure, and function contribute to disease onset and progression or
treatment. Furthermore, these techniques aid in the identification and validation of new
therapeutic targets. They can also help ascertain drug efficacy and toxicity, providing fresh
insights into the interactions between proteins and drugs [35–37]. Proteomics can also
play a vital role in precision and personalized medicine. The knowledge of an individual’s
proteome will allow one to tailor treatments to the specific needs and phenotype of an
individual, increasing the chances of success for a given therapeutic course. This can be
especially important in those cases where traditional treatments have failed, allowing for a
more targeted approach to treatment [38].

However, despite the many benefits that proteomics presents, there are also some
challenges. One of the biggest challenges lies in the complexity of the proteome as they can
be affected by several of the following factors:

1. The complexity of biofluid protein contents: biofluids obtained from individuals have
more than one protein, sometimes in the range of thousands, interacting with each
other, which can simultaneously be expressed in different isoforms [39].

2. Interactions: proteins interact with each other to form complex networks that regulate
cellular processes. In the event of a disease, these interactions can be disrupted,
leading to abnormal cellular behavior [40].

3. Diversity: proteins are diverse in their structure and function, which is reflected in
their involvement in different diseases [41].

4. Post-translational modifications: proteins can undergo a variety of post-translational
modifications, such as phosphorylation, acetylation, and ubiquitination, which can
dramatically alter their activity and localization. These modifications can be critical in
the development and progression of disease [42].

5. Dynamics: proteins are dynamic molecules that undergo continual changes in their
expression and activity. When a disease is in effect, these changes can be rapid and
profound, making it difficult to understand the underlying molecular mechanisms [43].
Current proteomic techniques are also often limited in their ability to accurately
measure the levels of individual proteins [44].

As described before, there are many omics in existence, with some more known to
the overall scientific community, whereas the rest is often kept out of the spotlight. Table 1
highlights a more encompassing view of omics and what they can or cannot do and directly
compares them with proteomics.
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Table 1. Comparative advantages of proteomics over other omics.

Omics Advantage Disadvantage Possible Benefit of Using Proteomics over
This Omic Ref.

Genomics Can identify genetic
variations and mutations.

Does not reflect
real-time cellular
events.

Proteomics can reflect changes in protein
levels and post-translational modifications,
which provide a real-time snapshot of
cellular events.

[45,46]

Transcriptomics Can measure gene
expression levels.

Does not reflect
protein levels or
activity.

Proteomics measures protein abundance
and activity, which is the ultimate
determinant of cell behavior and phenotype,
as protein levels do not always correlate
with mRNA levels.

[47,48]

Metabolomics
Provides insights into end
products of cell
metabolism.

Only captures final
steps of cellular
processes.

Proteomics offers a comprehensive look at
the many steps involved in cellular function
and disease processes, including the
regulation and interaction of proteins.

[49–51]

Epigenomics
Studies heritable changes
not coded in DNA
sequence.

Limited in
predicting
functional
outcomes.

Proteomics can indicate functional
outcomes due to post-translational
modifications and protein–protein
interactions, which often depend on
epigenetic changes.

[52,53]

Interactomics
Studies interactions and
associations between
proteins.

Limited in scale and
often lacks context.

Proteomics can provide context by
identifying abundance of proteins and can
also explore protein modifications, adding
depth to interaction data.

[54,55]

Phosphoproteomics Identifies and characterizes
phosphorylated proteins.

Limited to one type
of post-translational
modification.

Proteomics can identify many different
types of post-translational modifications,
offering a broader view of protein activity.

[56,57]

Glycomics
Studies the entire
complement of sugars in
an organism.

Technically
complex and hard
to interpret.

Proteomics can identify glycosylated
proteins and help link these modifications
to functional changes, providing insights
into the role of sugars in biology.

[58,59]

Lipidomics
Targets and studies
unique roles of lipids in
organisms.

Does not directly
link to protein
function.

Proteomics can identify proteins that interact
with lipids or are modified by them, providing
functional context to lipidomics data.

[60–62]

Microbiomics or
Metagenomics

Studies genetic material
in a microbiome.

Does not reflect the
impact of the host’s
proteins.

Proteomics can study how host proteins
interact with and are affected by the
microbiome, offering insights into
host–microbe interactions.

[63,64]

4. Which Proteomic Technique and Sample Type Should Be Used?

The choice of proteomic methods is highly dependent on several critical factors that
shape the research objectives and experimental design, e.g., specific study topics, sample
characteristics, available resources, the experience of the research team, and the type of
proteomic analysis desired. For instance, if the goal is to identify novel biomarkers for
early pancreatic cancer detection, researchers might focus on highly sensitive methods
such as Isobaric tags for relative and absolute quantitation (iTRAQ) [65] or Tandem Mass
Tag (TMT) with Liquid Chromatography–Tandem Mass Spectrometry (LC-MS/MS) to
compare protein expression levels in cancer and healthy tissues [66]. On the other hand, if
the objective is to understand the underlying molecular mechanisms of pancreatic cancer
progression, shotgun proteomics and RPPA (Reverse-Phase Protein Array) might be more
suitable for studying the alterations in signaling pathways and protein networks [67].

In some cases, researchers might have limited access to patient samples, and thus, they
need highly sensitive and low-input proteomic methods to maximize data output [68–70].
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On the other hand, if ample tissue samples are available, besides the beforementioned
iTRAQ, Shotgun Proteomics, or 2D Gel Electrophoresis and mass spectrometry, it is possible
to explore multiple proteomic techniques, leading to a more comprehensive analysis [71,72].

Combining or integrating several proteomic approaches, although challenging, can
enable a more thorough or holistic understanding of the pancreatic cancer proteome and
signaling cascades, assisting in the development of novel treatment targets and biomarkers.
Nevertheless, researchers that take this path must always consider the fact that different
proteomic methods generate diverse types of data that require specialized analysis tools
and pipelines.

As stated, proteomic techniques used in pancreatic cancer research can include 2D
gel electrophoresis and mass spectrometry-based approaches such as LC-MS/MS, and
iTRAQ, among others. Despite that, one of the most used techniques for pancreatic cancer
research is LC-MS/MS, as it allows for the analysis of large numbers of proteins and
their modifications in a single experiment, providing comprehensive and quantitative
information about the proteome [73]. This method is particularly useful for identifying
differentially expressed proteins in pancreatic cancer, as well as identifying protein–protein
interactions, post-translational modifications, and protein expression levels.

For those curious or looking to brush up on existing proteomics methodologies and
techniques, Table 2 provides a concise summary of the most used proteomics techniques or
variations thereof, many of which are frequently employed in pancreatic cancer studies,
either individually or in combination. This table, organized by the date of introduction into
laboratories, outlines each method’s underlying principle, along with its key advantages
and potential issues associated with its application. Understanding the strengths and
limitations of these proteomic approaches is crucial for designing effective experimen-
tal strategies and advancing our knowledge toward improved diagnostics and targeted
therapies for pancreatic cancer. Despite the beforementioned, many others can be used,
including Enzyme-Linked Immunosorbent Assay (ELISA) [74–76] or Western blotting [77].
In the case of ELISA and due to its characteristics, namely, high sensitivity and specificity,
quantitative nature, ease of use, and suitability for high-throughput screening, ELISA is
an essential technique for protein analysis and biomarker discovery. In its many forms,
either direct ELISA [78], indirect ELISA, sandwich ELISA [79], or ELISpot [80], ELISA can
and is frequently used as an independent validation method for mass spectrometry-based
proteomic data. In the case of Western blotting, also known as immunoblotting, it offers
several of the following advantages in molecular biology and proteomics research: speci-
ficity (detection of a single protein using target-specific antibodies), sensitivity (suitable for
studying proteins with limited expression), ease of use, usefulness in protein size determi-
nation, capability of quantification (providing semi-quantitative or quantitative data on
relative protein abundance between samples), and broad applicability in terms of sample
type (cells, tissues, and bodily fluids) [81–83]. Nevertheless, and despite its advantages,
whenever using this method, it is crucial to be mindful of potential limitations, which may
include nonspecific binding and antibody cross-reactivity or even the lack of appropriate
controls to ensure the accuracy and reliability of the results.

In terms of biological samples used in these studies, there is no right answer, as the
sample type will be highly dependent on several factors, namely, the scope of the study
and sample availability. It is important to note that tumor tissue samples are crucial in
pancreatic cancer research as they allow researchers to study the molecular changes that
occur in the cancer cells, including genetic mutations, protein expression levels, and post-
translational modifications. These molecular changes are critical in understanding the
biology of pancreatic cancer and can help identify new therapeutic targets. In addition,
tumor tissue samples are also important for the development of diagnostic biomarkers,
which can be used to detect pancreatic cancer early and monitor its progression [84,85].
Indeed, tumor tissue contains the highest concentrations of proteins specifically associated
with pancreatic cancer. Tumor tissue can be used with a variety of proteomics techniques,
including 2-DE, MS, LC, MALDI, ICAT, SILAC, IAP, TMT, and iTRAQ. There are also
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other types of samples that may be used for pancreatic cancer protein studies. Periph-
eral blood mononuclear cells (PBMCs) are an important biological sample in pancreatic
cancer research.

PBMCs are a type of immune cell that plays a crucial role in the body’s immune
response to cancer. The study of PBMCs can provide valuable information about the
systemic changes that occur in response to the disease, including changes in cytokine
expression levels, the activation of immune cells, and changes in the transcriptome. This
information can help researchers understand the role of the immune system in pancreatic
cancer and identify new therapeutic targets [86,87].

Serum or plasma samples are also commonly used in pancreatic cancer research as
they provide a snapshot of the overall protein expression changes in the blood. Proteins
in the blood can act as biomarkers for pancreatic cancer, and their levels can be measured
to monitor the progression of the disease or the effectiveness of treatments. In addition,
changes in the levels of specific proteins in the blood can also indicate the presence of other
related diseases, such as liver or bile duct cancer [88,89].

Another interesting biofluid is pancreatic juice, which, in recent years, has become
an important tool in the study of pancreatic cancer. This biofluid has been particularly
interesting as it presents itself as a non-invasive means of examining the pancreas. When
analyzed via proteomics, this fluid can provide valuable information about the early stages
of pancreatic cancer, proving to be a useful tool for monitoring pancreatic cancer progression
and treatment efficacy [90,91], whereas other diagnostic methods are not sensitive enough
to detect the disease.

Table 2. Main proteomics techniques or variations, presented by date of the techniques’ introduction
(from the top—earliest—to the bottom of the table—most recent—and including the principle of each
technique alongside their major advantages/limitations).

Technique
(Acronym)

Principle Advantages Limitations Ref.

Enzyme-Linked
Immunosorbent
Assay (ELISA)

Proteins are immobilized on a plate
and then probed with an antibody
specific to the protein of interest. The
amount of antibody bound to the
protein is then measured.

Sensitive and quantitative, can
be used to identify and quantify
proteins.

The sensitivity of ELISA can be
affected by the presence of
contaminants in the sample and
the narrow dynamic range.

[92,93]

Two-dimensional
gel electrophoresis

(2DE)

Proteins are separated by their
molecular weight in the first
dimension and by their isoelectric
point in the second dimension.

High resolution and sensitivity,
can be used to identify protein
post-translational modifications
(PTMs).

Can be difficult to identify
proteins that are very similar in
size or charge and low
throughput.

[94–96]

Western Blot

Proteins are separated by 2DE or
SDS-PAGE and then transferred to a
membrane. The membrane is then
probed with an antibody specific to
the protein of interest.

Sensitive and specific, can be
used to identify and quantify
proteins.

The sensitivity of Western blot
can be affected by the presence
of contaminants in the sample
and antibody specificity.

[97,98]

Capillary
electrophoresis (CE)

Proteins are separated by their size
and charge in a capillary.

Sensitive and high-throughput,
can be used to study
protein–protein interactions.

The resolution of CE can be
lower than that of 2DE.

[99,100]

Mass spectrometry
(MS)

Proteins are ionized and fragmented,
and the resulting fragments are
analyzed by their mass-to-charge ratio.

High sensitivity and accuracy,
can be used to identify and
quantify proteins and to study
PTMs.

Can be difficult to identify
proteins that are very similar in
mass.

[101–103]

Liquid
chromatography–

mass spectrometry
(LC-MS)

Proteins are separated via liquid
chromatography and then analyzed via
MS. This allows for the identification
and quantification of a wide range of
proteins.

Sensitive and quantitative, can
be used to study protein–protein
interactions and PTMs.

The complexity of LC–MS can
make it difficult to interpret the
results.

[104–106]
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Table 2. Cont.

Technique
(Acronym)

Principle Advantages Limitations Ref.

Isotope-coded
affinity tag (ICAT)

Proteins are labeled with different
isotopes before being separated via
MS. This allows for relative
quantitation of proteins.

Sensitive and quantitative, can
be used to study protein
turnover.

The isotopes used in ICAT can
be expensive.

[107,108]

2D Differential gel
electrophoresis

(DIGE)

Modification of 2DE. Proteins are
labeled with different fluorescent
dyes before being separated via 2DE.
This allows for the visualization of
changes in protein expression
between two samples.

Sensitive and quantitative, can
be used to study protein
expression and overcomes
limitations in traditional 2DE.

The dyes used in DIGE can be
expensive.

[109,110]

Peptide mass
fingerprinting

(PMF)

Proteins are digested into peptides,
and the masses of the peptides are
determined using MS (e.g.,
MALDI-TOF or ESI-TOF). This allows
for the identification of proteins.

Sensitive and relatively
inexpensive, can be used to
identify proteins in complex
mixtures.

The accuracy of PMF can be
affected by the presence of
contaminants in the sample.

[111–113]

Protein microarrays

Proteins are immobilized on a chip
before being probed with antibodies
or other molecules. This allows for the
identification and quantification of
proteins that interact with the probes.

High-throughput and
multiplexing can be used to
study protein–protein
interactions.

The complexity of protein
microarrays can make it difficult
to interpret the results.

[114,115]

Surface-enhanced
laser desorption/

ionization
time-of-flight mass

spectrometry
(SELDI-TOF MS)

Variation of MALDI-TOF. Proteins are
immobilized on a surface before being
analyzed via MS. This allows for the
identification of proteins that interact
with the surface.

Sensitive and specific, can be
used to study protein–protein
interactions.

The specificity of SELDI-TOF MS
can be affected by the presence
of contaminants in the sample.
Problematic in detecting larger
MW proteins and PTM.

[116–118]

Stable isotope
labeling with amino
acids in cell culture

(SILAC)

Proteins are labeled with different
isotopes during cell culture. This
allows for relative quantitation of
proteins.

Sensitive and quantitative, can
be used to study protein
turnover and protein–protein
interactions.

The isotopes used in SILAC can
be expensive.

[119,120]

Isobaric tags for
relative and absolute

quantitation
(iTRAQ)

Proteins are labeled with different
isobaric tags before being separated
via MS. This allows for both relative
and absolute quantitation of proteins.

Sensitive, quantitative, and
versatile, can be used to study
protein turnover and
protein–protein interactions.

The isobaric tags used in iTRAQ
can be expensive.

[121,122]

Label-free
quantitative
proteomics

Proteins are separated via MS without
the use of labels. This allows for
absolute quantitation of proteins.

Sensitive and quantitative, does
not require the use of specialized
equipment. Achieves
high-proteome coverage and
simpler workflows. Variability
of chemical labeling/tagging is
eliminated.

The accuracy of label-free
methods can be affected by the
presence of contaminants in the
sample.

[123–125]

Multidimensional
protein identification

technology
(MudPIT)

Proteins are separated by two or more
dimensions of liquid chromatography
before being analyzed via MS. This
allows for the identification of a wider
range of proteins.

Sensitive and comprehensive,
can be used to study
protein–protein interactions
and PTMs.

The complexity of MudPIT can
make it difficult to interpret the
results.

[126,127]

ELISA, Enzyme-Linked Immunosorbent Assay; 2DE, Two-dimensional gel electrophoresis; PTMs, Post-
translational modifications; MALDI-TOF, Matrix-assisted laser desorption/ionization; ESI-TOF, Electrospray
Ionization Time-of-Flight; SDS-PAGE, sodium dodecyl sulfate–polyacrylamide gel electrophoresis; CE, Capillary
electrophoresis; LC–MS, Liquid chromatography–mass spectrometry; MS, Mass spectrometry; ICAT, Isotope-
coded affinity tag; DIGE, Differential gel electrophoresis; PMF, Peptide mass fingerprinting; SELDI-TOF MS,
Surface-enhanced laser desorption/ionization time-of-flight mass spectrometry; SILAC, Stable isotope labeling
with amino acids in cell culture; iTRAQ, Isobaric tags for relative and absolute quantitation; MudPIT, Multidimen-
sional protein identification technology.
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A significant advantage of proteomics in biomarker identification is its ability to
provide early disease indicators, often before any symptoms become evident. This can be
especially important in the case of pancreatic cancer, which is often asymptomatic in its
early stages and, therefore, difficult to detect. By identifying changes in protein expression
in the blood or other biological samples, proteomic biomarkers can be used to detect the
disease at an earlier stage and improve the chances of successful treatment. It is crucial to
remember that pancreatic cancer is frequently inoperable, as it is typically diagnosed at
an advanced stage. The tumor’s location and growth pattern often make it challenging
to entirely remove the tumor without causing damage to the surrounding tissue [128].
This highlights the importance of early detection and the development of new diagnostic
methods to improve the chances of successful treatment.

This review provided an overview of different proteomics approaches focused on the
identification of new diagnostic, prognostic, and predictive biomarkers, and the utility of
these approaches in the identification of proteome signatures associated with treatment
response in pancreatic cancer.

5. Proteomics as a Biomarker Source for Pancreatic Cancer

Pancreatic cancer is a devastating disease that arises in the pancreas. It is one of the
most lethal types of cancer, as it is often diagnosed at a late or advanced stage, resulting in
outcomes with a poor prognosis [129]. As a result, there is a need for new diagnostic tools
for early detection and prognosis of this cancer. Recent advances in proteomic analysis
have led to the identification of numerous biomarkers for the diagnosis, early detection,
prognosis, and classification of pancreatic cancer, providing valuable insights into the
disease. To provide an answer to these challenges, a range of proteomic studies have been
carried out to detect specific proteins and extracellular vesicles (EVs) that are differentially
expressed in pancreatic cancer.

For instance, Jia et al. (2020) [130] employed iTRAQ-based analysis to identify differ-
ential serum proteins (RAD50, TGF-β1, and APAF1) that serve as diagnostic markers of
pancreatic ductal adenocarcinoma. Meanwhile, Wu et al. (2021), also utilizing iTRAQ and
mass spectrometry, identified three proteins (PROZ, TNFRSF6B, and TNFRSF6B) that, when
combined, could provide an AUC of 0.932 for early-stage pancreatic cancer detection [131].

As previously stated, several studies have focused on the proteomic analysis of extra-
cellular vesicles produced by cancerous versus healthy pancreatic organoids. EVs are small
vesicles secreted by cells that contain proteins, nucleic acids, and other molecules that can
be used as biomarkers. These particles have been identified as being implicated in cellular
transformation in several cancer types, with pancreatic cancer not being an exception.
In fact, several researchers have pointed out that EVs contribute to the initialization of
malignant cell transformation [132,133].

One study found that the proteomic analysis of EVs could distinguish cancerous from
healthy pancreatic organoids with high sensitivity and specificity, with tumor-promoting
candidates, LAMA5, SDCBP, and TENA consistently upregulated in PDAC-derived EVs [134].

In a study published in 2021, the researchers used iTRAQ-based analysis of plasma-
derived exosoma-identified ALG-2 interacting protein X (ALIX) as a novel biomarker
for the diagnosis and classification of pancreatic cancer. The researchers reported an
AUC of 0.91, with a 90.6% sensitivity and an 83.9% specificity for this marker when
combined with CA 19-9 [135]. This protein had already been described as a regulator of
both epidermal growth factor receptor (EGFR) activity and programmed death-ligand 1
(PD-L1 or CD 274) surface marker, indicating its involvement or regulatory capability in
tumor-mediated immunosuppression [136,137], with its use as a biomarker being pointed
out in other tumors, such as oral squamous cell carcinoma [138] or colorectal carcinoma,
among others [137].

It has also been discovered that circulating cancer-associated EVs, derived from the
serum of PDAC patients, could be used as early detection and recurrence biomarkers for
pancreatic cancer [139]. In this study, two novel biomarkers were identified, G protein-
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coupled receptor class C group 5 member C (GPRC5C) and epidermal growth factor
receptor pathway substrate 8 (EPS8), that enabled the discrimination between healthy
controls and early-stage PDAC, with AUC values of 0.946 when combined with each
other. One study conducted by Chen et al. (2023) used iTRAQ-based analysis to identify
differential plasma proteins, which could serve as diagnostic markers for pancreatic ductal
adenocarcinoma. This study found that three proteins, when combined with CA19-9, AAT,
RAB2B, and IGFBP2, resulted in an AUC of 0.90, indicating a high diagnostic accuracy [140].

Although several articles have identified pancreatic cancer biomarkers, the presented
results do not always lead to clear identification of the biomarkers, in part due to the
molecular complexity of the disease. In some situations, instead of a specific biomarker,
several authors have investigated protein patterns. In a recent study, Son et al., using
reaction monitoring–mass spectrometry, identified 24 proteins that could classify patient
outcomes in four risk subgroups, thus providing clinicians with new tools to identify high-
risk patients who could benefit from more aggressive treatment [141]. On a similar note,
Kafita et al., performing proteogenomic analyses of pancreatic cancer subtypes, identified
subtype-specific protein expression patterns and genetic alterations, including alterations
in pathways related to cell cycle regulation, DNA damage repair, and immune response.
The researchers also identified potential therapeutic targets, including several protein ki-
nases and immune checkpoint molecules. These researchers have also identified potential
therapeutic targets that could have important implications for the development of person-
alized treatments for pancreatic cancer patients. Of the two types of pancreatic tumors
that the authors identified through machine learning, namely subtype-1 and subtype-2, a
comparison was made regarding the expression levels of various proteins between the two
disease subtypes. The discovery revealed that subtype-1 tumors displayed significantly ele-
vated expression levels of multiple proteins, such as mTOR, E-Cadherin, and Raf-pS338, in
contrast to subtype-2 tumors, which manifested significantly increased expression levels of
proteins, including Stathmin, Mre11, and MAP2K1 [142]. Silwal-Pandit et al., using LC-MS,
highlighted the importance of the extracellular matrix in pancreatic cancer progression,
suggesting that extracellular matrix proteins could serve as potential prognostic biomarkers
for pancreatic cancer patients. Further analysis found that an elevated expression of several
proteins network involved in epithelial–mesenchymal transition and glycolytic activities,
low oxidative phosphorylation, E2F, and DNA repair pathway activities [84].

In addition to the biomarkers for pancreatic cancer previously presented, there is a
wealth of research focused on identifying other potential biomarkers for this disease. In
Table 3, a list of articles related to novel biomarkers for pancreatic cancer can be consulted.
These articles cover a wide range of new, potential, and reliable biomarkers for pancreatic
cancer, identified in different biological samples, crucial for improving patient outcomes
and advancing our understanding of this devastating disease.

Table 3. Proteomics studies on pancreatic cancer are conducted on plasma, serum samples, biopsy
tissue, or PBMC, pointing to the analytical technique used, the population phenotype, dimension,
and the predictive model’s output. The studies were sequenced according to year of publication
(from the oldest—top—to the earliest—bottom).

Biofluid Type Proteomic
(Technique)

Population Dimension (It Is
Indicated If an Independent

Validation Set Was Used)

Prediction Models
(Peptide Fragments/Proteins Used in the Model) Ref.

Tissue
(Tissue microarray) 140 PDAC (Galectin 4) for early recurrence [143]

Cell Line
(LC-MS-MS + WB) PC-1.0 and PC-1 cell line (T-complex protein 1 subunit theta) for cancer invasion

and metastasis [144]

Oral Fluid
(2DE + MS)

15 PCP and 16 HC
(10 PCP and 10 HC)

AUC = 0.91 with sensitivity and specificity of 90.0%
(Cytokeratin-14, Lactoperoxidase, Cytokeratin-16,
Cytokeratin-17, and Peptidyl-prolyl cis–trans isomerase B)

[145]
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Table 3. Cont.

Biofluid Type Proteomic
(Technique)

Population Dimension (It Is
Indicated If an Independent

Validation Set Was Used)

Prediction Models
(Peptide Fragments/Proteins Used in the Model)

Ref.

Plasma + plasma-derived
microparticle
(LC-MS-MS)

12 PCP

q < 0.1
(Receptor-type tyrosine-protein phosphatase um;
Receptor-type tyrosine-protein phosphatase beta;
26S proteasome non-ATPase regulatory subunit 11)

[146]

Tissue
(LC-MS-MS)

10 PDAC + 10 normal pancreatic
biopsies

log2 fold change 6.4; p = 5 × 10−6

(Yes-associated protein 1)
[147]

Cell line
(2D + MALDI-TOF MS)

PANC1 and PANC1-I5 cell line Galectin-1 [148]

Secreted Extracellular vesicles
(LC-MS-MS)

apan-2, MIA PaCa-2,Panc-1, and HPDE
cell line

Peptide FDR < 0.01, protein FDR < 0.01
(348 proteins uniquely identified in cancer cell lines)

[132]

Plasma
(LC-MS-MS)

22 PCP
15 good and 7 poor responders to
post-neoadjuvant chemotherapy

R2 = 0.7
(Apolipoprotein A-IV, Ceruloplasmin, Complement C3 and
Complement factor B, Complement C1q subcomponent
subunit B, Complement C2, Complement C4-B, Transthyretin
and Zinc-alpha-2-glycoprotein s)

[149]

Plasma
(iTRAQ)

10 metastasis-free PCP + 10 PCP with
distant metastasis + 10 gallstones
(51 PC + 40 with gallstones)

AUC = 0.956
(SERPINA1 protein + CA19-9)

[150]

Plasma + Tissue
(Proteome array)

14 PDAC (23 proteins two-fold change) [151]

Plasma
(array-based technology)

135 PDAC + 72 HC + 13 benign
lesions/chronic pancreatitis
(75 PDAC + 36 HC + 19 chronic
pancreatitis)

AUC = 0.89
(tyrosine-protein kinase Lyn, ITGB5, CEACAM1, secreted
protein acidic and cysteine rich, alpha-taxilin,
cyclin-dependent kinase inhibitor 1, annexin 1 and CA19-9)

[152]

Tissue
(LC-MS-MS)

173 samples from 52 PDAC (Mucin 5, GATA6) [153]

Tissue
(WB)

6 PDAC + 6 normal pancreatic biopsies (Ubiquitin thioesterase OTU1) [154]

Serum
(HuProt microarray + ELISA)

338 PDAC + 294 HC + 122 chronic
pancreatitis + 100 non-PDAC
malignancies

AUC = 0.93
(CLDN17, KCNN3, SLAMF7, SLC22A11 and OR51F2)

[155]

Tissue
(MALDI-MSI)

13 PDAC (primary + metastatic)
accuracy = 90%
(COL1A1, COL1A2, and COL3A1)

[156]

Serum extracellular vesicles
(MS/MS + immunoblotting)

15 PDAC + 25 HC + 14 pancreatitis
Patients
(27 PDAC + 7 HC + 8 pancreatitis
Patients)

AUC = 0.89
(G Protein-Coupled Receptor Class C Group 5 Member C;
Epidermal growth factor receptor kinase substrate 8)

[139]

Tissue + PBMC
(MS)

12 PDAC + 2 chronic pancreatitis
patients

(cell death protein 1) [87]

Plasma
(array-based technology)

610 PCP + 623 non-PCP

C statistic 0.779
(Monocyte chemotactic protein 3; Angiopoietin-2; Interleukin-18;
Interleukin-6; Lysosome-associated membrane glycoprotein 3;
C-C motif chemokine 3; CD4 T cell surface glycoprotein; T cell
surface glycoprotein CD8 alpha chain; Heme oxygenase 1;
Hepatocyte growth factor; Interleukin-2; Interleukin-4;
Granzyme A; Cytotoxic and regulatory T cell molecule;
Adhesion G-protein coupled receptor G1)

[157]
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Table 3. Cont.

Biofluid Type Proteomic
(Technique)

Population Dimension (It Is
Indicated If an Independent

Validation Set Was Used)

Prediction Models
(Peptide Fragments/Proteins Used in the Model)

Ref.

Serum
(high-throughput

proteomics dataset)
83 individuals at risk of PDAC

AUC = 0.9
(PCSK9, FGF-BP1, PLA2G7, LYPD3, and MSLN)

[158]

PDAC, Pancreatic ductal adenocarcinoma; LC-MS-MS, Liquid Chromatography–Tandem Mass Spectrometry; WB,
Western blot; MS, mass spectrometry; MALDI-TOF MS, Matrix-assisted laser desorption/ionization time-of-flight
mass spectrometry; iTRAQ, Isobaric tags for relative and absolute quantitation; PCP, pancreatic cancer patients;
HC, healthy volunteers.

In summary, the use of proteomics in the identification of biomarkers for pancreatic
cancer has the potential to improve discrimination, early detection, and prognosis of this
afflicting disease. Regardless, further studies are needed to validate these biomarkers and
translate them into clinical use.

6. Proteomics Signatures Associated with Treatment Response

As previously noted, pancreatic cancer is an extremely aggressive form of cancer
with a grim prognosis. According to the American Cancer Society, the five-year survival
rate for pancreatic cancer is only about 11% [159,160]. The limited treatment options for
pancreatic cancer often include surgery, radiation therapy, and chemotherapy, but the
outcomes of these treatments are generally unsatisfactory due to the aggressive nature of
the disease [161]. As a result, there is an urgent need to identify new therapeutic targets
and biomarkers for pancreatic cancer treatment.

Omics, which encompasses proteomics, has emerged as a powerful tool, for analyzing
the global protein expression patterns of cancer cells. Proteomics can identify proteins that
are differentially expressed between cancer and normal cells, and between different stages
of pancreatic cancer, before, during, and after treatment, which can lead to the identification
of new therapeutic targets and enable personalized cancer treatment. By applying these
methodologies, the patient prognosis can be provided and help guide treatment decisions
and predict drug-associated adverse events [162–164].

In the precision medicine or holistic medicine approaches, proteomic signatures or
proteomic profiling have been researched in the context of pancreatic cancer treatment
response and the patient’s overall outcome. For example, a study by Peng et al. identified
a plasma proteomic signature associated with the response to chemotherapy in pancre-
atic cancer patients (vitamin-K dependent protein Z, sex hormone-binding globulin, von
Willebrand factor, and CA 19-9). The authors suggested that this proteomic signature could
be used to distinguish good responders from limited responders for stage III and stage
IV patients with an AUC of 0.83 and 0.87, respectively [165]. One other study, conducted
in tumor and adjacent pancreas tissue samples by Sahni et al., identified a group of 19
proteins (e.g., GRP78, CADM1, PGES2, and RUXF with AUC ≥ 0.92) that were significantly
upregulated in poor-responders, enabling the prediction of chemo-resistant tumor phe-
notype [166]. Also, Le Large et al. [167], in a study conducted on gemcitabine-sensitive
and gemcitabine-resistant cell lines, identified two proteins microtubule-associated protein
2 (MAP2) and anti-ankyrin-3 (ANK3), highly upregulated and phosphorylated in cell
resistant cells. Kim et al., also working with cell lines, identified a panel of 107 proteins in
which expression levels changed between oxaliplatin-resistant and sensitive cells. In this
study, a stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative
proteomics analysis strategy, myristoylated alanine-rich C-kinase substrate (MARCKS) and
WLS (Wnt/β-catenin signaling), was demonstrated to be involved in oxaliplatin resistance
in pancreatic cancer cells [168]. Similarly, Chiu et al. also pointed out in a review paper,
the use of MARCKS in the metastasis and treatment resistance of solid tumors [169]. In
the case of the WLS, several studies have pointed in the direction of developing small-
molecular compounds targeting the WLS pathway in disease treatment, as reviewed by
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Liu et al. [170]. In addition, Lin et al., in a study on the evaluation of gemcitabine resistance
metabolomic profile, observed that many differentially expressed proteins quantified in
mutant gemcitabine-resistant cells, revealing that these cells modulate several pathways
to adapt to gemcitabine-induced stress. These authors also postulate that the therapeutic
effectiveness could be increased by targeting the gemcitabine metabolic pathways with the
introduction of treatment combinations, which would increase gemcitabine efficacy [171].
Gemcitabine, being one of the main chemotherapy drugs used to treat pancreatic cancer,
has led other researchers to evaluate the resistance and sensitivity to this drug. For instance,
Kim et al. [172], identified 13 epithelial to mesenchymal transition-related proteins which
were closely associated with drug resistance and differentially expressed. In a more recent
study, Amrutkar et al. [173] identified multifunctional cell types found in endocrine and
exocrine pancreatic tissue, known as pancreatic stellate cells, that are quiescent and regulate
extracellular matrix production and, from these cells, identified diverse protein expression
profiles that could be associated with gemcitabine-resistance.

However, despite the very interesting results obtained by Le Large et al. [167], Kim
et al. [168], and others, with cell lines, it is important to keep in mind that the complexity
of an in vivo system is very different from an in vitro system. In fact, as demonstrated by
Coleman et al. [174], some proteins expression can be lost in cell lines, e.g., 63 proteins were
exclusively expressed in patient tissue samples, and 324 proteins were identified as specific
to the cell line, which, in this case, most probably are proteins associated with cell survival
in culture.

In summary, these studies underscore the promising potential of proteomic signatures
in forecasting treatment responses and patient outcomes in pancreatic cancer. Proteomic
analyses have yielded invaluable insights into the molecular mechanisms driving the onset,
progression, and treatment responses of this lethal disease, thanks to an understanding of
these mechanisms. This has led to the creation of new tools for prognosis and prediction
based on proteomic signatures, offering hope to enhance clinical care for patients with
pancreatic cancer.

7. Final Remarks

In conclusion, proteomics is an accelerating domain with the power to revolutionize
our comprehension of pancreatic cancer biology and lay the groundwork for creating more
effective diagnostic and treatment strategies. Through state-of-the-art techniques like mass
spectrometry and bioinformatics, scientists can detect and quantify protein expression
patterns associated with pancreatic cancer progression, treatment response, and prognosis.

Even though there is considerable work yet to be carried out and much more to
discover, the application of proteomics in pancreatic cancer research has already provided
encouraging results. Regarding screening and diagnostic precision, proteomics holds the
potential to refine the accuracy of existing methods. By discovering novel biomarkers and
therapeutic targets, proteomics could greatly enhance patient outcomes and ultimately
pave the way for personalized medicine in pancreatic cancer treatment.

However, it is crucial to remember that numerous challenges must be confronted to
fully exploit the power of proteomics in pancreatic cancer research, for instance, boosting
the sensitivity and specificity of proteomic tests, as well as crafting standardized protocols
for sample preparation and data analysis.

To tap into the full potential of proteomics in pancreatic cancer research, continuous
investment in new technologies, methodologies, and innovative drug development is
essential. Allocating resources to extensive patient multicenter studies will be vital in
advancing our understanding of pancreatic cancer and enhancing patient outcomes. These
large multicenter studies can play a key role in addressing some of these challenges
as follows:

1. Facilitating extensive data collection: multicenter studies, given their wider reach, can
accumulate data from a vast number of patients. This offers invaluable insights into
the intricacies of pancreatic cancer and how it reacts to various treatments.



Proteomes 2023, 11, 24 13 of 19

2. Broadening patient diversity: by including multiple centers, these studies can capture
data from patients across varied geographies, demographics, and healthcare systems.
This diversity ensures that the research conclusions have broader relevance.

3. Bolstering statistical reliability: the larger the study size in multicenter research, the
greater the statistical weight and confidence in the findings.

4. Fostering collaboration and shared knowledge: bringing together various centers for
these studies fosters a culture of cooperation and shared learning among researchers,
potentially quickening the pace of innovations.

5. Promoting protocol standardization: with multiple centers involved, there is an
inherent push towards harmonizing protocols for sample collection, data interpreta-
tion, and other pivotal research processes. This is essential for ensuring consistency,
reliability, and reproducibility in findings.

To summarize, while numerous challenges persist, proteomics possesses the immense
potential to redefine our grasp on pancreatic cancer biology and improve patient out-
comes. Sustained investment and continuous innovation in this domain are paramount for
unveiling even more pivotal insights in the coming times.
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