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Abstract: Abiotic stresses profoundly alter plant growth and development, resulting in yield losses.
Plants have evolved adaptive mechanisms to combat these challenges, triggering intricate molecular
responses to maintain tissue hydration and temperature stability during stress. A pivotal player in
this defense is histone modification, governing gene expression in response to diverse environmental
cues. Post-translational modifications (PTMs) of histone tails, including acetylation, phosphorylation,
methylation, ubiquitination, and sumoylation, regulate transcription, DNA processes, and stress-
related traits. This review comprehensively explores the world of PTMs of histones in plants and
their vital role in imparting various abiotic stress tolerance in plants. Techniques, like chromatin
immune precipitation (ChIP), ChIP-qPCR, mass spectrometry, and Cleavage Under Targets and
Tag mentation, have unveiled the dynamic histone modification landscape within plant cells. The
significance of PTMs in enhancing the plants’ ability to cope with abiotic stresses has also been
discussed. Recent advances in PTM research shed light on the molecular basis of stress tolerance
in plants. Understanding the intricate proteome complexity due to various proteoforms/protein
variants is a challenging task, but emerging single-cell resolution techniques may help to address
such challenges. The review provides the future prospects aimed at harnessing the full potential of
PTMs for improved plant responses under changing climate change.

Keywords: histone; ubiquitination; ChIP; methylation; stress tolerance; post-translational modifications

1. Introduction

Plants face formidable challenges when confronted with abiotic stresses, necessitating
precise adjustments across various physiological pathways. These adaptive responses
encompass critical functions, such as photosynthesis, antioxidant regulation, water uptake,
ion homeostasis, and osmolyte synthesis [1–6]. In the face of environmental constraints,
these morphophysiological adaptations are underpinned by an intricate network of post-
translational modifications (PTMs), orchestrated by multifaceted molecular mechanisms [7].

Plant adaptation to abiotic stresses hinges on the dynamic regulation of gene expres-
sion, encompassing a multitude of genes controlled by an array of transcription factors
(TFs) and chromatin-associated factors. While substantial attention has been devoted to
elucidating the roles of TFs, enzymes catalyzing covalent histone modifications, and chro-
matin remodeling complexes, the contribution of histone chaperones remains less explored,
and their significance in this context remains enigmatic. Notably, protein phosphorylation
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serves as a well-established mechanism for transmitting stress signals, whereas emerging
modifications, like S-nitrosylation, are still in their infancy. In the realm of PTMs, ubiqui-
tin and SUMO conjugations emerged as central regulatory processes in eukaryotes [8,9].
These modifications, however, exert distinct effects contingent upon the transcriptional or
translational stage at which the targeted transcript or protein is situated. Consequently, the
interplay of these diverse PTMs collectively dictates the ultimate impact on the associated
cellular processes and phenotypic outcomes.

Chromatin regulation emerges as a pivotal player in governing gene expression,
with DNA methylation, histone modifications, and other genome activities intricately
intertwined with adaptive responses to environmental challenges in plants [10–12]. An
array of epigenetic mechanisms, including DNA methylation, histone modifications, ATP-
dependent chromatin remodeling, incorporation of histone variants, and regulation by
noncoding RNA, orchestrate the structure and function of chromatin [13,14]. Specifi-
cally, methylation, acetylation, phosphorylation, ubiquitination, and sumoylation rep-
resent a subset of PTMs occurring on the N-terminal tails of histone proteins. These
modifications, collectively referred to as the “histone code,” are pivotal in establishing
and perpetuating epigenetic memory, profoundly influencing chromatin structure and
gene expression [15,16].

Within the intricate world of chromatin, the configuration significantly influences
genome expression, largely regulated by the interplay of DNA methylation machinery
and histone chaperones, also known as nucleosome assembly/disassembly factors. They
facilitate nucleosome assembly and disassembly, impacting replication-dependent and
replication-independent processes and collaborate with free histones to prevent indis-
criminate histone–DNA interactions. Hence, histone chaperones play a critical role in
modulating histone availability and the incorporation into nucleosomes [17,18].

In summary, this multifaceted interplay of plant responses to abiotic stresses, encom-
passing diverse pathways, PTMs, and chromatin dynamics, underscores the intricate web
of adaptations crucial for plant survival in challenging environments (Figure 1). This
review will delve deeper into the roles and significance of histone chaperones within this
complex landscape.
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sity in the future [19]. Epigenetic regulation is closely associated with the development of 
stress memories [19–21]. Research showed that stress treatment can alter the chromatin 
status of genes that respond to stress, and these changes persist after recovery and even 
in progeny [22–24]. Several factors play a role in regulating gene expression in eukaryotic 
cells, including the dynamic environment of chromatin. Epigenetic mechanisms, includ-
ing covalent modifications to DNA and histone tails, are crucial for inducing favorable 
chromatin states that enable gene expression in response to stress and hence bestowing 
the plants with better adaptation. Several epigenetic factors cause chromatin modifica-
tions on exposure to various abiotic stresses in plants [25]. Each nucleosome contains a 
basic core histone octamer composed of four types of histone proteins, namely H2A, 
H2B, H3, and H4. In addition to these core histones, many histone variants are also re-
ported. To date, only one variant is observed for H4, whereas several variants are en-
countered for H2A, H2B, and H3. These variants are believed to enhance the dynamics of 
nucleosome, diversity and play a crucial role in epigenetic genome regulation (Figure 2). 
The study of these variants can provide various clues in understanding the mechanism 
behind epigenetic genome regulation. 

The majority of histone modifications take place at the N-terminal coil known as the 
histone tail rather than the globular C-terminal domain. Many basic amino acid residues, 
such as arginine and lysine, can be found in high concentrations in histones. The amino 
acid residues in histone tails can change chemically through acetylation, methylation, 
phosphorylation, and ubiquitination. The aforementioned modifications are believed to 
influence the functioning of genes located in proximity to core histones. Most his-
tone-modifying enzymes are remarkably conserved across the plant realm, including 

Figure 1. Plants are exposed to many abiotic stresses due to unpredictable climate changes, including
cold and hot temperatures, drought, salinity, and ultraviolet radiation, all of which affect their
productivity. Dynamic changes in histone modifications are important for the regulation of genes
during environmental stress.
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2. Epigenetic Memory and Chromatin Dynamics in Plant Stress Responses

Plants often experience unfavorable environmental conditions in growing habitats.
Depending on the stress response, plants can retain information for a time after a previous
stress (known as stress memory), so they can adapt more quickly to the same adversity
in the future [19]. Epigenetic regulation is closely associated with the development of
stress memories [19–21]. Research showed that stress treatment can alter the chromatin
status of genes that respond to stress, and these changes persist after recovery and even
in progeny [22–24]. Several factors play a role in regulating gene expression in eukaryotic
cells, including the dynamic environment of chromatin. Epigenetic mechanisms, includ-
ing covalent modifications to DNA and histone tails, are crucial for inducing favorable
chromatin states that enable gene expression in response to stress and hence bestowing the
plants with better adaptation. Several epigenetic factors cause chromatin modifications on
exposure to various abiotic stresses in plants [25]. Each nucleosome contains a basic core
histone octamer composed of four types of histone proteins, namely H2A, H2B, H3, and H4.
In addition to these core histones, many histone variants are also reported. To date, only
one variant is observed for H4, whereas several variants are encountered for H2A, H2B,
and H3. These variants are believed to enhance the dynamics of nucleosome, diversity
and play a crucial role in epigenetic genome regulation (Figure 2). The study of these
variants can provide various clues in understanding the mechanism behind epigenetic
genome regulation.
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Figure 2. Histone modifications at different polypeptide amino acid residue locations and the group
added by the different enzymes.

The majority of histone modifications take place at the N-terminal coil known as the
histone tail rather than the globular C-terminal domain. Many basic amino acid residues,
such as arginine and lysine, can be found in high concentrations in histones. The amino acid
residues in histone tails can change chemically through acetylation, methylation, phospho-
rylation, and ubiquitination. The aforementioned modifications are believed to influence
the functioning of genes located in proximity to core histones. Most histone-modifying
enzymes are remarkably conserved across the plant realm, including well-researched and
defined histone modifiers, such as histone methyltransferases (HMTs), histone demethy-
lases (HDMs), histone deacetylases (HDACs), and histone acetyltransferases (HATs). Other
less-studied enzymes include kinases, arginine deiminases, lysine- and arginine-specific
methyltransferases, ubiquitinates, lysine and arginine-specific demethylases, and deubiq-
uitinases. While there are studies on histone modifications and stress response in plants,
this research seems to delve into the specific mechanisms and examples of how histone
modifications influence stress tolerance in different plant species.
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3. Molecular Sculptors: Types of Histone Post-Translational Modifications
3.1. Acetylation and Deacetylation

Histone acetylation involves a covalent alteration that enables the transfer of acetyl
groups from acetyl CoA to the ε-amino group of lysine residues within histone molecules.
This modification leads to the neutralization of lysine’s positive charge, subsequently di-
minishing the binding affinity between the modified histone and DNA [26,27]. Conversely,
histone deacetylation is associated with a “closed” chromatin structure and the repression
of gene activity [28]. Histone acetyltransferases and histone deacetylases are responsible
for the reversible acetylation of histones (Table 1). At the outset, attention centered on
identifying enzymes responsible for the introduction (“writers”) and removal (“erasers”) of
these modifications [28]. Among these enzymatic agents, there are those that add chemical
groups to histone tails or core domains, such as HATs, kinases, methyltransferases, and
ubiquitinases. In contrast, there are enzymes that eliminate these modifications, including
HDMs, phosphatases, deubiquitinases, and HDACs. Histone acetylation and deacetyla-
tion are critical regulators of plant stress tolerance. In Arabidopsis thaliana, a model plant,
the HD2-type histone deacetylase HD2C has been found to negatively regulate drought
tolerance. HD2C represses the expression of drought-responsive genes by deacetylating hi-
stones in their promoter regions, leading to reduced gene expression and impaired drought
response in the plant [29]. Conversely, in Arabidopsis, certain genes positively regulate salt
stress tolerance by enhancing the expression of salt-responsive genes. As an example, HD2C
and HDA6 (histone deacetylase) work in tandem to govern the reaction to salt stress by con-
trolling the expression of ABA-responsive genes including ABSCISIC ACID INSENSITIVE1
and ABSCISIC ACID INSENSITIVE2. The heightened expression of HDA705, a counterpart
of Arabidopsis’ HDA6 or HDA7, led to diminished ABA levels and reduced salt stress
tolerance in Arabidopsis seedlings [30]. Histone acetylation patterns also impact heat stress
responses in wheat (Triticum aestivum). TaHAG1 is a gene that encodes a histone acetyltrans-
ferase that is orthologous to Arabidopsis AtHAG1/GCN5, and rice OsHAG702 promotes
heat stress tolerance in wheat [31]. Moreover, histone acetylation can also modulate plant
defense responses against pathogens. In Arabidopsis, the histone acetyltransferase HAG1
(HISTONE ACETYLTRANSFERASE OF THE GNAT FAMILY 1) is involved in activating
defense genes against bacterial pathogens. HAG1 acetylates histones in the promoters of
these genes, promoting their expression and enhancing the plant’s resistance to bacterial
infection [32]. Furthermore, epigenetic memory and priming have been observed in maize
(Zea mays), where exposure to brief drought stress induces changes in histone acetylation
patterns, leading to improved drought tolerance upon subsequent stress [33,34].

3.2. Methylation and Demethylation

The equilibrium of a specific covalent histone modification’s steady-state level is gov-
erned by a delicate interplay between enzymes that facilitate its addition and those that
facilitate its removal. Protein arginine methyl transferases (PRMTs) and histone lysine
methyl transferases (KMTs) mark lysine and arginine with methyl groups, respectively.
Histone lysine methylation occurs primarily at Lys4, Lys9, Lys27, and Lys36 of H3 in
Arabidopsis [69–71]. Overall, histone methylation at H3K9 and H3K27 is connected with
gene silencing, whereas methylation at H3K4 and H3K36 is tied to gene activation. Based
on the number of methyl groups added to histone molecules, methylation is classified
as mono-, di-, or trimethylation, and gene expression varies depending on the level of
modification [26]. For instance, in Arabidopsis, the trimethylation of Lys27 (H3K27me3)
leads to gene expression repression, while the trimethylation of Lys4 (H3K4me3) leads to
the activation of gene transcription [72]. These methylation marks can be eliminated by
histone demethylases (HDMs) with the assistance of various cofactors in plants, includ-
ing lysine-specific demethylase 1 (LSD1) and the Jumonji C domain-containing protein
(JMJ) [73–75] (as shown in Table 1). Methylation occurs on lysine and/or arginine amino
acids within histones, altering their interaction with reader proteins and consequently
influencing chromatin structure, which in turn determines whether transcription is acti-
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vated or repressed. In Arabidopsis, repressive histone methylation modifications, such as
H4R3me2, H3K9me2/3, and H3K27me3, are observed, whereas active histone methyla-
tion modifications, such as H4R3me2, H3K4me3, and H3K36me2/3, are evident [76,77].
Unlike acetylation, which damages the electrostatic properties of histone proteins, histone
methylation preserves the electron charge of lysine. The histone methylation mark’s mode
of action (Tran’s effects) is presumably coordinated through hydrophobicity; however, this
assertion is not absolute, and other hypotheses have been put forth. Moreover, a variety of
histone H3 lysine residue methylation holds significance in plants, encompassing repressive
dimethylation at Lys9 (H3K9me2) and trimethylation at Lys27 (H3K27me3), along with
permissive trimethylation at Lys4 (H3K4me3) and Lys36 (H3K36me3) [78]. Additionally,
plants exhibit two arginine methylation sites (H3R17 and H4R3) and five lysine methylation
sites (H3K4, H3K9, H3K27, H3K36, and H4R20), each potentially holding a distinctive role
in the orchestration of transcriptional regulation [76]. For instance, Polycomb Repressive
Complex 2 (PRC2) having an HMT unit mediates the histone modification H3K27me3,
which was reported to be associated with gene repression in eukaryotes [79,80]. The identi-
fication of these PRC2 complexes originally occurred in Drosophila as Hox gene regulators,
subsequently revealing homologous PRC2 subunits within plants and animals [81,82].

Histone demethylation involves the removal of methyl groups from specific lysine or
arginine residues on histone proteins. This modification can have a profound impact on
chromatin structure and, subsequently, on the transcriptional regulation of genes involved
in plant abiotic stress tolerance. Histone demethylation can either activate or suppress the
transcription of stress-related genes [83]. The specific effect depends on the histone residue
being demethylated and the enzyme responsible for the demethylation. For example,
the removal of methyl groups from histone H3 lysine 4 (H3K4) is associated with gene
activation, while the demethylation of histone H3 lysine 9 (H3K9) or histone H3 lysine 27
(H3K27) is linked to gene repression [84]. The demethylation of histone H3K4 and histone
H3 lysine 36 (H3K36) near the promoter regions of stress-responsive genes can lead to their
activation [85]. This allows plants to mount a rapid response to abiotic stress conditions by
increasing the expression of genes involved in stress tolerance, such as those encoding heat
shock proteins, antioxidant enzymes, and osmoprotectants.

3.3. Phosphorylation

Phosphorylation, the process of adding a phosphate group (PO4
3−) to a molecule, is

orchestrated by specific protein kinases, while phosphatases facilitate phosphate group
removal [86]. Within this complex landscape, histones, the proteins around which DNA is
wound in chromatin, are subject to dynamic phosphorylation events that primarily target
threonine (Thr), serine (Ser), and tyrosine (Tyr) residues [87]. Histone phosphorylation often
responds to signals, such as DNA damage, extracellular cues, or cell division progression.
In the context of histone modifications, phosphorylation on histone H3 is of particular
interest, with prominent sites including Ser 10, Ser 28 (H3S10ph and H3S28ph), Thr 3, and
Thr 11 (H3T3ph and H3T11ph) [88]. The importance of these modifications is underscored
by observations in Arabidopsis where a mutant deficient in closely related Ser/Thr protein
kinases (At3g03940 and At5g18190) displayed heightened sensitivity to osmotic and salt
stress, along with dwarfism. Intriguingly, this mutant exhibited a significantly reduced
level of phosphorylated histone H3 at Thr 3 (H3T3ph). Genome-wide assessments unveiled
an elevation in H3T3ph at Thr 3 within pericentromeric regions of Arabidopsis thaliana
under osmotic stress conditions [89–91].
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Table 1. Histone modifications occurring under different abiotic stresses in plants. Special attention
is given to the proteins acting as substrates for modifications, encompassing both histone and
nonhistone proteins.

Modification Type Regulator Name Crop Stress Type References

Acetylation
Acetyltransferase GCN5, AtHAC1 Arabidopsis and Poplar Heat, salinity, and drought

(Chimeric dCas9 HAT) [35–37]

Acetylation
Acetyltransferase HAT, AREB Poplar Drought [36]

Deacetylation
(Deactylase) HDAC, IDS1 Rice Salinity [38]

Deactylation
(Deactylase) HDAC, MYB96 Arabidopsis Drought [39]

Deactylation
Deacetylase

HDA9, HDA15, HDA705,
BdHD1, HD2C

Arabidopsis, Rice, and
Brachypodium

Drought, salinity cold, and
heat [28,39–42]

H3K9 acetylation HAT, GCN5,
ZmEXPANSIN-B2 Maize Salinity [43]

H3 hyperacetylation HAT genes, OsHAT genes Rice Drought [44,45]

Deactylation
(Deactylase)

HDA9, CYP707A1,
CYP707A2 Arabidopsis Drought [46]

Deactylation
(Deactylase) BdHD1, WRKY24 Purple False Brome or

Stiff Brome Drought [47]

Acetylation AtHAC1 Arabidopsis Heat [48]

Acetylation MYST, ELP3, GCN5 Barley Drought [49]

Acetylation

OsHAC703,
OsHAG703,
OsHAF701,
OsHAM70

Rice Drought [50]

Deacetylation
(Deactylase) 84KHDA903 Tobacco Drought [51]

Deacetylation
(Deactylase)

HD2C, HSFA3,
HSFC1, HSP10 Arabidopsis Heat [42]

Acetylation GCN5, PtrNAC006, Black Cottonwood Tree Drought [52]

Recruiter MYB96, IDS1, AREB1 Arabidopsis, Rice, and
Poplar Drought and salinity [38,39,52]

Methylation
Methyltransferase ATX1, ATX4/5 Arabidopsis Drought [53,54]

Demethylation
Demethylase JMJ17 Arabidopsis Drought [55]

Trimethylation HMT Arabidopsis Gamma irradiation [56]

Ubiquitination
Ubiquitinase

HUB1/2, AtHUB2,
OsHUB2

Arabidopsis, Cotton,
and Rice Salinity and drought [57–61]

Phosphorylation
Kinase MLK1/2 Arabidopsis Drought and salinity [62–64]

Ubiquitinase and
deubiquitinase H2B Rice Drought [61]

Sumoylation SUMO E3 ligase
(AtSIZ1, OsSIZ1) Arabidopsis and Rice Heat [65–67]

Ubiquitination SNAC1 gene Wheat Salt and drought [68]
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This phosphorylation of histone H3 plays a crucial role in various cellular processes,
including chromosome segregation, chromatin condensation, and transcriptional regula-
tion [92]. Additionally, histone H2AX phosphorylation at Ser 129, known as γH2AX, is a
pivotal player in the DNA damage response and repair. Rapid phosphorylation of H2AX oc-
curs at sites of double-strand DNA breaks, catalyzed by PI3K kinases. This modification rep-
resents one of the earliest and most discernible post-translational signals triggered by DNA
damage [93–95]. The Arabidopsis genome houses an extensive array of over 1000 protein
kinases, including calcium-dependent protein kinases (CPKs), mitogen-activated protein
kinases (MAPKs), receptor-like kinases (RLKs), and sucrose nonfermenting-related kinases
(SnRKs). Alongside these, it hosts approximately 150 protein phosphatases, encompassing
type 1 (PP1) and type 2A phosphatases, the protein tyrosine phosphatase family, and
the metal-dependent protein phosphatase family [96]. Specific MAPKs, such as MPK3,
MPK4, and MPK6, have been identified as key players in the phosphorylation of HSFA4A
at Ser-309. This intricate regulatory mechanism serves to modulate the activity of the
heat-activated factor HSFA4A. Elevated temperatures and increased salinity both trigger
HSFA4A activation, and their combined action influences the accessibility of HSFA4A-
binding sites within the promoters of target genes, like ZAT12, HSP17.6A, and WRKY30.
This finely tuned orchestration governs the plant’s response to abiotic stresses [97]. Histone
phosphorylation, influenced by the activity of MAPKs and the action of transcription
factors, like HSFA4A, can further modulate gene expression. It can make the chromatin
structure more permissive or restrictive for the transcription of the genes involved in heat
stress response. Overall, the connection among MAPKs, HSFA4A, and histone phosphoryla-
tion lies in the signaling pathway activated by heat stress in plants. MAPKs are involved in
the early signaling events of heat stress response, phosphorylating HSFA4A, which, in turn,
activates the transcription of stress-responsive genes. Histone phosphorylation can then act
as an additional layer of regulation, ensuring that the right genes are expressed in response
to heat stress, contributing to the plant’s adaption and survival under adverse conditions.

Furthermore, rising temperatures induce the nuclear translocation of the BR-regulated
transcription factor, brassinazole-resistant 1 (BZR1). In the nucleus, BZR1 binds to the pro-
moter of PIF4 (phytochrome-interacting factor), leading to cell elongation [98,99]. Notably,
histone H2A phosphorylation at Ser 95 in Arabidopsis, catalyzed by MuTP9-like kinases,
such as MLK4 and MLK3, has been shown to promote flowering time and enhance the
deposition of H2A.Z [92].

In summary, histone phosphorylation is a dynamic and finely regulated process
involving a delicate balance between kinases and phosphatases. These kinases engage
diverse targets to orchestrate distinct temperature-signaling pathways, thereby governing
the plant’s responses to a range of temperatures from elevated to exceedingly high. This
intricate regulatory network underscores the pivotal role of histone phosphorylation in
plant stress tolerance.

3.4. Ubiquitination

The enzymatic process involving the transfer of one or more ubiquitin monomers
to the protein substrate is termed ubiquitination (or ubiquitylation) [100]. Monoubiquiti-
nation brings about alterations in the subcellular localization, biochemical properties, or
molecular functions of target proteins. In contrast, polyubiquitination serves as a signal for
proteasome-mediated degradation [101]. This modification occurs specifically on lysine
residues 119 of H2A and 120 of H2B. The ubiquitination process primarily encompasses
three stages: ubiquitin protein activation, ubiquitin conjugation, and ubiquitin ligation.
These steps necessitate the addition of ubiquitin to the target protein and are executed by
their respective ubiquitin-activating enzymes (E1s), ubiquitin-conjugating enzymes (E2s),
and ubiquitin ligases (E3s) [102]. Among the ubiquitination enzymes, the most abundant
are E3 ubiquitin ligases. In rice and arabidopsis, a drought stress tolerance cascade in-
volving 3 ubiquitin ligase OsPUB67 and its target protein OsDIS1 and OsRZP34 has been
well explored. OsPUB67 positively regulates drought tolerance by promoting improved
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scavenging of ROS and closure of stomata under drought, whereas OsDIS1 and OsRZP34
are negative regulators that open the stomata under drought stress. OsPUB67 ubiquitinates
the targets OsRZFP34 and OsDIS1 for proteolysis-mediated degradation, leading to an
increased level of stomatal closure [103–105].

In a study conducted by Tripathi et al. [106], researchers delved into the physiological
role of OsNAPL6, a putative rice NAP superfamily histone chaperone responsive to stress.
This nuclear-localized histone chaperone possesses the ability to form nucleosome-like
structures. Through a combination of overexpression and knockdown strategies, they
unveiled a positive connection between OsNAPL6 expression levels and the plant’s ability
to adapt to diverse abiotic stresses. Their investigation, involving comparative transcrip-
tome profiling and promoter recruitment analyses, highlighted OsNAPL6′s role in stress
response by influencing the expression of various genes associated with diverse functions.
Many ubiquitin ligases were discovered in stress-related mutants, accounting for regulatory
roles in abiotic stress tolerance, particularly drought tolerance, in Arabidopsis and crop
species [107]. For example, a small regulatory protein (E3 ubiquitin ligase RING FINGER
1) imparts drought tolerance in durum wheat [1]. Furthermore, H2A (H2Aub) and H2B
(H2Bub) monoubiquitination affect transcription in eukaryotes both actively and repres-
sively. In Arabidopsis, H2AK121 monoubiquitination occurs independently of H3K27me3,
but it does not cooperate with PRC2, which is required to maintain H3K27me3 [108,109].

In addition to DNA methylation, histone H3 heterochromatic methylation is required
for H2B deubiquitination. H2B monoubiquitination, in more detail, activates transcription
via the presence of H3K4me3 [110]. The experimental study in Arabidopsis observed a
direct link between H2B monoubiquitination and plant immunity because they found that
pathogen infection increases the H2B monoubiquitination at R-gene SNC1 [111]. Likewise,
in tomatoes, the presence of the histone H2B monoubiquitination enzymes HUB1, HUB2,
SlHUB1, and SlHUB2 has been identified as a contributor to resistance against B. cinerea.
Their role is likely centered on maintaining a balance between the signaling pathways
governed by SA and JA/ethylene. The expression of the gene governing the SA (salicylic
acid)-mediated signaling pathway was significantly upregulated, while the expression of
genes in the JA (Jasmonic acid)/ethylene pathway were critically downregulated. This
interaction establishes a crucial connection between plant immunity and the process of
ubiquitination [112]. According to research on wheat’s histone modification, TaHUB2 (the
second histone H2B monoubiquitination enzyme) interacts with TaH2B in vernalization
pathways and may be necessary for wheat heading [113,114]. TaHUB2 serves as a ubiquitin
RING-type E3 ligase. In Arabidopsis, the HUB1 (histone monoubiquitination 1, gene
encoding E3 ligase) mediated H2Bub1 (histone H2B monoubiquitination) has been proven
as a mechanism regulating auxin biosynthesis [115]. A recent investigation revealed that
GhUbox8, an E3 ligase of the U-box-type, collaboratively modulates histone monoubiqui-
tination of H2A and H2B in conjunction with GhUBC2L, an E2 enzyme. This concerted
action governs the expression of genes associated with cell cycle progression and organ de-
velopment [116]. This discovery reinforces the significance of histone monoubiquitination
in orchestrating the regulation of organ size within the context of cotton.

3.5. Sumoylation

The Small Ubiquitin-like Modifier (SUMO) protein family engages in a process of
attaching to and detaching from various proteins within the cell, thereby modulating the
functionality of these proteins. In the research conducted by Shiio et al. [117], it was demon-
strated that SUMO can modify H4, leading to the recruitment of HDAC and HP1 proteins.
This recruitment subsequently results in the suppression of transcriptional activity through
competitive interactions with other active marks, such as methylation, acetylation, and
ubiquitination. In Arabidopsis, there are instances of SUMOylated chromatin modifiers
and components, such as HDA19, H2B, and GCN5, and the deubiquitinating enzyme
UBP26, which functions to remove ubiquitin attached to H2B. As an illustration, exposure
to heat stress (37 ◦C for 30 min) induces a reduction in H2B SUMOylation while simulta-
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neously increasing SUMOylation in GCN5 HAT [118]. This phenomenon plays a pivotal
role in modulating DNA methylation patterns during heat stress within Arabidopsis, as
the SUMOylation of histone acetylases/deacetylases facilitates the conversion of euchro-
matic regions into heterochromatic ones [119]. In the Arabidopsis context, SUMOylation
associated with chromatin serves as a pivotal switch, regulating the transcriptional bal-
ance between plant development and the response to heat stress. These SUMO-mediated
changes in chromatin signals lead to the upregulation of heat-responsive genes and the
downregulation of growth-related genes. Notably, the inactivation of the SUMO ligase gene
SIZ1 resulted in reduced SUMO signals on chromatin and a corresponding attenuation of
rapid transcriptional responses to heat stress [120,121].

Through a comprehensive approach encompassing proteomic and interactome analy-
ses, a total of 350 SUMO targets and SUMO-interacting proteins were unveiled in Arabidop-
sis. This exploration extended to those entities that exhibited accumulation subsequent to
subjecting plants to conditions of heat and oxidative stress, employing three distinct re-
search methodologies [118,122]. The majority of SUMO substrates control nuclear activities,
such as DNA methylation, DNA repair, RNA processing, chromatin remodeling, and gene
transcription [123,124]. Genes, such as COP1 and SIZ1, serve as typical examples of proteins
that dynamically regulate high-temperature-induced growth responses via SUMOylation
or ubiquitination. Alternatively, SUMO can be subjected to controlled proteolysis via the
generation of poly-SUMO chains mediated by SUMO ligases like PIAL1/2. This process
is paralleled by the regulation of SUMO through the activity of SUMO ligases, such as
PIAL1/2, which orchestrate the assembly of poly-SUMO chains. This polymeric config-
uration serves as a docking site for STUbLs, facilitating the conjugation of polyubiquitin
chains to both SUMO and the target protein. Consequently, this orchestrated interaction
primes the 26S proteasome for targeted degradation. This intricate interplay elevates the
scope of transcriptional control to a greater level [125].

4. Tools to Study Histone Modifications

In terms of research methodology, scientists studying plants must continue to adopt
cutting-edge genomics tools that permit genome-scale readouts in addition to single-cell-
type studies of gene expression and chromatin profiling. Technological advances have
provided suitable techniques to investigate the chromatin profiles and gene expressions in
particular plant cell types.

4.1. Chromatin Immunoprecipitation (ChIP) and ChIP-qPCR

The significance of chromatin regulation in plant stress responses has been under-
scored through the discovery of distinct sites of histone modification and the identification
of histone modifiers that control critical stress-responsive genes using both genetic and
biochemical approaches [87]. The intimate connection between histone modifications and
the ChIP technique lies in the fact that ChIP (Chromatin Immunoprecipitation) serves as the
foremost experimental tool for investigating and delineating histone modifications at spe-
cific genomic loci. Using the ChIP technique, scientists can examine how histone proteins
that have particular post-translational modifications bind to DNA, revealing important de-
tails about the epigenetic control of gene expression. ChIP stands as a potent and adaptable
technique, centered on the selective immunoprecipitation of a protein of interest from chro-
matin extracts. This method serves the purpose of elucidating the DNA sequences linked
with the protein, and it has emerged as the preferred approach for scrutinizing protein–
DNA interactions within cellular contexts. Its utility extends to the mapping of DNA target
sites for transcription factors and other proteins linked to chromosomes [126–128], as well
as for pinpointing the genomic positioning of post-translationally modified histones and
histone variants (as illustrated in Figure 3).
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Figure 3. Overview of a ChIP experiment. Formaldehyde is used to cross-link proteins and their
associated chromatin in living cells. In the next step, cross-linked DNA–protein complexes (chromatin–
protein) are physically or enzymatically digested to separate them into 500 bp DNA fragments. In
immunoprecipitation, an appropriate protein-specific antibody is subsequently used to immunopre-
cipitate the DNA–protein complexes. The related DNA fragments are eluted after the cross-links
are reversed, and then the cross-linked complexes are immunoprecipitated. The resultant DNA
is subjected to analysis through using endpoint or quantitative polymerase chain reaction (qPCR),
microarray technology (ChIP-chip), or state-of-the-art next-generation sequencing (ChIP-seq).

So far, many ChIP experiments in plants have been conducted. ChIP analyses, for
example, have identified 28 histone modification sites in Arabidopsis [129]. According to
the results of a ChIP assay conducted in Arabidopsis for a drought–stress response, the
activation of four distinct drought stress-responsive genes is accompanied by changes in
histone modifications on the histone 3 N-terminal tails, such as At2g20880, RD20, RD29A,
and RD29B. Another finding from the ChIP assays indicates that the factor ERF1 activates
particular sets of genes in response to different abiotic stresses through stress-specific bind-
ing to DRE/CRT or GCC. Furthermore, a study reported that the expression of AtERF53
(Ethylene Response factor 53) in wild-type plants of Arabidopsis results in responsive be-
havior of those plants to ABA and heat stress, which implicates the positive role of AtERF53
in the transactivation of downstream stress-related genes [130]. Based on a ChIP-PCR
investigation, it has been revealed that the promoter region of the MIR168a gene undergoes
direct binding by four distinct autonomously replicating sequence binding factors (ABF1,
ABF2, ABF3, and ABF4) in response to ABA or drought treatment [10]. Furthermore, the
integration of ChIP with quantitative PCR (ChIP-qPCR) or sequencing (ChIP-seq) has
emerged as a highly effective approach for pinpointing histone modifications at specific
loci or across the entire genome. This methodology is also instrumental in identifying
sites where DNA-binding proteins (DBPs) are active [131,132]. In summary, ChIP allows
researchers to assess changes in histone modifications under abiotic stress by selectively
isolating and analyzing DNA regions associated with specific histone modifications. This
technique helps elucidate the epigenetic regulation of genes involved in stress responses
and provides insights into the molecular mechanisms underlying how organisms adapt to
challenging environmental conditions [133,134].

Following the ChIP assay and sample purification, qPCR enables real-time quantifi-
cation of DNA concentrations from multiple samples by examining fluorescent signal
intensities that are proportional to the amount of amplicon. With the help of primers,
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polymerases, oligonucleotides, and detection fluorophores, like TaqMan (fluorescent donor:
quencher hybridization) probes, or SYBR Green intercalating dye (no specific probe is
needed), DNA samples are subjected to quantitative PCR. In optimum reactions, DNA
polymerase doubles the amount of amplified DNA through cycles of amplification. Each
cycle uses products from the previous cycle as templates for the subsequent cycle. In order
to be certain of a successful analysis, it is important to make sure that the primers amplify
the targeted sequence with greater than 95% efficiency and do not form dimers, which could
weaken the specific signal from SYBR Green-based qPCR [135,136]. This approach finds
utility across various domains in the life sciences, encompassing cellular differentiation, the
suppression of tumor suppressor genes, and the influence of histone modifications on gene
expression. A Chip-qPCR protocol has been established to discern and evaluate histone
modifications within youthful Arabidopsis inflorescence tissue [137].

4.2. Bisulphite-Treated Chromatin-Immunoprecipitated DNA (BisChIP-seq)

Researchers are deciphering the intricate patterns of DNA methylation and histone
modifications within chromatin, both in the context of cellular differentiation during devel-
opment and in the context of diseases, through the utilization of extensive whole-genome
sequencing endeavors [138]. Moreover, the implementation of bisulphite sequencing on
chromatin-immunoprecipitated DNA (BISChIP-seq) provides a direct means to explore
whether DNA marked by histones or associated with transcription factors is methylated.
Bisulphite sequencing involves treating DNA with bisulphite to convert cytosine, while
preserving 5-methylcytosine (5mC), into uracil. Subsequent PCR amplification results in
the conversion of uracil into thymine. ChIP is used to enrich a target chromatin mark
in order to achieve this. As a result of successful ChIP, the DNA undergoes end repair,
30 ends are adenylated, and methylated adaptors are ligated before bisulphite conversion
is completed. It is necessary to convert the ChIP DNA to achieve the best DNA yield and
the highest bisulphite conversion rates (>98%). In BisChIP-seq, library generation is the
final step, and by using PCR amplification of adaptor-ligated bisulphite-converted DNA
over 10–14 cycles of PCR, a library is generated, which is then subjected to next-generation
sequencing [139] (Figure 4).

This technology enables accurate qualitative and semiquantitative assessments of
DNA methylation. Consequently, it becomes a valuable tool for discerning variations in
DNA methylation levels within specific genes under both normal and stress-inducing
conditions. Through direct analysis of bisulfite methylation in wild tobacco plants, an
insightful mapping emerged, indicating complete demethylation within promoter regions
and targeted demethylation specifically occurring at CG sites within coding regions. These
observed phenomena had previously been linked to oxidative stress, as demonstrated by the
comparable demethylation pattern induced by ROS triggered by paraquat exposure. As an
illustration, the aluminum treatment of wild tobacco plant leaves prompted the induction of
NtGPDL transcripts within a mere 6 h timeframe. The bisulphite sequencing of such plants
exposed to abiotic stress revealed a cause–effect relationship between NtGPDL methylation
and expression. Also, in another study, Bisulphite sequencing has been performed on
rice genotypes [10].

4.3. Cleavage under Targets and Tagmentation (CUT & Tag)

Cleavage Under Targets and Tagmentation (CUT & Tag) is an innovative approach
to epigenome profiling. In this method, a specific antibody binds the target chromatin
protein directly in its native context. Subsequently, the antibody serves as a bridge to the
pA/G-Tn5 transposase fusion protein. Activation of the pA/G-Tn5 transposase in the
presence of Mg2+ initiates a ‘cut-and-paste’ process on the target chromatin. As a result, the
target DNA becomes fragmented and is tagged with adaptor sequences, a step referred to
as tagmentation [140]. CUT & Tag is designed to target specific genomic regions or proteins,
including histones with specific modifications. For instance, researchers can use antibodies
against histone modifications of interest (e.g., H3K4me3 for active promoters) to selectively
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profile these modifications in response to abiotic stress [141]. It can also generates high-
resolution maps of histone modifications, allowing researchers to pinpoint precisely where
these modifications occur in the genome. This is essential for understanding the regulatory
elements and genes associated with stress responses.
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While CUT & Tag techniques have demonstrated success in profiling histone modifi-
cations, investigating specific transcription factor (TF)–DNA interactions using CUT & Tag re-
mains technically demanding primarily because TFs are typically lower in number [142–145].

In summary, CUT & Tag is a versatile epigenomic profiling technique that can be
applied to study histone modifications in plants under abiotic stress conditions. Its ability
to provide high-resolution, cell-specific data makes it a valuable tool for understanding the
epigenetic regulation of stress-responsive genes and pathways in plants.
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4.4. Mass Spectrometry

Histone post-translational modifications (PTMs) are commonly examined through
using mass spectrometry (MS), especially when seeking to uncover unexplored PTMs
that may represent novel targets. The “bottom-up” MS approach, valuable for discerning
proteins within intricate mixtures and performing peptide mapping of purified proteins,
involves enzymatic protein digestion into smaller peptides and subsequent liquid chro-
matography (LC) separation and MS detection ensue. Due to the abundant basic residues
in histones, the use of trypsin-based bottom-up MS that primarily focuses on lysine and
arginine, generates peptides that are often very low for comprehensive characterization
of histone PTMs. To comprehensively capture the intricate interplay of combinatorial
PTMs spanning the polypeptide sequence, enhanced protocols have been devised. These
involve chemical derivatization or alternative proteases, such as GluC instead of trypsin,
resulting in the generation of longer peptides [146,147]. These elongated peptides are
better-suited for Liquid Chromatography–Mass Spectrometry (LC–MS) characterization.
Employing the top-down MS approach proves highly effective for profiling histone modifi-
cations and distinguishing closely related forms of histone proteins. Prior investigations
utilizing top-down MS have successfully unveiled novel variants, PTMs, and proteolytic
sites [109,148,149]. The utility of top-down MS is progressively expanding across diverse
biological applications [150].

5. Role of PTM-Based Histone Modifications in Abiotic Stress Tolerance

Abiotic stresses, such as drought, extreme temperatures, salinity, and heavy metal
exposure, induce various changes in plant cells, including alterations in the epigenetic land-
scape through histone modifications. When plants encounter these stresses, they activate a
complex network of signaling pathways and stress-responsive genes to adapt and survive.
Histone modifications play a pivotal role in regulating gene expression under these adverse
conditions [151,152]. For example, the acetylation of histone proteins provides a more open
chromatin structure, facilitating access to stress-responsive genes for transcription factors
and RNA polymerase [153,154]. Conversely, methylation and deacetylation events can lead
to gene silencing, providing a mechanism for the downregulation of nonessential genes
during stress. These modifications are orchestrated by histone-modifying enzymes and epi-
genetic regulators, and can mediate both short-term responses to acute stress and long-term
adaptations to chronic stress conditions [155–157]. Overall, histone modifications represent
a crucial layer of epigenetic regulation in plants, enabling them to fine-tune gene expression
in response to various abiotic stresses, ultimately promoting survival and adaptation in
challenging environments.

Extreme temperatures, droughts, high salinity, and ultraviolet radiation, all of which
are brought on by unpredictable climate changes, have a significant negative impact on
plant productivity. In response to environmental stresses, histone modifications play an
important role in regulating gene expressions as depicted in (Figure 5).

5.1. Role in Heat Stress

Sessile plants are vulnerable to heat stress, a pivotal abiotic stressor profoundly restrict-
ing plant growth and diminishing yields [158]. To enable plants to endure and counteract
heat stress, a specific subset of heat-responsive genes necessitates either activation or
suppression. This regulatory process can be orchestrated through histone or chromatin
modifications [159,160]. Illustratively, GCN5 emerges as a key player in bolstering thermo-
tolerance by enhancing the acetylation of H3K9/K14 within the promoter regions of genes,
such as ULTRAVIOLET HYPERSENSITIVE6 and HEAT SHOCK TRANSCRIPTION FACTOR
A3. Notably, plants harboring gcn5 mutations exhibited marked deficiencies in thermotol-
erance upon exposure to heat stress [64]. While nonenzymatic acetylation reactions remain
a plausible phenomenon, the prevalence of such reactions in plant nucleosomes remains
uncharted territory. Recent studies have unveiled an array of acetylation sites on nonhis-
tone proteins, with several of these sites proving pivotal for abiotic stress response [161].
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Notably, these findings underscore the significance of enzymatic acetylation catalyzed by
HAT activity in enabling Arabidopsis to withstand abiotic stress. However, it is worth high-
lighting that, particularly in the context of histone H3 acetylation, GCN5/HAG1 primarily
targets H3, with only marginal effects on H4 or H2A/B acetylation in vitro. Furthermore,
the interplay between H3K4 demethylation and histone H3K9 acetylation triggers the
upregulation of Hsf (Heat Stress Transcription Factor), facilitating elevated ROS levels that
ultimately aid in the acclimatization of maize seedlings to heat stress [162].
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The outcomes reveal that heat stress-responsive genes, including ATX1 and SDG25,
exhibit expression in Arabidopsis both during heat stress and in the subsequent stress
recovery phase. Furthermore, the overexpression of RING finger E3 ligases, such as Os-
HTAS, OsHIRP1, or OsHCI1, has been demonstrated to bestow heat tolerance upon rice
plants [120,163,164]. As detailed in a study conducted by Mishra et al. [66], the augmen-
tation of the rice SUMO E3 ligase OsSIZ1 through overexpression notably escalated the
photosynthesis rate in plants experiencing heat stress. Notably, when rice plants encoun-
tered moderate heat stress at 48 and 72 h postfertilization, a decline was observed in the
levels of DNA and H3K9 methylation associated with OsFIE1 (Fertilization-Independent
Endosperm 1). This observation hints at the role of epigenetic regulation in influencing
thermosensitivity during endosperm development [165]. These findings hold the potential
to unveil novel perspectives on enhancing thermotolerance in rice. Arabidopsis ASF1 (AN-
TISILENCING FUNCTION 1) histone chaperones, encompassing ASF1A and ASF1B, have
been associated with both innate and acquired thermotolerance, facilitated by nucleosome
eviction and the promotion of H3K56ac.

The transcriptional induction of HSFA2 and HSA32 genes underscores the pivotal role
of histone modification as the principal mechanism orchestrating the plant’s response to
heat stress [166]. As highlighted by Qiu et al. [167], plants respond to prolonged slightly
elevated temperatures primarily through thermal morphogenesis, which encompasses
phenomena, like petiole elongation and leaf hypophysis. Notably, the overexpression
of SUMO E3 ligases (such as OsSIZ1, GmSIZ1, AtSIZ1, and SlSIZ1) has demonstrated
a capacity akin to ubiquitination in enhancing plant resilience to heat stress [65,66,168].
Newer investigations have revealed that SUMO1/2 activation contributes to temperature
acclimation through the HSFA1 family, recognized as the principal orchestrator of heat
stress responses. Notably, mutant lines lacking SUMO1/2 exhibit thermosensitivity at
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28 ◦C [169]. In a recent discovery by Zhang et al. [168], an additional E3 ligase, the XB3
ortholog in Arabidopsis thaliana (XBAT31), has been identified. This E3 ligase is implicated
in regulating the stability of the ELF3 protein, consequently impacting hypocotyl growth
under elevated temperatures. Another insightful study on rice unveiled the significance
of OsbZIP74 in conferring heat stress tolerance. This study highlighted that OsNTL3,
a NAC transcription factor that governs downstream gene expression in response to
heat and ER stress, experiences heightened gene expression levels due to the influence
of OsbZIP74 [170].

5.2. Role in Cold Stress

Plant development and growth can be significantly impacted by cold stress. Extremely
low temperatures (chilling and freezing) can cause chlorosis, wilting, uncontrolled apop-
tosis, and damage to the photosynthesis process in plants [171]. However, plants have
developed special systems to cope with cold stress; among them, epigenetic regulations
play an important role [172]. As detailed in the study by Zeng et al. [25], plants react
to cold stress by enhancing the accessibility of active gene chromatin and imprinting it
with a bivalent pattern. Building upon their observations, the researchers put forward a
hypothesis that the bivalent marks of H3K4me3-H3K27me3 in cold-stored tubers create a
unique chromatin milieu with heightened accessibility. This environment could potentially
aid in facilitating the regulation of genes involved in the response to cold stress.

One of the distinctive mechanisms is referred to as the cold signaling mediated by the
Cold-Responsive Element-Binding Factors (CBFs; also known as Dehydration-Responsive
Element-Binding Protein (DREB): CBF1/DREB1B, CBF2/DREB1C, and CBF3/DREB1A)
transcription factors. These CBF transcription factors play a pivotal role in inducing the ex-
pression of specific genes associated with freezing resistance. They achieve this by binding
to the conserved Cold-Responsive Element/Dehydration-Responsive Element (CRT/DRE)
present in the promoter region of Cold-Regulated genes (COR), such as COR15A, COR47,
and COR78. This process contributes significantly to the enhancement of freezing tol-
erance. In Arabidopsis, exposure to extremely low temperatures triggers an increase in
the expressions of CBF2 and CBF3 (c-repeat binding factors) through the overexpression
of RDM4 (RNA-directed DNA Methylation-4). This enhanced expression of CBF2 and
CBF3 contributes to a reduction in membrane injury by interacting with COR (cold-related)
genes [173,174]. In a study by Min et al. [175], it was observed that transgenic rice plants
exhibiting ectopic overexpression of CaPUB1, a U-box E3 ubiquitin ligase from hot pepper,
displayed heightened resistance to cold stress compared to wild-type rice plants. Another
gene, HOS15 (HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE15), plays a
distinct role in mediating HD2C degradation upon exposure to cold stress. This action
alters the chromatin structure from inhibitory to active, serving as a positive regulator of
cold stress [28]. Consequently, this regulatory mechanism enhances CBF supplementation,
leading to the development of cold hardiness and the expression of COR genes. Addi-
tional investigations revealed that cold stress exposure in potato tubers triggers bivalent
histone modifications (H3K4me3 and H3K27me3), leading to enhanced chromatin accessi-
bility [176]. For cold tolerance, Hwarari et al. [177] demonstrated that the CBF gene protein
engages with the CRT/DRE, a conserved regulatory element within the promoter of the
COR gene.

5.3. Role in Salt Stress

Elevated soil salt concentrations exert detrimental effects on plants, resulting in dimin-
ished plant growth and development. To contend with salt stress, plants employ epigenetic
mechanisms, such as chromatin remodeling and histone modifications for genetic-level
regulation [178,179]. Notably, an increase in the H3K9 acetylation levels has been correlated
with the upregulation of cell wall-related genes in maize roots, essential for an effective
response to high salinity. Prominent examples of these genes encompass the promoter and
coding regions of ZmXET1 and ZmEXPB2. Despite the amplified mRNA expression trig-
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gered by salt stress, the potential involvement of two HAT genes (ZmHATB and ZmGCN5)
in orchestrating this upregulation has been suggested. Recent investigations revealed the
role of GCN5 in imparting heat and salinity stress tolerance. In the context of salt stress
response, the involvement of GCN5 was initially discerned in maize (Zea mays) roots. The
heightened acetylation of H3K9, manifesting in both gene promoter and coding regions,
was associated with the upregulation of cell wall-related genes, such as ZmEXPB2 and
ZmXET1, enabling maize roots to effectively counteract high-salinity conditions. This
acetylation-driven response is believed to be orchestrated by two histone acetyltransferase
(HAT) genes, ZmHATB and ZmGCN5, whose mRNA expression escalates in the presence
of salt stress [180]. Likewise, in Arabidopsis, GCN5 mRNA expression becomes activated
under salt stress, and gcn5 mutants show higher susceptibility to salt stress due to compro-
mised cell wall integrity, corroborating earlier findings. A critical GCN5 target crucial for
both cell wall biosynthesis and salt stress resilience is CTL1, which encodes a chitinase-like
(CTL) protein. GCN5′s acetylation of H3K9/K14 serves as a stimulant for CTL1 expression,
thereby bolstering cell wall synthesis and enhancing salt stress resistance [176].

Another important finding was the isolation of the AP2/EREBP TF family member
HhBREB2 from the Halimodendron halodendron and subsequent assignment of this gene to
the DREB subfamily’s A-5 cluster due to its similarity to the AP2/ERF domain. Increased
salt tolerance was produced in Arabidopsis by overexpressing the HhBREB2 gene [181]
that has shown promise in mitigating salinity-induced stress in cassava plants. By utiliz-
ing suberoylanilide hydroxamic acid (SAHA), a commercially available HDAC inhibitor,
researchers have endeavored to enhance cassava’s resilience to high-salinity conditions.
Notably, exposure to SAHA led to a robust upregulation of an enzyme involved in jasmonic
acid (JA) biosynthesis. This, in turn, contributed to a reduction in Na+ levels and an in-
crease in K+/Na+ ratios. Microarray-based transcriptome analysis unveiled a pronounced
induction of ABA and JA phytohormone biosynthesis in response to heightened salinity
stress. Immunoblotting analyses provided evidence of SAHA treatment triggering exten-
sive hyperacetylation of histones H3 and H4 in cassava roots, confirming the inhibitory role
of SAHA as an HDAC inhibitor. Transcriptome analysis further revealed that under normal
conditions, SAHA enhanced the expression of 421 root genes, a number that increased to
745 genes at 2 h and 268 genes at 24 h during SAHA and NaCl treatment. The primary
outcome of SAHA treatment was the hyperacetylation of histones H3 and H4 in cassava
roots, potentially instigating transcriptional modifications that enhance the plant’s tolerance
to high salinity stress.

For the involvement of specific HDACs, it has been observed that HDA9 and HDA19
negatively impact salt stress tolerance, while HDA6, HD2C, and HD2D exert a positive in-
fluence on salinity resilience. In a comparable context, rice INDETERMINATE SPIKELET1
(IDS1) has been identified as an HDAC recruiter in salinity stress [38]. Furthermore, in Ara-
bidopsis, ubiquitination at histones H2A and H2B has been linked to both transcriptional
activation and repression [182,183]. In accordance with Dong et al. [184], the epigenetic
landscape of the promoter region of MsMYB4, a gene encoding a salt-induced MYB tran-
scription factor in alfalfa, undergoes changes in response to salt stress. The activation of
MsMYB4, critical for alfalfa’s salt stress response, was correlated with elevated levels of his-
tone H3K4 trimethylation and H3K9 acetylation within specific segments of the promoter
sequence. In the case of rice, HDA710/OsHDAC2 has been observed to modulate salt stress-
responsive genes by influencing the acetylation status of H4 within its promoter regions, as
evidenced by the notable rise in HDA710 transcript levels under salt stress conditions [185].
In wheat, a wheat counterpart of AtHAG1/GCN5 known as TaHAG1 has been identified to
directly target genes associated with ROS synthesis. This targeting was found to be crucial
for wheat’s adaptation to salt stress, as the enrichment of TaHAG1 during salt stress led to
increased H3 acetylation and subsequent transcriptional upregulation of these genes [186].
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5.4. Role in Drought Stress

Drought exerts significant adverse impacts on crop yield, emerging as a paramount
agricultural concern. With the projections of intensified and more frequent global climate
change, the incidence and severity of drought are anticipated to escalate [17,187]. Under
drought stress, mRNA expression of genes, like OsHAC703, OsHAF701, OsHAG703, and
OsHAM701, in rice was increased [45]. Similarly, investigations revealed that the O. sativa
arsenic-induced RING E3 ligase 1 (OsAIR1) and the O. sativa chloroplast-targeting RING E3
ligase 1 (OsCTR1) acted as positive regulators of the drought stress response [188]. Notably,
small noncoding RNAs (sncRNAs) displayed a positive correlation with hypermethylated
regions across three distinct rice cultivars with varying degrees of drought tolerance, high-
lighting an ongoing interplay among small RNA abundance, gene expression, and DNA
methylation during stress conditions [189]. To illustrate, in Chinese cabbage, drought stress
led to a decreased expression of BraHAC5, while it notably induced strong upregulation
in the expression of Bra-HAC7, BraHAG2, and BraHAC5. Interestingly, after the drought
stress treatments, Bra-HAG2 exhibited a contrasting expression pattern between days 2
and 4. In the context of salinity stress, it has been demonstrated that 13 BraHATs were
activated at different time points (5 h, 1 day, and 2 days) following the stress treatments,
except for BraHAG4 and BraHAG6 [44]. For instance, rice Indeterminate Spikelet1 (IDS1)
and Arabidopsis MYB96 have been identified as HDAC recruiters in the context of salinity
and drought stress responses, respectively [38,39]. In poplar (Populus trichocarpa), Abscisic
Acid (ABA)-Responsive Element-Binding Protein1 (AREB1) functions as a HAT recruiter
during the drought stress response [36]. Conversely, in rice, OsbZIP46CA1 (OsbZIP46)
serves as both a recruiter for H2B ubiquitination and deubiquitination in the context of the
drought stress response [61].

Under drought stress conditions, the tomato Heat Shock Transcription Factor A1a
(SlHsfA1a) engages with the promoters of SlATG18f and SlATG10, triggering activation
in response to the drought stress stimulus [62]. Subsequently, Bao et al. [190] unveiled
the Arabidopsis gene Constitutively Stressed 1 (AtCOST1), which governs autophagy
and manages plant drought tolerance. In Arabidopsis, the protein Salt- And Drought-
Induced Ring Finger1 (SDIR1) positively modulates the ABA-mediated drought stress
response [67,191]. Rice plants also possess OsSDIR1, an ortholog of SDIR1, involved in
orchestrating the drought stress response [192]. Cui et al. [193] unveiled and characterized
Oryza sativa Drought-Induced RING Protein 1 (OsDIRP1), a potential RING-type E3 Ub
ligase present in rice. Both drought and high-salinity conditions triggered the induction
of OsDIRP1. Furthermore, under drought stress, there was an increase in H3K4me3 and
H3K9ac at the promoter regions of stress-responsive genes, such as RD29A, RD29B, RD20,
and RAP2.4 in Arabidopsis [194]. In a separate study, the examination of histone deacetylase
9 (HDA9) of Arabidopsis thaliana with RPD3-type characteristics was conducted [46].

5.5. Role in UV and Radiation Stress

Although plants utilize sunlight during photosynthesis, excessive light, particularly
its UV (ultra-violet) component, can stress cells and cause serious harm to DNA, proteins,
and other constituents. Plants have been demonstrated to develop “memory” based on
epigenetic changes against UV stress [195]. The UV-B stress also induces ROS production
causing metabolic impairment, decreased resistance to pathogens, and alterations in cel-
lular processes [196–198]. In the early stages, distinct variations in the observed histone
modifications were detected at specific loci in Arabidopsis seedlings under varying light
conditions. The investigation revealed that shifts between dark and light environments
could bring about alterations in the H3K9ac status, which is additionally influenced by
the quality and quantity of light. Interestingly, key regulators in UV signaling and pho-
tomorphogenesis, namely HY5, DET1, and COP1, appear to be involved in modulating
H3K9ac levels. Notably, the H3K9ac status of specific genes showed a strong correlation
with their transcription in mutant forms of these three proteins. Additionally, exposure to
UV-B increased the H3K9/K14 acetylation on the ELIP1 (Early Light-Inducible Protein 1)
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promoter in wheat and Arabidopsis. The UV-C-exposed Arabidopsis plants were observed
to inherit the stress tolerance to untreated genotypes via methylation of the genome and
homologous frequency [199].

Lang-Mladek et al. [200] documented heritable variations in Arabidopsis in response
to UV-B stress, affecting the epigenetic regulation of a reporter gene. These changes were
associated with modifications in histone H3 acetylation and alterations in chromatin con-
formation. Chromatin modifications were observed in maize seedlings subjected to UV-C
and gamma irradiation treatments, and a clear connection has been established among
resistance to UV-C exposure, germination rate, and the occurrence of chromosomal aber-
rations [201]. Researchers examined the histone modifications linked to DNA damage
repair genes in Arabidopsis seedlings exposed to gamma rays [202]. Following gamma
irradiation, there was an elevation in the transcription of DNA damage repair genes. Inves-
tigations have demonstrated that the heightened expression of these genes is associated
with histone H3K4me3 at the gene body or transcription start sites. This conclusion was
drawn from diverse chromatin modification analyses performed at specific loci using
the conventional ChIP procedure [203]. Various investigations have unveiled the impact
of DNA methylation analysis at different levels within the loci of At1g31280 (AtAgo2),
At4g19130 (AtRPA1E), At5g20850 (AtRad51), and At5g24280 (AtGMI1). This analysis was
carried out through using MethylC-Seq (bisulphite conversion followed by sequencing)
using genomic DNA extracted from 4-week-old soil-grown plants. The outcomes of these
studies led researchers to a notable finding: the expression of DNA damage repair genes
increased significantly after exposure to gamma irradiation [184,204,205]. Additionally, spe-
cific regions of the promoter sequences exhibited histone modifications, namely H3K4me3
and H3K9ac. H3K4me3 was observed at gamma ray-inducible loci during DNA damage
repair, while H3K9ac was identified exclusively at the AtAgo2 locus. Remarkably, the
research unveiled that histone modifications triggered by gamma radiation are site-specific.
Furthermore, the modifications H3K4me3 and H3K9ac seem to play a more crucial role in
the activation of gamma radiation-induced genes at these specific loci than in the alterations
in DNA methylation [206,207].

6. Limitations and Path Ahead

Climate change presents arduous tasks to plants for survival and adaptation, to
which plants respond by frequent adjustments to adverse environments. Consequently,
recent research has emphasized understanding the role of PTMs in the molecular regula-
tion of stress-related genes. PTMs in histones offer plants greater flexibility in activating
their enzyme-signaling pathways, expediting resistance compared to post-transcriptional
processes. This review provides detailed clues on the significance of histone PTMs and
chromatin remodeling in governing stress responses and genetic regulation in plants.

Researchers have achieved great success in resolving the mysterious role of histone
PTMs in abiotic stress tolerance, but shaping the future of stress-tolerant plant development
requires addressing certain limitations in diagnosing histone PTMs. Firstly, the challenge
of proteome complexity is a significant hurdle. The intricate landscape of PTMs results
in a diverse range of proteoforms contributing to functional diversity within a single
gene product. Proteoforms (protein variants) refer to various isoforms of histone proteins
that arise due to specific combinations and locations of PTMs on histone proteins. These
protein variants play a critical role in the epigenetic regulation of gene expression and the
dynamic control of chromatic structure within the cell. This complexity poses challenges
for accurate identification, demanding advanced techniques capable of capturing the
dynamic nature of histone PTMs. While progress has been made in mass spectrometry
and high-throughput methods, cataloguing the entire spectrum of proteoforms (protein
variants) remains challenging. Consequently, achieving a comprehensive understanding
of how PTMs orchestrate gene regulation and plant responses to abiotic stresses remains
a formidable task, necessitating ongoing innovation in analytical approaches. Moreover,
deciphering the functional consequences of specific protein variants is another limitation.
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Elucidating the significance of individual variants requires sophisticated experimental
approaches, including targeted mutagenesis, functional assays, and in-depth structural
analyses. The complex interplay between different PTMs within a single protein further
complicates the interpretation of their combined effects on protein function.

Exploring this field has the potential to enhance our capacity to intricately intertwine
regulatory pathways with precise epigenetic adjustments, encompassing enhancer and
promoter specificity, RNA polymerase processivity, and pre-mRNA splice site selection.
The utilization of emerging, precise genome-editing techniques is poised to offer ample
opportunities to explore the application of targeted histone modifications in addressing
various abiotic stresses [208]. This proactive approach has the potential to significantly
advance our strategies for managing multiple stressors in plant systems.

Furthermore, understanding these histone PTMs will greatly enhance our ability to
explore the level of detail and precision at which individual cells are studied or analyzed
within a biological sample, often referred to as single-cell resolution [209]. The future of
studying PTMs in plant abiotic stress tolerance at single-cell resolution lies in harnessing
advanced single-cell omics technologies, including scRNA-seq, single-cell proteomics, and
spatial transcriptomics, to dissect the intricacies of PTM dynamics within individual plant
cells. By doing so, this approach will unveil cell-specific responses to abiotic stressors,
identify key regulatory nodes, and enable the development of predictive PTM signatures
for abiotic stress tolerance. Furthermore, the understanding of histone PTMs will be
significantly boosted by research advances in plant stress memory [210].

Future perspectives of PTMs in climate resiliency involve the continual refinement of
analytical strategies, the integration of multiomics approaches, and the development of
bioinformatics tools to decipher the functional significance of protein diversity. Employing
network analyses and systems biology approaches can reveal the convoluted relationships
between proteoforms and other cellular components, uncovering regulatory networks and
signaling pathways for stress resilience.
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Abbreviations of Genes

(c-repeat binding factors) CBF2 and CBF3
84KHDA903 Tobacco Histone Deacetylase
AP2/EREBP TF APETALA2/Ethylene-responsive Element-Binding Protein Transcription Factor
AP2/ERF APETALA2/Ethylene-responsive Factor
AREB ABA-Responsive Element-Binding Protein
ASF1 Antisilencing Function 1
At1g31280 (AtAgo2) Argonaute 2
At2g20880 ERF53 Drought-Induced Transcription Factor
At3g03940 and At5g18190 Ser/Thr protein kinases
At4g19130 (AtRPA1E) Replication Factor-A protein 1-like protein
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At5g20850 (AtRad51) Homolog of Yeast RAD (Radiation repair gene) 51
At5g24280 (AtGMI1) Gamma Irradiation and Mitomycin C-Induced 1
AtCOST1 Arabidopsis gene Constitutively Stressed 1
AtHAG1 Arabidopsis Thaliana Histone Acetyltransferase
ATX1, ATX4/5 Arabidopsis homolog of Trithorax1,4 and 5 (histone methyltransferase)
BdHD1 Brachypodium distachyon Histone Deacetylase
BraHAC5 Histone Acetyltransferase of the CBP Family 5
BraHAG2 Histone Acetyltransferase of the GNAT Family 2
BZR1 Brassinazole-resistant 1
CBFs Cold-Responsive Element-Binding Factors
CMT3 Chromomethylase 3
Cold-regulated genes (COR), such as COR15A, COR47, and COR78
COP1 Constitutive Photomorphogenic 1
CPKs Calcium-Dependent Protein Kinases
CRT/DRE Cold-Responsive Element/Dehydration Responsive Element
CTL Chitinase-like
CYP707A1, CYP707A2 Cytochrome P450 family 707-ABA 8′-Hydroxylase
DET1 De-etiolated 1
DOGL4 Delay of Germination 1-LIKE 4
DRE/CRT Dehydration-responsive element/C-repeat
DREB Dehydration-Responsive Element-Binding Protein
DRM Domain rearrangement methylase
DSB Double-Strand Break
ELP3 Elongator Acetyltransferase Complex Subunit 3
ERF113 Ethylene-Responsive Factor113
GCN5 General Control nondepressible 5
GNAT-MYST Gcn5-related N-acetyltransferase
HAG1 Histone Acetyltransferase of the Gnat Family 1
HATs Histone Acetyltransferases
HDACs Histone Deacetylases
HDMs Histone Demethylases
HhBREB2 Halimodendron halodendron
HMTs Histone Methyltransferases
HOS15 High Expression of Osmotically Responsive Gene15
HSFA3/A4A Heat Shock Transcription Factor A3/A4A
HSFC1 Heat Shock Transcription Factor C1
HSP10/HSP17.6A Heat Shock Protein 10/17.6A
HUB1/2, AtHUB2,OsHUB2, SlHUB1, SlHUB2 Histone Monoubiquitination1/2
HY5 Elongated Hypocotyl 5,
IDS Iduronate 2-Sulfatase
IDS1 Indeterminate Spikelet1
JMJ17 Jumonji Domain-Containing Protein 17
LBD-16 Lateral Organ Boundaries Domain
MAPKs Mitogen-Activated Protein Kinases
MET1 Methyltransferase 1
MLK1/2 MUT9p-Like Kinase1/2
MPK3/4/6 Mitogen-Activated Protein Kinase 3/4/6
MYB96 myb Domain Protein 96
MYST MOZ, Ybf2/Sas3, Sas2, and Tip60
MYST MYST-Type Domain-Containing Lysine Acetyltransferase
OsAIR1 Oryza sativa arsenic-induced RING E3 ligase 1
OsbZIP46CA1 Basic leucine zipper Transcription Factor
OsbZIP74 Leucine Zipper Transcription Factor
OsCTR Oryza sativa chloroplast targeting RING E3 ligase 1
OsDIRP1 Oryza sativa Drought-Induced RING Protein 1
OsDIS1 Oryza Sativa E3 ubiquitin–protein ligase 1
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OsHAC703, OsHAF701, OsHAG703, and OsHAM701
OsHAG702 Oryza sativa Histone Acetyltransferase
OsHCl1 Ring Finger E3 Ligase
OsHIRP1 Heat-Induced Ring Finger protein
OsHTAS Heat Tolerance at Seedling Stage
OsNAPL6 Oryza Sativa histone chaperone of NAP superfamily
OsNTL3 Membrane-Associated NAC Transcription Factor
OsPUB67 Oryza Sativa U-box E3 ubiquitin ligase
OsRZP34 Oryza Sativa Ring Zinc Finger Protein 34
PIAL1/2 Protein inhibitor of activated STAT-like 1
PP1 Protein Phosphatases1
PRC2 Polycomb-Repressive Complex 2
PtrNAC006 Populus truchocarpa NAC Domain-Containing Protein 6
RAP2.6 Related to AP2 6
RD20/29A/29B Responsive to Desiccation 20/29A/29B
RDM4 (RNA-directed DNA Methylation-4).
RLKs Receptor-Like Kinases
RTS1 Repressor of Transcriptional Silencing 1
SDIR1 Salt- and Drought-Induced Ring Finger1
SIARF4 Solanum lycopersicum Auxin-Response Factor 4
SIHyPRP1 Solanum lycopersicum Hybrid Proline Rich Protein 1
SIZ1/OsSIZ1/GmSIZ1/AtSIZ1/SlSIZ1 SAP and MIZ 1 Domain containing Ligase 1
SlHsfA1a Heat Shock Transcription Factor A1a
SNAC1 Stress-responsive NAC1 gene
SNC1 Suppressor of NPR-1, Constitutive1
SnRKs Sucrose Nonfermenting-Related Kinases
WIND1 Wound-Induced Dedifferentiation 1
WRKY24/30 Arabidopsis thaliana WRKY DNA-Binding Protein 24/30
XBAT31 XB3 Ortholog 1in Arabidopsis thaliana
ZAT12 Zinc Finger of Arabidopsis thaliana 12
ZmEXPB2 Zea maize expansin-B2
ZmXET1 Zm Xyloglucan Endotransglucosylase Hydrolase 1
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