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Abstract: Given the pathophysiological continuum of chronic kidney disease (CKD), different molecu-
lar determinants affecting progression may be associated with distinct disease phases; thus, identifica-
tion of these players are crucial for guiding therapeutic decisions, ideally in a non-invasive, repeatable
setting. Analyzing the urinary peptidome has been proven an efficient method for biomarker de-
termination in CKD, among other diseases. In this work, after applying several selection criteria,
urine samples from 317 early (stage 2) and advanced (stage 3b–5) CKD patients were analyzed using
capillary electrophoresis coupled to mass spectrometry (CE-MS). The entire two groups were initially
compared to highlight the respective pathophysiology between initial and late disease phases. Subse-
quently, slow and fast progressors were compared within each group in an attempt to distinguish
phase-specific disease progression molecules. The early vs. late-stage CKD comparison revealed
929 significantly different peptides, most of which were downregulated and 268 with collagen origins.
When comparing slow vs. fast progressors in early stage CKD, 42 peptides were significantly altered,
30 of which were collagen peptide fragments. This association suggests the development of structural
changes may be reversible at an early stage. The study confirms previous findings, based on its
multivariable-matched progression groups derived from a large initial cohort. However, only four
peptide fragments differed between slow vs. fast progressors in late-stage CKD, indicating different
pathogenic processes occur in fast and slow progressors in different stages of CKD. The defined
peptides associated with CKD progression at early stage might potentially constitute a non-invasive
approach to improve patient management by guiding (personalized) intervention.

Keywords: CE-MS; CKD; eGFR; urine; peptides; progression

1. Introduction

Chronic kidney disease (CKD) is defined as persistent (over 3 months) structural
or functional aberrations to renal tissue, detrimental for health [1]. Structural abnormal-
ities include structures, such as polycystic kidneys, while abnormal kidney function is
expressed as glomerular filtration rate < 60 mL/min/1.73 m2, albuminuria ≥ 30 mg/24 h
or ACR ≥ 30 mg/g. CKD can be classified into G1 (≥90), G2 (60–89), G3a (45–59), G3b
(30–44), G4 (15–29), G5 (<15) stages based on estimated glomerular filtration rate (eGFR),
with G5 indicating kidney failure. At this stage, dialysis or transplantation are required to
compensate for the loss of kidney function. CKD affects about 1 in 10 people worldwide [2]
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and is a major contributor to global mortality [3], with 50% of all CKD-related deaths in ad-
vanced CKD patients attributed to cardiovascular disease [4,5]. As renal function declines,
uremic toxins, hyperphosphatemia, and other non-traditional CKD-specific risk factors
promote persistent low-grade inflammation and a premature ageing phenotype, i.e., ‘in-
flammaging’ [6], further driving systemic detrimental outcomes in the body [7]. As a result,
pathological processes such as vascular calcification, endothelial dysfunction and fibrosis
commence take place [8]. Since the unmet clinical need of renal replacement therapy may
result in premature death for millions of patients every year [9] improving our understand-
ing of molecular players in different stages of kidney disease to slow CKD progression is
crucial. Capillary electrophoresis coupled to mass spectrometry (CE-MS) is an ideal clinical
application for highlighting the clinical potential of peptides and small proteins as well as
determining molecular pathways involved in disease molecular pathophysiology [10,11].
Urine is highly advantageous along these lines due to its rich source of peptides/proteins
and non-invasive accessibility that can be utilized in disease monitoring. In that context,
over several years, the Human Urinary Proteome Database has been established, consisting
of urinary peptide data of over 85,000 participants, healthy or diseased with CKD of vary-
ing stages, among other diseases. Urinary peptide data appear promising in CKD, such as
in the early prediction of diabetic kidney disease (DKD) [12]. It is apparent that different
pathogenic processes are initiated as CKD progresses. A particular therapeutic intervention
to treat one stage can be deleterious for another, thus personalized medicine appears appro-
priate to target molecular players driving progression at that point in time [13]. Along these
lines, exploring progression through the urinary peptidome perspective appears appropri-
ate since the approach is applied completely non-invasively, allowing for development of
panels that might distinguish progressors from non-progressors as performed by Rudnicki
and colleagues [14] in the context of IgA nephropathy (IgAN). Such a tool might be of
complementary importance in disease monitoring. To shed light on the different players
in early and advanced CKD, data entries from almost 4000 participants of various CKD
etiologies, without hyperfiltration (eGFR < 90 mL/min/1.73 m2) were obtained. After
applying several inclusion criteria, the association of baseline urinary peptide data with
eGFR progression was investigated within two groups of early and advanced CKD stages
matched for relevant clinical variables, namely age, sex, body mass index (BMI), mean
arterial pressure (MAP), and presence of diabetes. Using both functional gene enrichment
analysis for genes coding for significant peptides and protease prediction analyses for the
identification of the enzymes involved in peptide generation, pathways, and processes
relevant to early and advanced CKD were proposed.

2. Materials and Methods
2.1. Initial Patient Population

Data entries from 3932 participants were acquired from the Human Urinary Proteome
Database, using eGFR < 90 mL/min/1.73 m2 as a criterion to avoid cases of hyperfiltration.
This database is based on more than 85,000 urinary peptide datasets analyzed through CE-
MS that are highly comparable, with no detectable batch effects processed and normalized
as described elsewhere [10,11]. Subsequently, 1059 baseline patient entries with follow-up
eGFR measurements of at least one year and a minimum of three visits, when the total
follow-up duration was less than 3 years, were obtained. Samples used in the current paper
were analyzed within a maximum of 90 days of the baseline visit. After only considering
samples that passed the routine quality control standards and with available information on
age, sex, BMI, and MAP, as well as 60 ≤ eGFR < 90 (G2) or eGFR < 45 (G3b and beyond, G3b–
G5), without “Urologic/reflux nephropathy”, “ADPKD/Alport syndrome” or “Tubulo-
interstitial/lithiasis”, 755 adult patients remained for further analysis [14–22]. At the time
of urine sampling, no patients underwent kidney transplantation or dialysis. All data are
fully anonymized; thus, the current study is in agreement with the Declaration of Helsinki.
Ethical review and approval were waived for this study by the ethics committee of the
Hannover Medical School, Germany (no. 3116-2016), due to all data being fully anonymized.
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GFR estimation was based on Chronic Kidney Disease Epidemiology Collaboration (CKD-
EPI) equation [23]. The MAP was calculated based on the formula: MAP = (2 × diastolic
blood pressure + systolic blood pressure)/3. The study design is depicted in Figure 1.
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Figure 1. Study design. Initially, urinary peptide data for almost 4000 patients were collected from the
Human Urine Proteome Database. After removing participants with eGFR ≥ 90 mL/min/1.73 m2 (to
prevent the noise of hyperfiltration), further follow-up criteria were applied, based on both duration
(at least a year of follow-up time) and number of visits (at least three visits for eGFR measurements
if follow-up time < 3 years). Participants were subsequently separated into two groups based on
their eGFR, namely early (G2) and advanced (G3b–5) stage CKD group. After the progression of each
individual per year was calculated in terms of eGFR slopes, the individuals were matched for age,
BMI, MAP, sex, and presence of diabetes, to account for potential confounding variables. Further,
differential peptide abundance comparisons were performed between the groups (all individuals) as
well as within groups (progressors vs. non-progressors), peptides significant after adjustment were
used as an input for bioinformatics analyses.

2.2. CKD Progression

For the remaining 755 patients, the slopes of the linear regression models, based on
the formula ‘eGFR change from baseline (%) ~ years of follow-up’, were calculated as
an indication of CKD progression. Thus, based on these variables, valid slopes and their
respective p-values, slopes could be calculated for 512 patients.

2.3. Matching

The remaining 512 patients were matched for age, BMI, MAP, sex, and presence of
diabetes, leading to a total cohort of 318 patients forming equally sized G2 and G3b–G5
groups. A slope > +82 mL/min/1.73 m2 was observed for an advanced CKD patient and
thus, was removed from further analysis as this patient was not deemed credible without
disturbing the non-significant differences of the matched variables between the two groups.
Almost all individuals had diabetes (n = 314), while only one patient had coronary artery
disease. A total of 161 patients had CKD, of which 159 had DKD and 2 with IgAN. One
patient with coronary artery disease had neither diabetes nor CKD. Clinical information is
described in Table 1.
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Table 1. Clinical patient information for the final cohort (n = 317) stratified by two matched groups
(early stage, G2 and advanced stage CKD, G3b–G5). The number in each group is stated. Data
are presented as mean (standard deviation) for numerical variables and as a percentage for cate-
gorical variables. eGFR: estimated glomerular filtration rate; BMI: body mass index; MAP: mean
arterial pressure.

Characteristics Early Stage CKD (G2) Advanced Stage CKD (G3b–G5)

n 159 158

eGFR
(mL/min/1.73 m2) 78.6 (8.7) 31.1 (7.4)

Age 62.8 (6.2) 63.1 (9.4)

BMI (kg/m2) 29.5 (4.3) 30.2 (5.4)

MAP (mmHg) 96.5 (7.6) 96.1 (8.6)

Male (%) 47.8 58.9

Diabetic (%) 98.7 99.4

2.4. Peptide Differential Abundance Analyses

For the 317 matched subjects, a comparison between fast and slow progressors was
performed within each group. Fast or slow progression was defined by using the following
approach. Initially, each (early or advanced) CKD group was divided into tertiles based on
the participants’ slopes. Participants belonging to the tertile with the most negative slopes
were defined as “fast” progressors and similarly the individuals in tertiles with the positive
slopes as “slow” progressors.

2.5. Processing of Peptides/CE-MS Analysis

Details of urine sample preparation and urinary peptidomic analysis are described
elsewhere [11–13]. In brief, urinary analysis was performed with a P/ACE MDQ CE (Beck-
man Coulter, Fullerton, CA, USA) coupled to a micro-TOF-MS (Bruker Daltonic, Bremen,
Germany). The Raw MS data were evaluated using the proprietary MosaFinder software
(version 1.4) by applying a probabilistic clustering algorithm on isotopic distributions and
conjugated mass for charge state determination. The capillary electrophoresis migration
time was normalized based on the reference signal from internal peptide standards or cali-
brators (peptides from housekeeping proteins) using local regression. Peptide’s abundance
analysis was semi-quantitatively performed in reference to 29 internal standards generally
insensitive to disease. The use of internal standards allows to account for sample concentra-
tion variation factors, such as fluid intake [24]. The final result is a peak list, characterizing
each protein and peptide by its molecular mass [Da] and normalized CE-migration time
[min]. Normalized signal intensity is used as a measure for relative abundance. Although
the MosaFinder software approach cannot be used for detecting novel compounds, map-
ping the identified molecules in a well-defined dataspace of 21,559 features is appropriate
for biomarker analysis. Sequencing of the CE-MS detected endogenous peptide was ob-
tained by matching of the obtained ion packs with the peptide sequences obtained by liquid
chromatography-mass spectrometry analysis (LC-MS/MS). Matching was performed based
on the correlation of mass between the two instruments. For further validation of obtained
peptide identifications, the correlation between peptide charge at the working pH of 2 and
CE-migration time was utilized to minimize false-positive identification rates [25]. The
amino acid sequences were obtained by performing MS/MS analysis using an Ultimate
3000 nano-flow system (Dionex/LC Packings, Sunnyvale, CA, USA) or a P/ACE MDQ CE
system (Beckman Coulter, Fullerton, CA, USA), both connected to an LTQ Orbitrap hybrid
MS (Thermo Fisher Scientific, Bremen, Germany) equipped with a nano-electrospray ion
source. The MS is operated in data-dependent mode to automatically switch between MS
and MS/MS acquisition. Survey full-scan MS spectra (from m/z 300–2000) were acquired
in the Orbitrap. Ions were sequentially isolated for fragmentation. Data files were searched
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against the UniProt human nonredundant database using Proteome Discoverer 2.4 and the
SEQUEST search engine without enzyme specificity (activation type: HCD; precursor mass
tolerance: 5 ppm; fragment mass tolerance: 0.05 Da). No fixed modifications were selected,
oxidation of methionine and proline were selected as variable modifications.

2.6. Statistical Analysis

The results and findings of the current paper were calculated using R programming
(R version 4.2.2, R Foundation for Statistical Computing, Vienna, Austria) [26]. Matching
between participants of eGFR stages G2 and G3b–G5, based on age, BMI, MAP, sex, and
presence of diabetes at 1:1 ratio, was performed using the MatchIt R package (version 4.5.2)
through the ‘nearest neighbor’ method using logistic regression to estimate the distance-
measure [27]. The algorithm was supported towards achieving more comparable variable
distributions by removing participants before each matching step, with the goal that
variables between the two groups did not significantly differ. The latter was based on
the Mann–Whitney U test for numeric variables and Chi-square (or Fisher’s exact test for
small-sized groups) test for categorical variables using stats R package functions wilcox.test
(exact = FALSE) and chisq.test (or the fisher.test), respectively. The Mann–Whitney U test,
for progression comparison, was based on the col_wilcoxon_twosample (exact = FALSE)
function of the matrixTests R package (version 0.2.2) [28]. Peptide fragments with a
p-value < 0.05 were considered significant, after adjustment for multiple testing (using the
p.adjust (method = “BH”) function of the stats package) using the Benjamini–Hochberg
method. Peptides for which sequence information was available (n = 5071) and present in
at least 30% of the samples in the entire dataset (n = 1205), were analyzed.

2.7. Protease Analysis

Proteasix (http://www.proteasix.org, accessed on 1 March 2023), an open-source tool,
was used for the protease prediction analysis [29]. The generated list of proteases was
“observed” proteases, where the protease/cleavage association site was collected from
literature. To improve the reliability of the proteolytic data, only “observed” proteases
were analyzed. Parental proteins for all significant peptide fragments in each cohort
were inputted.

2.8. Pathway Analysis

Enrich (http://maayanlab.cloud/Enrichr, accessed on 1 March 2023) was imple-
mented for functional gene enrichment analysis to investigate associations in respect
to Kyoto Encyclopedia of Genes and Genomes (KEGG) [30–32] pathways, Gene Ontology
(GO) biological pathways, and GO molecular pathways to highlight the pathophysiology
of the disease mechanism in terms of progression within the early CKD group.

3. Results
3.1. Cohort Determination and Baseline Characteristics

For 512 participants with follow-up information that passed the filtering criteria, valid
slopes and p-values were calculated. These patients were used as a basis for the formation
of two groups based on eGFR, namely G2 and G3b–G5, representing early and advanced
CKD stages, respectively. The two groups were matched for relevant clinical parameters,
thus eliminating the confounding potential of these established risk factors, finally leading
to 318 participants, of which 317 were considered for further analyses. The study design is
illustrated in Figure 1. Clinical patient data are summarized in Table 1.

3.2. Comparison between Early and Advanced CKD Stages

First, to better understand relevant pathophysiological processes, non-parametric
Mann–Whitney U test was performed to compare differences in the baseline urinary pep-
tidome between the G2 and G3b–G5 groups. A total of 929 urinary peptide fragments were
significantly different between early and advanced CKD patients. The top 20 significant

http://www.proteasix.org
http://maayanlab.cloud/Enrichr
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peptide fragments, with the highest or lowest fold change between strata, are presented
in Table 2. Eleven different peptide fragments represent the top 20 peptides increased in
advanced CKD patients. This includes three collagen subtypes, of which collagen alpha-1(I)
(COL1A1) had the highest fold change (fold change: 339.2; p < 0.001). Three apolipopro-
tein A (APOA) subtypes were also present, with APOA4 representing the highest fold
change (fold change: 179.2; p < 0.001); four alpha-1-antitrypsin (SERPINA1) fragments were
also highly expressed in this group. The remaining peptides were beta-2-microglobulin,
hemoglobin subunit beta, transthyretin, and mucin-19 fragments, of which the latter had
the second highest fold change (fold change: 223.5; p < 0.001). On the contrary, the top
20 significant peptide fragments with the lowest fold change between advanced and early
CKD patients are mainly COL and CD99 antigen (CD99), consisting of 12 and 3 fragments,
respectively. COL21A1 was the peptide fragment with the lowest fold difference between
strata (fold change: 0.0196; p < 0.001). The remaining peptides include semaphorin-7A,
polymeric immunoglobulin receptor, calcium-dependent secretion activator 1, uromodulin,
and complement C4-A.

Table 2. Comparison between early (G2) vs. advanced (G3b–5) CKD groups. The top 20 significant
peptide fragments, with the highest or lowest fold change based on the differential peptide abundance
analysis are listed. The first half of the table refers to upregulated peptides, while the second half
to downregulated. Fold change refers to the ratio of mean relative peptide abundance of advanced
CKD group to early CKD group.

Protein Symbol Protein Name Sequence Fold Change Adj. p-Value

Upregulated

COL1A1 Collagen alpha-1(I) RGPpGPpGKNGDDGEAGKPGRp
GERGPpGP 339.2 4.14 × 10−24

MUC19 Mucin-19 GVTGKSGLSAGVTGKTGLSA
GVTGTTGPS 223.5 2.49 × 10−17

APOA4 Apolipoprotein A-IV RQKLGPHAGDVEGHLS 179.2 1.88 × 10−26

APOA1 Apolipoprotein A-I LEEYTKKLNTQ 161.8 7.66 × 10−24

HBB Hemoglobin subunit beta FESFGDLSTPDAVMGNPK
VKAHGKKVLG 105.4 3.33 × 10−25

COL1A1 Collagen alpha-1(I) PGPAGPPGEAGKPGEQGVPG
DLGAPGPSGARG 95.6 1.79 × 10−21

APOA2 Apolipoprotein A-II FVELGTQPATQ 87.6 1.35 × 10−31

TTR Transthyretin LSPYSYSTTAVVTNPKE 84.6 1.56 × 10−25

HBB Hemoglobin subunit beta VHLTPEEKSAVTALWGKVNVDEV 80.8 6.30 × 10−22

SERPINA1 Alpha-1-antitrypsin SEGLKLVDKFLEDVKKL 71.3 7.52 × 10−17

SERPINA1 Alpha-1-antitrypsin EDPQGDAAQKTDTSHHD
QDHPTFNKITPN 69.2 4.61 × 10−20

SERPINA1 Alpha-1-antitrypsin MIEQNTKSPLFMGKVVNPTQK 67.8 1.36 × 10−27

APOA1 Apolipoprotein A-I ALEEYTKKLNTQ 67.2 2.06 × 10−18

COL19A1 Collagen alpha-1(XIX) GPEGPSGKpGINGKDGIPGAQGImG
KpGDRGpKGERGDQGIP 67.0 3.40 × 10−35

COL3A1 Collagen alpha-1(III) GEPGRDGVPGGPGMRGMPGSP
GGPGSDGKPGPpGSQGESGRpGpP 65.4 2.54 × 10−17

B2M Beta-2-microglobulin NGERIEKVEHSDLSFSKDWS 62.7 1.96 × 10−17

APOA1 Apolipoprotein A-I DEPPQSPWDRVKDL 62.7 7.95 × 10−14

B2M Beta-2-microglobulin LKNGERIEKVEHSDLSFSKDWS 61.1 4.84 × 10−22
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Table 2. Cont.

Protein Symbol Protein Name Sequence Fold Change Adj. p-Value

SERPINA1 Alpha-1-antitrypsin EAIPMSIPPEVKFNKP 59.4 4.72 × 10−27

B2M Beta-2-microglobulin YVSGFHPSDIEVD 58.9 3.69 × 10−15

Downregulated

COL21A1 Collagen alpha-1(XXI) pGYPGQpGQDGKP
GYQGIAGTpGVpGSPG 0.0196 3.44 × 10−27

COL1A1 Collagen alpha-1(I) PpGpAGFAGpPGADGQPGA
KGEPGDAGAKGDAGPPGPAGP 0.0245 3.75 × 10−27

COL5A3 Collagen alpha-3(V) IDGSpGEKGDPGDVGGPGP
PGASGEPGAPGPPGKRGPS 0.0287 2.83 × 10−18

SEMA7A Semaphorin-7A FREAQHWQLLPEDGIM 0.0341 1.03 × 10−36

COL1A1 Collagen alpha-1(I) GADGQpGAKGEpGDAGAKG
DAGPpGPAGPAGPpGPIG 0.0364 2.69 × 10−32

PIGR Polymeric
immunoglobulin receptor

AVADTRDQADGSRASVDSG
SSEEQGGSSRALVSTLVPLG 0.0392 2.03 × 10−15

COL1A1 Collagen alpha-1(I) pPGADGQPGAKGEpGDAGAK
GDAGPpGPAGPAGPPGPIG 0.0406 1.14 × 10−25

CADPS Calcium-dependent
secretion activator 1

GGAGAGAGVGAGGGGGSG
ASSGGGAGGL 0.0423 4.16 × 10−24

COL1A1 Collagen alpha-1(I) TGPIGpPGPAGAPGDKGES
GpSGPAGPTG 0.0426 6.30 × 10−34

CD99 CD99 antigen DGVSGGEGKGGSDGGGSH
RKEGEEADAPGVIPGIVGA 0.0511 1.73 × 10−25

CD99 CD99 antigen DLADGVSGGEGKGGSDGGG
SHRKEGEEADAPGVIPG 0.0571 4.35 × 10−23

COL2A1 Collagen alpha-1(II) GpAGpPGEKGEPGDDGPS
GAEGpPGPQ 0.0627 1.14 × 10−18

COL1A2 Collagen alpha-2(I) GEPGSAGPQGPPGPSGEEG
KRGPNGEAGSAGPPGpPGL 0.0644 7.72 × 10−44

COL1A1 Collagen alpha-1(I) GADGQpGAKGEpGDAGAKG
DAGPPGPAGPAGPpGPIG 0.0652 1.96× 10−33

COL15A1 Collagen alpha-1(XV) VSFVTGYGGFPAYSFGPGANVGR 0.0662 2.04 × 10−20

UMOD Uromodulin IDQSRVLNLGPITR 0.0686 4.16 × 10−18

C4A Complement C4-A DELPAKDDPDAPLQPVTP 0.0688 1.11 × 10−29

CD99 CD99 antigen DGGFDLSDALPDNENKKPtAIP 0.0701 4.64 × 10−36

COL1A1 Collagen alpha-1(I) pPGADGQpGAKGEpGDAG
AKGDAGPpGPAGP 0.0729 1.07 × 10−22

COL1A2 Collagen alpha-2(I) PAGSRGDGGPpGMTGFpGAA
GRTGpPGPSGISGPPGPPGPAG 0.0738 5.55 × 10−19

3.3. Comparison Based on Progression within Early and Advanced CKD Stages

To investigate potential differences in progression between the G2 and G3b–G5 groups,
comparisons between fast and slow progressors within the G2 (early CKD) and G3b–G5
groups (advanced CKD) were performed. In early CKD, a total of 42 peptides significantly
differed between slow and fast progressors. Looking at the most significantly upregulated 10
peptides (Table 3), 9 were collagen (COL) fragments, with COL5A2 representing the peptide
with the highest fold change (fold change: 6.6; p < 0.05); basement membrane-specific heparan
sulfate proteoglycan core protein was also present. In a similar fashion, 7/10 peptide fragments
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downregulated in fast vs. slow progressors were COL fragments (lowest fold change COL9A3;
fold change: 0.212; p < 0.05; Table 3). The remaining peptides were sodium/potassium-
transporting ATPase subunit gamma, CD99 antigen, and POTE ankyrin domain family
member F. However, only four peptide fragments were significantly different between fast
and slow progressors in advanced CKD (Table 4). Apolipoprotein A-I demonstrated the
highest fold change (fold change: 8.449; p < 0.05), with alpha-2-HS-glycoprotein, fibrinogen
alpha chain, and COL1A1 following (note: COL1A1 was downregulated).

Table 3. Comparison between progressors and non-progressors within the early stage (G2) CKD
group. The top 10 significant peptide fragments, with the highest or lowest fold change based on
the differential peptide abundance analysis are listed. The first half of the table refers to upregulated
peptides, while the second half to downregulated. Fold change refers to the ratio of mean relative
peptide abundance of progressors to non-progressors.

Protein Symbol Protein Name Sequence Fold Change Adj. p-Value

Upregulated

COL5A2 Collagen alpha-2(V) GSPGTSGppGSAGpPGSpG 6.6238 2.43 × 10−2

HSPG2

Basement
membrane-specific heparan

sulfate proteoglycan
core protein

LAFPGHVFSRSLPEVPETIEL 5.3553 3.57 × 10−2

COL5A3 Collagen alpha-3(V) GPpGPpGFpGDPGPPG 4.5915 3.24 × 10−2

COL5A3 Collagen alpha-3(V) GPpGPpGFPGDpGPpG 4.1514 1.51 × 10−2

COL4A1 Collagen alpha-1(IV) GPpGFTGppGPPGPPGP 3.9258 2.43 × 10−2

COL1A1 Collagen alpha-1(I) GEPGSPGENGApGQMGp 3.6261 2.43 × 10−2

COL11A1 Collagen alpha-1(XI) GPpGDDGMRGEDGEIGpRGLp 3.6150 6.51 × 10−3

COL3A1 Collagen alpha-1(III) AGIpGVpGAKGEDGKDG
SpGEpGANG 3.2461 4.07 × 10−2

COL1A1 Collagen alpha-1(I) ADGQPGAKGEPGDA
GAKGDAGpPGPA 2.8850 2.43 × 10−2

COL3A1 Collagen alpha-1(III) pGARGLpGpPGSNGNPGpP 2.8372 6.51 × 10−3

Downregulated

COL9A3 Collagen alpha-3(IX) GpAGPpGpPGPpG 0.2119 3.24 × 10−2

COL1A2 Collagen alpha-2(I) TGPPGPSGISGPpGpPGPAG 0.2423 3.69 × 10−2

COL22A1 Collagen alpha-1(XXII) pGVpGPPGPGGSPGLPGE 0.2741 2.43 × 10−2

COL3A1 Collagen alpha-1(III) PpGENGKpG 0.3418 3.90 × 10−2

COL4A3 Collagen alpha-3(IV) GPPGTpGEpGMQGEpGPP 0.3592 1.60 × 10−2

FXYD2
Sodium/potassium-
transporting ATPase

subunit gamma
TGLSMDGGGSPKGDVDP 0.3857 3.24 × 10−2

CD99 CD99 antigen DGVSGGEGKGGSDGGG
SHRKEGEEADAPGVIPGIVGAVV 0.3898 1.00 × 10−2

COL3A1 Collagen alpha-1(III) SpGERGETGPpGPA 0.3976 2.43 × 10−2

POTEF POTE ankyrin domain
family member F RVAPEEHPV 0.3984 1.51 × 10−2

COL3A1 Collagen alpha-1(III) KNGETGPQGppGPTGPG
GDKGDTGPpGPQG 0.4087 2.43 × 10−2
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Table 4. Comparison between progressors and non-progressors within the advanced stage (G3b–5)
CKD group. Significant peptide fragments based on the differential peptide abundance analysis
are listed. Fold change refers to the ratio of mean relative peptide abundance of progressors to
non-progressors.

Protein Symbol Protein Name Sequence Fold Change Adj. p-Value

APOA1 Apolipoprotein A-I ALEEYTKKLNTQ 8.4493 1.94 × 10−2

AHSG Alpha-2-HS-
glycoprotein LGSPSGEVSHPRKT 7.6154 4.51 × 10−3

FGA Fibrinogen alpha chain SGEGDFLAEGGGVR 2.1838 1.94 × 10−2

COL1A1 Collagen alpha-1(I) NSGEpGApGSKGDTGAkGEpGPVG 0.4708 4.35 × 10−2

3.4. Protease Analysis between Different CKD Stages and Progressor Types

Next, we analyzed proteases known to cleave significant peptide fragments in the
different cohorts. As depicted in Figure 2, when comparing early and advanced stage
CKD patients, 32 proteases were responsible for 215 predicted cleavage events, of which
144 and 71 corresponded to downregulated and upregulated peptides, respectively. The
nine proteases with the highest number of cleavage events were matrix metalloproteinases
(MMPs), responsible for 138 (64%) cleavage events, primarily for downregulated peptides.
Interestingly, PCSK5, PCSK4, KLK4, PCSK6, and PCSK7 were predicted to cleave six
peptides each, all of which are downregulated in advanced CKD patients. Only 13 peptide
cleavage events were predicted when comparing slow and fast progressors in early CKD
patients. The majority of events were in peptides downregulated in fast progressors,
11/13 (85%) of which were MMPs. Due to the low number of significant peptides in
the advanced CKD cohort, only five peptide cleavage events were determined, with all
proteases predicted to cleave FGA.
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3.5. Functional Pathway Analysis between Different CKD Stages and Progressor Types

Lastly, we performed functional pathway analysis using genes that code for significant
peptides in the early CKD cohort. For optimum coverage, all significant peptides were
analyzed. The top three GO terms were compared between strata. We found Go Biological
Processes related to extracellular matrix (ECM) organization (GO:0030198 and GO:0043062)
were enriched for significantly downregulated and upregulated peptides in this cohort. GO
Cellular Components terms were identical between strata; however, Molecular Function
terms differed slightly between groups. While Protease Binding (GO:0002020) was highly
enriched in both strata, only five enriched functions were present for upregulated peptides
for Go Molecular Function terms. Platelet-Derived Growth Factor Binding was ranked
number one (GO:0048407).

4. Discussion

It is currently unclear whether the kidney function of a patient with CKD will have
a fairly stable course or a rapid decline. Nevertheless, this information is essential in the
context of guiding therapeutic decisions in a personalized manner, given that a patient-
oriented approach and early intervention is generally expected to maximize therapeutic
results. Considering the CKD pathophysiological continuum, molecular determinants
responsible for a patient’s disease progression are expected to be stage-specific. In this con-
text, a phase-specific investigation of molecular mechanisms in terms of CKD progression
is warranted. To this end, we aimed to highlight stage-specific molecular signatures associ-
ated with disease as well as disease progression. The urinary proteome was investigated
since naturally occurring peptides and small proteins were analyzed. CE-MS technology
that enables separation and detection of the highly complex urinary proteome/peptidome
was applied. Understanding of the complex proteome or peptidome is crucial for gaining a
comprehensive view of biological processes and disease mechanisms. The current study
concurs with previous findings in CKD progression [33] and provides further insights
given its large initial cohort, design that accounts for relevant confounders and added
bioinformatics perspective.

By employing this study design, a comparison between matched early and advanced
CKD patients was carried out to determine the parental proteins of potential importance
in the respective disease stages. Collagen fragments accounted for the majority (648/929)
of the significant urinary peptides in this analysis. This is not surprising considering
the fibrotic activity of collagens as a part of the extracellular matrix and its turnover. In
the context of CKD, such urinary peptide data have been abundantly observed, e.g., by
Schanstra et al. (2015) [34]. Of course, fibrotic events do not occur exclusively in renal tissue
in CKD; increased collagen expression has been observed in vascular remodeling ultimately
leading to vascular calcification and increased stiffness, a sequalae of CKD. In addition,
increased deposition of extracellular matrix proteins, driven by uremia, is often observed
in cardiac tissue, with heart failure the common end-result. Thus, it must be pointed out
that changes in the peptidome may reflect peptides originating from tissue other than the
kidney. Examples of fragments of non-collagen origin were derived, among others, from
proteins with inflammatory function, e.g., polymeric immunoglobulin receptor, alpha-1-
antitrypsin, complement C4-A, and semaphorin-7A. This does not come as a surprise, since
‘inflammaging’ is a risk factor associated with CKD mortality.

Comparing slow vs. fast progressors within the early CKD stages revealed 42 signifi-
cant peptides derived from 21 parental proteins, 12 of which were again, collagen molecules.
Nevertheless, with regards to the non-collagen fragments, peptides were derived from
CD99 antigen, fibrinogen alpha protein, and uromodulin, which were also among the most
significant in the respective eGFR strata (60–90 mL/min/1.73 m2) progression comparisons
performed by Pontillo et al. (2017) [33]. In the same study, fragments from the basement
membrane-specific heparan sulfate proteoglycan core protein were also found to be most
significant, but only in the 40–49 mL/min/1.73 m2 eGFR stratum, whereas peptides of
mucin-16, plasminogen, POTE ankyrin domain family member F, sodium/potassium-
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transporting ATPase subunit gamma and titin, as identified in our work, were not recorded
as the most significant peptides in theirs.

On the other hand, association with progression in the advanced CKD group revealed
limited outputs. Peptides from apolipoprotein A-I, alpha-2-HS-glycoprotein, fibrinogen
alpha chain, and collagen alpha-1(I) were statistically significant. Peptides derived from
collagen alpha-1(I) were also among the most significant in the work of Pontillo et al.
within the same eGFR range [33]. An association between higher serum apolipoprotein
A-I protein and lower prevalence of CKD as well higher eGFR has been described in
CKD patients [35]. In a recent study, urinary peptide levels of alpha-2-HS-glycoprotein
demonstrated significant inverse association with eGFR and eGFR slope (%) per year in type
2 diabetic patients, indicating the association of these peptides with CKD progression [36].

After the differential abundance analyses, protease prediction and pathway analysis
followed. MMPs and PCSKs were predicted to be responsible for the majority of cleavage
events in all three cohorts. Indeed, both proteases have been associated with peptide
cleavage in cardiorenal syndrome and CKD. MMP2 and MMP9 are established proteases
that degrade the ECM in CKD, thus it comes as no surprise that these rank in the top three
proteases in terms of cleavage events in our cohorts. MMP13, despite its high % of cleavage
events throughout, is less reported than its MMP counterparts MMP2/9 in the context
of CKD progression and has even been shown to have anti-inflammatory properties [37].
Its exact role in CKD progression merits further research. PCSKs have previously been
shown by our group to be implicated in CKD patients vs. non-CKD controls [38]. Our
data validate findings from this study, while also emphasizing its importance in advanced
CKD vs. early CKD patients, since PCSKs were predicted to cleave peptides that were
upregulated in such sub cohorts.

Significant peptides associated with progression within the early CKD stages were
only considered for pathway analysis (Supplementary Figure S1). Intervention appears
most promising to establish a more stable course (and thus justifiably warrants more
emphasis on deciphering the disease mechanism). On the other hand, in later CKD stages,
the kidneys are severely damaged (while also “pressured” to address their original purpose)
resulting in peptides derived from a number of plasma proteins that are inconsistently
found in urine due to the presence of proteinuria; thus only a handful of peptides end up
being significantly different between progressors and non-progressors.

A major advantage of our study is the non-invasive approach harnessing the capacity
of the CE-MS technique. Another key strength is the initial large sample size of both cohorts,
allowing us to hone in on patients with advanced kidney disease, as well as matching
patients for potential confounders. Nevertheless, at the same time, we also acknowledge
shortcomings of our study design, including incomplete clinical records for some vari-
ables, e.g., proteinuria, preventing adjustment for these confounders. Lastly, the present
study is of a retrospective cross-sectional design, however the multicenter design, strict
inclusion/statistical criteria along with, at times, a high level of significance is expected to,
in part, counteract potential bias. Considering the molecular differences associated with
progression, in addition to shedding light on relevant underlying mechanisms, our study
might pave the way for developing classifiers with the capacity to distinguish progressors
from their non-progressor counterparts, e.g., as applied by Rudnicki and colleagues [14] in
a cohort of 209 biopsy-proven IgAN patients. Utilizing this approach within a non-invasive
framework might constitute a powerful complementary tool in clinical practice for dis-
ease monitoring purposes that can pragmatically support gold standard methods in the
challenges of the modern healthcare system.

5. Conclusions

In conclusion, this study provides further insight into molecular mechanisms involved
in CKD progression based on the urinary proteome. Urinary peptides associated with early
and advanced disease stages as well as with progression within these two different disease
phases were defined and found to be distinctly different. A number of collagen-derived
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peptides were significantly associated with CKD progression at the early disease stage This
association suggests the development of structural changes that may be reversible at an
early stage. The obtained results indicate that different pathogenic processes occur in fast
and slow progressors in different stages of CKD. Thus, combining early CKD progression-
associated molecular features into a model for classifying individuals into progressors or
non-progressors might constitute a non-invasive approach to improve patient management
by guiding (personalized) intervention.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/proteomes11030025/s1, Table S1: Peptide differential abundance analyses,
Figure S1: Functional pathway analysis with regards to progression within the early CKD group.
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