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Abstract: Xanthan, a bacterial polysaccharide, is widespread in industrial applications, particularly
as a food additive. However, little is known about the process of xanthan synthesis on the proteome
level, even though Xanthomonas campestris is frequently used for xanthan fermentation. A label-free
LC-MS/MS method was employed to study the protein changes during xanthan fermentation in
minimal medium. According to the reference database, 2416 proteins were identified, representing
54.75 % of the proteome. The study examined changes in protein abundances concerning the growth
phase and xanthan productivity. Throughout the experiment, changes in nitrate concentration
appeared to affect the abundance of most proteins involved in nitrogen metabolism, except Gdh and
GlnA. Proteins involved in sugar nucleotide metabolism stay unchanged across all growth phases.
Apart from GumD, GumB, and GumC, the gum proteins showed no significant changes throughout
the experiment. GumD, the first enzyme in the assembly of the xanthan-repeating unit, peaked
during the early stationary phase but decreased during the late stationary phase. GumB and GumC,
which are involved in exporting xanthan, increased significantly during the stationary phase. This
study suggests that a potential bottleneck for xanthan productivity does not reside in the abundance
of proteins directly involved in the synthesis pathways.

Keywords: xanthan; polysaccharide; Xanthomonas campestris; course of time; LC-MS/MS; semiquantitative;
data-dependent acquisition

1. Introduction

Microorganisms have developed coping strategies for physical, chemical, or biological
stress factors [1]. One of these strategies is the production of extracellular polysaccha-
rides (EPSs), which can protect bacteria, microalgae, fungi, and protists against desicca-
tion [2], salt stress [3], and extreme temperatures [4–6]. EPSs have also become vital in
various biotechnological applications, and xanthan gum is the most commercially im-
portant polysaccharide of microbial origin, with an expected market growth rate of 5.6%
between 2020 and 2030 at a market size of USD 1.2 billion [7]. Xanthan is produced by the
Gram-negative γ-proteobacteria genus Xanthomonas [8] and is a crucial constituent of their
biofilms, important for their phytopathogenic lifestyle [9,10]. Xanthomonas campestris (Xcc)
is being extensively researched due to its xanthan production [11].

Xanthan gum consists of a pentameric-repeating unit, per which two β1,4-linked and
β1,2-linked D-glucose molecules form a cellulose-like backbone that contains a side chain of
β1,4-linked D-mannose, D-glucuronic acid, and β1,2-linked D-mannose [12]. The gum gene
cluster encodes the proteins for the synthesis of xanthan [13]. Xanthan synthesis starts with
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the transfer of glucose to a lipid carrier catalyzed by GumD, after which GumM, GumH,
GumK, and GumI then add the remaining sugar moieties to the pentameric-repeating
unit. GumF, GumG, and GumL can decorate the mannose and glucuronic acid residues
with acetyl and pyruvate moieties [14]. Afterward, the lipid-linked pentasaccharide is
‘flipped’ to the periplasm by GumJ, GumE polymerizes the pentameric units, and finally,
the xanthan molecule is exported through a specific channel in the outer membrane formed
by GumB and GumC [14].

Xanthan synthesis is a highly energy-demanding process that must be tightly regulated,
and there may be metabolic trade-offs between cell growth and xanthan production [15].
Environmental factors that influence xanthan production in Xanthomonas campestris have
been extensively investigated. While optimal temperatures for cell growth have been
reported to be between 24 ◦C and 27 ◦C, the optimal temperature for xanthan synthesis
in these studies was slightly higher, between 30 ◦C and 33 ◦C [16,17]. For different strains
of Xanthomonas campestris, the carbon or nitrogen source type and even the ratio between
carbon and nitrogen in synthetic media can significantly affect xanthan production [17–22].
Processes for industrial xanthan production often involve batch cultures in which the
nitrogen source is ultimately depleted before the carbon source [22–25].

Despite a growing knowledge base on the physiology of Xanthomonas campestris and
relevant environmental factors for xanthan production, our understanding of the regula-
tion of xanthan synthesis is far from complete. The importance of the high C/N ratio and
limited nitrogen availability in industrial batch cultures gives incentives to investigate the
impact of nitrogen depletion on xanthan production by Xanthomonas campestris in greater
detail. Using omics technologies has previously provided extensive new insights into
molecular mechanisms underlying the phenotypes of the laboratory strain Xanthomonas
campestris pv. campestris B100. The unraveling of the complete genome of Xcc B100, along
with an improved annotation using RNA sequence data [14,26], provided an opportunity
for further research into proteome and metabolome under relevant conditions. For ex-
ample, differences in gene expression between exponential growth and stationary phase
have been investigated [27]. In a 2D-gel electrophoresis-based proteome analysis of Xcc,
281 proteins were identified, which could be attributed to 81 distinct metabolic path-
ways [28]. Additionally, an analysis of the extracellular proteins of Xcc was conducted
using a similar approach, revealing 87 proteins, including 11 known degradative enzymes
that play a role in pathogenesis [29]. Several proteome studies have focused on the inter-
action between Xcc and its host plants [30–32]. Recently, liquid chromatography–mass
spectrometry (LC-MS)-based techniques have led to a significant improvement in the anal-
ysis of the Xcc proteome, with a much higher coverage of the predicted total proteome
compared to 2D gel-based approaches [27,33].

In recent decades, researchers have made significant progress in understanding the
molecular mechanism of xanthan production. However, there is still incomplete knowledge
about how xanthan metabolism is regulated. This study aims to investigate the mechanism
of xanthan synthesis on the protein level, which might improve the efficiency of strain
design and industrial production processes. For this proposal, a label-free semi-quantitative
LC-MS/MS approach was chosen.

2. Materials and Methods
2.1. Cultivation of Xcc

Xanthomonas campestris pathovar campestris B100 was grown in 2 L Erlenmeyer flasks
with a culture volume of 200 mL at 30 ◦C in a laboratory shaker (Innova 44, New Brunswick
Scientific, Edison, NJ, USA) at 180 rpm. The pre-culture was grown overnight in TY-
medium (5 g L−1 tryptone, 3 g L−1 yeast extract, 0.7 g L−1 CaCl2). The pre-culture was
used as an inoculum for the main culture in XMD minimal media (30 g L−1 glucose and
6 g L−1 ammonium nitrate) [34] with an initial OD600 of 0.1. The main culture was grown
in four separate biological replicates.
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2.2. Xcc Harvesting

Samples from six different time points (12 h, 24 h, 30 h, 36 h, 48 h, and 72 h after the
start) were analyzed in four biological replicates (24 samples). The optical density, glucose
concentration, nitrate concentration, and xanthan gum concentration were monitored. The
volumetric xanthan production rate was calculated based on the xanthan concentration.
To overcome issues in cell harvesting caused by increased viscosity of culture broth due
to higher xanthan concentrations, samples were diluted with PBS up to a 1:9 ratio so
that at least good cell pelleting could be observed. In practice, samples after dilution
had an OD600 of 0.25 in a 2 mL volume. The diluted cell suspensions were centrifuged
with 16,100 rcf at room temperature for 3 min (Centrifuge 5415 R, Eppendorf, Hamburg,
Germany) immediately after harvesting. The supernatant was discarded, and the pellet
was washed once in 1 mL PBS with protease inhibitor (cOmplete mini, EDTA free, Roche,
Switzerland), according to the manufacturer’s instructions. The pellet was frozen in liquid
nitrogen and stored at −80 ◦C until further processing.

2.3. Xanthan Gum, Glucose, and Nitrate Determination

The xanthan concentration of culture broth was determined using size exclusion chro-
matography on an HPLC instrument (Knauer Smartline Manager 5000, Knauer Smartline
Pump 1000, Knauer Smartline RI Detector 2300 (Knauer, Berlin, Germany), Spark Hol-
land Triathlon Autosampler (Spark, Emmen, The Netherlands) with a HiTrap column (GE
Healthcare HiTrapTM CM FF 1 mL, Los Angeles, CA, USA) at a column temperature of
25 ◦C. The running buffer consisted of 50 mM NaH2PO4 and 150 mM NaCl at pH 4.6 and
was degassed for 30 min by ultrasonication. An isocratic flow of 0.8 mL min−1 over 5 min
was used. The xanthan fraction is detected as a negative peak, followed by a positive
peak representing the sample’s remaining components. The area of the negative peak was
used for xanthan quantification based on a 7-point custom calibration curve with xanthan
concentrations between 0.02 and 0.2 [w/v]. According to the manufacturer’s instructions,
NO3− concentrations were determined using Spectroquant ® Nitrate Cell Test kit (Merck,
Darmstadt, Germany). According to the manufacturer’s instructions, glucose concentra-
tions were determined with the SUPER GL ambulance kit (Dr. Müller Gerätebau GmbH,
Freital, Germany).

2.4. Whole-Cell Protein Isolation and Digestion

Cell pellets were resuspended in 100 µL 100 mM ammonium bicarbonate. In total,
100 µL of 2,2,2-trifluoroethanol (TFE) and 5 µL of 200 mM dithiothreitol (DTT) were added
for cell disruption. The suspensions were incubated at 60 ◦C for 60 min [33,35]. For
alkylation, 20 µL of a 200 mM iodoacetamide (IAA) solution was added, and the samples
were subsequently incubated for 90 min at room temperature in darkness. In total, 5 µL of
a 200 mM DTT solution was added to stop the alkylation, followed by incubation at room
temperature for another 60 min. The samples were diluted 1:10 with 50 mM ammonium
bicarbonate for tryptic digestion with Trypsin Gold (Promega, Mannheim, Germany).
An exact ratio of protein to trypsin was not possible to adjust due to interference from
TFE during protein concentration determination. To ensure the most complete digestion
possible, 10 µg trypsin was added to the protein solution and incubated overnight at 37 ◦C.

2.5. Sample Preparation for LC-MS/MS Analysis

According to the manufacturer’s instructions, digested protein samples were purified
with C18 columns (Sep-PAK® Vac 1cc, Waters, Elstree, UK). Peptides were quantified using
a Nanodrop 2000 (peqlab, VWR, Radnor, TN, USA) instrument.

2.6. LC-MS/MS Analysis

The label-free LC-MS/MS analysis was performed with a Mass Spectrometer (Q
Exactive™ Plus Hybrid Quadrupole-Orbitrap™, Thermo Scientific™, Walthem, MA, USA)
and an upstream nano-HPLC (Ultimate TM 3000 RSLCnano System, Thermo Scientific,
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USA). The QExactive Plus was equipped with a Spectroglyph source (Spectroglyph, LLC.,
Washington, DC, USA), whereby the S-lence was replaced by an ion tunnel [36]. A 1 µg
peptide was injected and separated into fractions using a 60 min acetonitrile gradient of
5–40% and a flow of 300 nL min−1. Two different models of the Acclaim™ PepMap™ 100
C18 (Thermo Scientific, USA) column were used as pre-column and main column. The
pre-column had a diameter of 0.3 mm, a length of 5 mm, and a particle size of 5 µm. The
diameter of the main column was 0.075 mm by a length of 250 mm and a particle size of
3 µm. The temperature of the column oven was set to 35 ◦C. Measurements were recorded
in data-dependent acquisition mode. On FullMS, the resolution was 70,000, the AGC target
was 3 × 106, and the maximum IT was 64 ms. The dd-MS2 settings were 17,500 for the
resolution, 2 × 105 for the AGC target, and 100 ms for the maximum IT. TopN was set to 10.

2.7. Data Analysis

The database search was performed with MaxQuant [37] version 1.6.14.0. Methionine
oxidation and N-terminal acetylation were set as variable modifications, and the cysteine
carbamidomethylation was set as a fixed modification. For digestion, trypsin was selected
with a maximum of 2 missed cleavages. Label-free quantification and fast LFQ were
enabled. The normalization was performed in classic mode, with a minimal peptide ratio
count of 2. Unique peptides were used for quantification. For the FDR calculation, the
decoy mode was set to random. The 4413 entries containing the database from UniProt
of Xanthomonas campestris pv. campestris B100 (Taxon identifier: 509169) were used as the
reference database. The remaining settings were set to default.

The statistical analysis of the MaxQuant database search was performed in Perseus [38]
1.6.15.0 and Omics Fusion [39] using the LQF intensities. The proteins that MaxQuant
identified as “Only identified by site, “Reverse”, or “Potential contamination” were filtered
out for Perseus and Fusion. Proteins with fewer than two unique peptides were removed
to ensure the validity of the data. The normal distribution of the data was obtained
by log2-transformation. The missing values were replaced by the trimmed mean of the
available values if at least 3/4 of the feature values were available. A Hochberg-corrected
two-sample t-test was performed to define the significant difference between two samples.
Only changes in abundance with a p-value of 0.05 and a log2 fold change of 0.5 were
considered significant.

The dataset and MaxQuant analysis were uploaded to ProteomeXchanger [40] via
PRIDE [41] with the dataset identifier PXD041470 (website: http://www.ebi.ac.uk/pride
(accessed on 22 April 2023), project accession: PXD041470).

3. Results
3.1. Nutrient Consumption and Xanthan Production of Suspension Cultures of Xcc B100 over a
Time Course

Xcc B100 was grown in a synthetic medium with limited nitrogen availability (6 g L−1

ammonium nitrate) in four biological replicates for 72 h to investigate changes in phenotype
and proteome composition. Proteome sampling was performed at six points in time, and
the optical density, nitrate, glucose, and xanthan levels were monitored throughout the
experiment (Figure 1A). The optical density measurements revealed four distinct phases
during the experiment. After inoculation, the cultures showed a 6 h lag phase followed
by the first logarithmic growth phase with a specific growth rate of 0.13 h−1 ± 0.00062 h−1

between 6 and 24 h, and a second logarithmic growth phase between 24 h and 42 h with a
particular growth rate of 0.05 h−1 ± 0.0036 h−1. After 42 h, the optical density remained con-
stant, and the cultures reached a stationary phase. This observation coincided with nitrate
depletion from the medium at 48 h. When the experiment was terminated after 72 h, glucose
was not entirely consumed, and a residual concentration of 17.8 g L−1 ± 0.925 g L−1 was
measured. The xanthan concentration increased throughout the experiment (Figure 1B),
reaching 3.93 g L−1 ± 0.71 g L−1 after 72 h. The volumetric xanthan production rate in-

http://www.ebi.ac.uk/pride
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creased from 0.006 g (L h)−1 to 0.017 g (L h)−1 between 24 h and 48 h but decreased again
to 0.003 g (L h)−1 at the stationary phase.
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Figure 1. (A) Xanthomonas campestris pv. campestris B100 was grown in four biological replicates
on a synthetic medium. The cultures were monitored for 72 h, with gray dotted lines marking the
lag, exponential growth (exp1, exp2), and stationary phases. Proteome samples were taken at times
indicated by star symbols. In addition, the nitrate (mM) and glucose concentrations (g/L) were
measured. (B) The xanthan concentration (g/L) was monitored from 24 h after inoculation until
the end of the experiment. Based on these values, a xanthan production rate in g/(OD600/h)
was estimated. The error bars of A and B indicate the standard deviation of the biological
replicates. lag = lag phase; exp1 = first exponential phase; exp2 = second exponential phase;
stationary = stationary phase.

3.2. The Abundance of Ribosomal Proteins Varies Per Growth Phase

Throughout the experiment, changes in the abundance of proteins were investigated
through label-free LC-MS/MS measurements. Quantitative changes in protein abundance
were judged from individual proteins’ relative abundance at different time points. In
total, 2416 proteins were identified, representing 54.75% of the entries in the reference
database (Table S1). The cutoff for the student t-tests was set to a p-value of 0.05 and a
log2 fold change of 0.5. These findings were used to investigate the protein changes in
Xcc. The abundance of ribosomal proteins, which, according to the literature, shows a
strong correlation to growth rate [42,43], was explored to benchmark the quality of the
LC-MS/MS measurements. For this analysis, a set of core-conserved ribosomal proteins
was selected [44,45]. Figure 2A,B show these core ribosomal subunits identified in the
current Xcc proteome dataset. Most Rps and Rpl proteins showed the highest abundance
at the start of the experiment when the growth rate was also highest. Ribosomal proteins
generally decreased until the second logarithmic growth phase at 30 h. According to the
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student t-tests (Table S2), these proteins did not change in abundance significantly during
the second logarithmic phase, except for RplC, which displayed an increased abundance.
The ribosomal protein abundance then decreased until the cultivation ended at 72 h. This
decrease in the ribosome fraction during the decreasing growth rate is in line with other
literature [42] and, therefore, supports the good quality of the dataset.
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campestris pv. campestris B100 over time during cultivation in a minimal synthetic medium. The
displayed proteins were selected based on matches to universally conserved ribosomal core pro-
teins [45].

3.3. The Effect of Nitrate Depletion on the Abundance of Proteins Involved in Nitrogen Metabolism

Because of the vital role nitrogen availability plays in inducing the stationary phase,
nitrogen metabolism was more closely investigated in this study (Figure 3). The abundance
of proteins involved in nitrate metabolism increased from 12 h to 36 h. Most protein
intensities then decreased again rapidly after the onset of the nitrate depletion-induced sta-
tionary phase, although the intensity of glutamine synthetase GlnA changes insignificantly
between 36 h and 72 h. The glutamate dehydrogenase Gdh showed no significant changes
in abundance throughout the whole cultivation.
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replicates. Proteins marked in orange were not detected in this experiment.

3.4. Proteins Involved in the Synthesis of Sugar Nucleotide Precursors and Xanthan

During the experiment, the changes in protein levels responsible for synthesizing
the sugar nucleotides UDP-glucose, UDP-glucuronate, and GDP-mannose, as well as the
products of the gum cluster, were studied, with particular attention to differences between
the time when nitrogen was available and nitrogen depletion. The transmembrane glucose
kinase Glk, which facilitates glucose uptake, showed no significant changes in abundance
(Figure 4). Statistically significant differences in protein abundances were observed for
the glucose-6-phosphate isomerase Pgi with a fold change of 0.5 between 36 h and 48 h
and the mannose-6-phosphate isomerase XanB from 12 h to 24 h with a fold change of 0.5.
Other than these small changes in abundance, there were no noticeable differences in this
pathway throughout the experiment.
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The key steps, from glucose uptake to synthesizing the individual sugar nucleotide precursors, are
indicated. The profile plots display the log2-transformed LFQ intensities of four biological replicates
of the respective proteins. The error bars indicate the standard deviation of the biological replicates.

Next to other pathways like lipopolysaccharide synthesis, the sugar nucleotides pro-
duced via this pathway are utilized for xanthan synthesis. Seven out of twelve gum
proteins could be quantified and were analyzed to examine the response of the xanthan
synthesis mechanism throughout the experiment (Figure 5). GumD, the first enzyme of the
pathway, showed a significant increase in abundance during the first phase of exponential
growth (12–24 h) but reached its highest intensity during the transition between the second
logarithmic growth phase and the onset of the stationary phase. This was followed by a
significant decrease until the termination of the experiment. GumK and GumI remained
relatively unchanged, while GumH showed a small but insignificant increase after transi-
tioning into the stationary phase. GumL, the only detected decorating enzyme, increased
in abundance during the experiment’s early phase and then gradually decreased. GumB
and GumC, which form the xanthan exporter pore, showed a considerable increase in
abundance after transitioning into the stationary phase (36–48 h). By the end of the experi-
ment, GumB and GumC had significantly increased in abundance. In conclusion, out of all
detected gum proteins, only GumD, GumB, and GumC showed measurable responses to
the nitrogen-induced stationary phase.
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Figure 5. (A) Representation of xanthan synthesis in Xanthomonas campestris pv. campestris B100
according to Vorhölter et al. (2008) [14]. The profile plots display the log2-transformed LFQ intensities
of four biological replicates of the respective proteins. Proteins marked in orange could not be
detected or quantified, while proteins marked in purple color were detected in this experiment. UDP-
glc = UDP-glucose, UDP-glcA = UDP-glucuronate, GDP-man = GDP-mannose. (B) Representation of
the gum gene cluster modified according to Alkhateeb et al. (2017) [26]. P1, P2, and P3 represent the
positions of the promoter start.

The results presented here reflect changes in the proteome of the widely used labo-
ratory strain Xcc B100 over batch cultivation with restricted nitrogen and excess carbon
resources based on a semi-quantitative LC-MS/MS approach. The improved methodology
and increased time resolution contribute to a deeper understanding of the effect of nitrogen
depletion and growth phase on xanthan synthesis at the protein level.

4. Discussion

Xanthan, produced by Xanthomonas campestris, is a widely used polysaccharide. A
detailed study of the Xanthomonas campestris proteome during xanthan production can aid
in understanding the molecular mechanisms during fermentation. The validity of proteome
data is primarily determined by the coverage of the reference protein database [46]. Recent
mass spectrometry-based proteome discovery studies typically obtain sequence coverages
of their predicted gene models ranging from 50 to 70% [47] under defined conditions like
cultivating in a minimal medium. The protein coverage of organisms closely related to Xcc,
such as Xanthomonas oryzae pv. oryzae or Xanthomonas citri, range from 40 to 52% [48,49].
Therefore, this work’s protein coverage of 54.75% for Xcc B100 is in a similar range to
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previous studies. The quality of proteome data is influenced by factors such as sample
preparation, properties of individual peptides, and the analysis method [47,50,51]. Here, the
quality of the study’s dataset was inspected based on ribosomal subunits, which changed
in abundance similarly to the literature described [42,52,53].

Since nitrogen availability influenced the growth rate and xanthan production, a
closer look at nitrogen metabolism was taken [18,19,54]. Most proteins related to nitrogen
metabolism, including NapA/Xcc-b100_2307/Xcc-b100_2308/GltD/GltB, displayed chang-
ing abundances in response to nitrate depletion after 36 h. The function of these proteins
covers the import and processing of nitrate to ammonia and the conversion of glutamine to
glutamate. However, the profiles of Gdh and GlnA did not follow a similar pattern. These
two proteins are known regulators of the glutamate pool in enteric bacteria [55]. Due to
nitrogen limitation, the gene gdh is repressed while glnA is activated [55,56]. Based on the
present experimental conditions, a change in the abundance of the proteins Gdh and GlnA
was not observed. Finding an explanation for the difference between the gene expression
known from the literature and the abundance profile of GlnA and Gdh is impossible with
the available proteome data. Speculatively, if Gdh and GlnA play a similar role in Xcc as in
enteric bacteria, their action may be regulated by post-translational modifications rather
than abundance. In vitro phosphorylation has been demonstrated for GlnA from Bacillus
subitilis [57], and Klebsiella aerogenes GlnA function is regulated by adenylation and inhibits
the transcription of glnA [58].

Apart from nitrogen metabolism, this study also focused on the process of converting
glucose into sugar nucleotides on the proteome level. Under the tested conditions, the
abundance of the sugar nucleotide-synthesizing proteins remained unchanged regardless
of the growth phase. A similar observation was made in earlier studies for the transcription
rates of the corresponding encoding genes in Xcc. Most transcripts for genes associated
with sugar nucleotide synthesis were unaffected or lower in the stationary phase than in
the exponential phase [27]. Post-translational modifications might play a role in the activity
of this pathway instead. Previous research has shown that the phosphorylation state of
XanA varies depending on the culture’s growth phase, which could affect its activity [59].
Although it cannot be excluded that such other factors play a role, the data presented here
do not support any regulation of the activity of this pathway through protein abundance in
response to nitrogen limitation.

This study presents a more detailed observation of the abundance of gum proteins
over time during the cultivation of Xcc. It thereby provides information on the molecular
mechanisms of xanthan synthesis on the proteome level. As was observed for proteins
involved in sugar nucleotide synthesis, most gum proteins showed no significant changes
in abundance throughout the experiment. As one of the few exceptions, the abundance of
GumD, the first glucosylphosphate transferase that loads the C55-lipid carrier, peaked in
the early stationary phase and decreased again afterward. Because the peak in abundance
was present in all replicates, and since such a ‘jump’ at this time point was not observed for
other proteins, it is unlikely that this is due to an artifact. This contrasts with a previous
study where no such ‘jump’ was observed for GumD [33]. Perhaps in this study, the more
comprehensive time resolution allowed for the capture of the dynamic behavior of GumD.
It has been hypothesized that an essential function of GumD is to control the metabolic flux
into xanthan synthesis in Xcc [60]. If the increase in GumD levels is triggered by nitrogen
limitation or the onset of the stationary phase, this could reflect a regulated metabolic
‘switch’ to polysaccharide production under these conditions. Other factors, for example,
oxygen limitation, may have further limited xanthan production in Xcc in this experiment
and prevented a further metabolic response. However, this remains speculation until the
impact of the abundance of GumD on polysaccharide synthesis is more closely investigated.

The abundance of the export proteins GumB and GumC also increased significantly
toward the end of the experiment. A relationship between a higher expression of GumB and
GumC and a higher xanthan viscosity has previously been reported. It was suggested that
the increased abundance of both pore-forming proteins is the origin of higher-molecular-
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weight xanthan [61]. In this experiment, we may have captured a change in the quality of
xanthan triggered upon nitrogen depletion rather than quantity.

When comparing the changes in abundance of the gum proteins detected in this study
with previously reported transcription start sites (TSSs), the patterns align with the gum
cluster’s proposed genetic organization. For instance, gumB and gumC are controlled by the
same TSS, and their products’ abundances change similarly over time [62]. Likewise, the
TSS in front of gumH also controls gumI, J, K, L, and M transcription, and the detected and
quantifiable gene products of these genes also similarly change in abundance. For the gum
proteins detected in this study, protein abundances corresponded to the proposed operon
model. This was not the case for the transcript rates presented in an earlier study [27]. The
protein abundances and transcript rates of gumD, gumC, gumB, and gumL appear to be
similar, while gumH, gumI, and gumK show no changes in protein levels but a decrease in
the transcript rate. While the transcription rate is decreasing, and the protein abundance
remains the same, this might hint that Xcc changes its metabolism until new nutrients are
available. This could be a strategy to compare the energy demand of the xanthan synthesis
process [15]. The interpretation of transcript and proteome data may differ due to the more
significant number of data points in the proteome study. Therefore, increasing the data
points for transcript rates could lead to similar observations.

As for the sugar nucleotide synthesis, post-translational modifications could also be
considered for the regulation of gum proteins, and so the regulation of xanthan synthesis.
However, in contrast to the sugar nucleotide synthesis proteins, there are no known
phosphosites for the gum proteins, which provides a starting point for further research.

5. Conclusions

Xanthan is a bacterial polysaccharide and is widespread in industrial applications. Al-
though Xcc is often used for xanthan fermentation, little is known about xanthan synthesis
at the protein level. This study’s extensive profiling of Xcc’s proteome over time by label-
free LC-MS/MS offers valuable insights into the regulation and mechanism of xanthan
synthesis. The available data could, therefore, support the assumption that changes in the
protein abundance of GumB/C over the cultivation time correlate with a change in product
quality. Further, the data show that the protein abundance in metabolic pathways leading
up to xanthan synthesis may not be a bottleneck for productivity. It, therefore, provides an
incentive to search for alternative points of regulation in the production of xanthan. Other
proteoforms of the proteins in the xanthan synthesis pathway might play an essential role
in regulating xanthan synthesis, like protein phosphorylation. Further investigations into
this topic could be covered by a phosphoproteome study. Also, a metabolomic study with a
comparable number of data points, like in the presented study, could provide new insights
into the xanthan synthesis mechanism.
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