
Mathematics 2013, 1, 3-8; doi:10.3390/math1010003
OPEN ACCESS

mathematics
ISSN 2227-7390

www.mdpi.com/journal/mathematics

Article

On Matrices Arising in the Finite Field Analogue of Euler’s
Integral Transform
Michael Griffin * and Larry Rolen *

Department of Math & CS, Emory University, 400 Dowman Dr., W401 Atlanta, GA, 30322, USA

* Authors to whom correspondence should be addressed; E-Mails: mjgrif3@emory.edu (M.G.);
larryrolen@gmail.com (L.R.).

Received: 6 January 2013; in revised form: 15 January 2013 / Accepted: 22 January 2013 /
Published: 5 February 2013

Abstract: In his 1984 Ph.D. thesis, J. Greene defined an analogue of the Euler integral
transform for finite field hypergeometric series. Here we consider a special family of
matrices which arise naturally in the study of this transform and prove a conjecture of Ono
about the decomposition of certain finite field hypergeometric functions into functions of
lower dimension.
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1. Introduction and Statement of Results

In his 1984 Ph.D. thesis [1], Greene initiated the study of hypergeometric functions over finite fields
which are in many ways similar to the classical hypergeometric functions of Gauss. To define these
functions, first let A and B be two multiplicative, complex-valued characters of F×q extended to Fq by

A(0) = B(0) = 0 and let

(
A

B

)
be the normalized Jacobi sum

(
A

B

)
:=

B(−1)

q
J(A,B) =

B(−1)

q

∑
x∈Fq

A(x)B(1− x) (1)
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Here B denotes the complex conjugate of B. Greene defined the Gaussian hypergeometric function

n+1Fn
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A0, A1, . . . , An

B1, . . . , Bn

∣∣∣∣∣x
)
p

by

n+1Fn

(
A0, A1, . . . , An

B1, . . . , Bn

∣∣∣∣∣x
)
p

:=
q

q − 1

∑
χ

(
A0χ

χ

)(
A1χ

B1χ

)
· · ·

(
Anχ

Bnχ

)
χ(x)

Here
∑

χ denotes the sum over all characters of Fq. These functions have deep connections to certain
combinatorial congruences of modular forms, as well as traces of Hecke operators and counting points
on certain modular varieties [2]. For example, if we let 2E1(λ) : y2 = x(x − 1)(x − λ) be the
Legendre form elliptic curve (λ 6= 0, 1), we have the following result whenever p ≥ 5 is a prime and
λ ∈ Q− {0, 1} satisfies ordp(λ(λ− 1)) = 0 [3]:

2F1

(
φp, φp

ε

∣∣∣∣∣λ
)
p

= −φp(−1) · 2a1(p;λ)

p

Here φp is the Legendre symbol modulo p, ε is the trivial character, and 2a1(p;λ) is the trace of Frobenius
of 2E1(λ) at p. In analogy with the Euler integral transform for classical hypergeometric functions, it
turns out that these Gaussian hypergeometric functions are traces of Gaussian hypergeometric functions
of lower degree. More precisely, Greene proved the following fact:

n+1Fn

(
A0, A1, . . . , An

B1, . . . , Bn

∣∣∣∣∣x
)
p

=
AnBn(−1)

p

p−1∑
y=0

nFn−1

(
A0, A1, . . . , An−1

B1, . . . , Bn−1

∣∣∣∣∣x
)
p

· An(y)AnBn(1− y)
(2)

This transform is related to the modularity of other varieties as well. For example, Ahlgren and Ono
relate special values of 4F3 hypergeometric functions to the coefficients of modular forms using the
modularity of a certain Calabi–Yau threefold [4]. Thus, it is natural to consider the following matrix
which plays the role of Euler’s integral transform in an important special case.

Definition. Let p be an odd prime. Let q = pn ≥ 5 and Mq be the (q− 2)× (q− 2) matrix (aij) indexed
by i, j ∈ Fq − {0, 1} where

aij = φq(1− ij)φq(ij)

Here φq denotes the quadratic character in Fq. Based on numerical data, Ono made the
following conjecture.

Conjecture (Ono). Let fq be the characteristic polynomial of Mq. Then

fq(x) =

(x+ 1)(x− 1)(x+ 2)(x2 − q)(q−5)/2 if φq(−1) = 1

x(x2 − 3)(x2 − q)(q−5)/2 if φq(−1) = −1

Our main result is the following.
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Theorem 1.1. Ono’s conjecture is true.

Remark For the eigenvalues 0,±1,−2, we give explicit formulas for the eigenvectors (cf.
Proposition 2.1).

The paper is organized as follows. In §2 we establish the claimed formulas for the
eigenvalues λ ∈ {0,±1,−2} using Jacobi sums. In §3 we complete the proof of the main
theorem be proving that (x2 − q)

q−5
2 divides the characteristic polynomial of Mq and that

x2 − 3 divides the characteristic polynomial when φq(−1) = −1.

2. Eigenvectors for λ ∈ {0,±1,−2}

The claimed formulae for the eigenvectors can be deduced using the following well-known lemma
which we prove for completion.

Lemma 1. If a0, a1, a2 ∈ Fq and a2 6= 0, then

∑
x∈Fq

φq(a0 + a1x+ a2x
2) =

−φq(a2) if a2
1 6= 4a0a2

φq(a2)(q − 1) if a2
1 = 4a0a2

Proof. Factor out a2 and complete the square to get∑
x∈Fq

φq(a0 + a1x+ a2x
2) = φq(a2)

∑
x∈Fq

φq((x− a)2 − b) = φq(a2)
∑
x∈Fq

φq(x
2 − b)

where a = − a1

2a2
and b =

a2
1−4a0a2

4a2
. Then b = 0 if and only if the discriminant is 0, in which case the sum

is clearly φq(a2)(q − 1). If b 6= 0, then the change of variables y = x2 − b gives∑
x∈Fq

φq(x
2 − b) =

∑
y

φq(y)(φq(y + b) + 1) =
∑
y

φq(y)φq(y + b)

Now replacing y by b
2
(y − 1) and making the change of variables z = 1− y2 shows that∑

y

φq(y
2 + by) =

∑
y

φq(y
2 − 1) = φq(−1)

∑
z

φq(z)(φq(1− z) + 1) = φq(−1)J(φ, φ) = −1

This follows from the classical evaluation of J(φ, φ) (for example, see [5]).

We are in position to prove the first case of Theorem 1.1 when λ ∈ {0,±1,−2}.

Proposition 2.1. If φq(−1) = 1, then λ ∈ {±1,−2} are eigenvalues for the matrices Mq. If
φq(−1) = −1, then λ = 0 is an eigenvalue for Mq. These eigenvalues have the following corresponding
eigenvectors v = (vk)k∈Fq−{0,1}:

λ = −1, vk = −φq(k) + 1

λ = +1, vk = 2(φq(k
2 − k)− φq(k)− 1)

λ = −2, vk = φq(k
2 − k) + φq(k) + 1

λ = 0, vk = −φq(k2 − k) + φq(k) + 1
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Proof. We will give the full calculation for the eigenvalue λ = −1 when φq(−1) = 1. The other three
cases follow similarly.
When λ = −1, we must check the formula

−vk =
∑
s 6=0,1

φq(1− ks)φq(ks)vs

Using the lemma, we have∑
s 6=0,1

−φq(1− ks)φq(k) +
∑
s 6=0,1

φq(1− ks)φq(ks) = φq(k) + φq(1− k)φq(k)− 1− φq(1− k)φq(k)

= φq(k)− 1

3. Determining the ±
√

3 and ±√q Eigenspaces

Here we complete the proof of Theorem 1.1 by computing the remaining eigenvalues. We begin with
the ±

√
3-eigenvalues when φq(−1) = −1.

Proposition 3.1. If φq(−1) = −1, then the characteristic polynomial of Mq is divisible by (x2 − 3).

Proof. We consider the matrix M2
q with entries bi,j . Using the lemma, we find bi,j = −(1 + φq(ij) +

φq(i − i2)φq(j − j2)) if i 6= j, and bi,i = q − 3. By a similar calculation as in the proof of Proposition
2.1, we find that v = (vk), v

′ = (v′k) are eigenvectors with eigenvalue 3 for M2
q , where

vk := 1 + φq(k), v′k := 1 + φq(k
2 + k)

This follows by verifying

3vk = (q − 3)(1 + φq(k))−
∑

s∈Fq\{0,1,k}

(1 + φq(s))(1 + φq(ks) + φq(k − k2)φq(s− s2))

and

3v′k = (q − 3)(1 + φq(k
2 + k))−

∑
s∈Fq\{0,1,k}

(1 + φq(s
2 + s))(1 + φq(ks) + φq(k − k2)φq(s− s2))

for the vectors v and v′ respectively. As the characteristic polynomial ofMq is in Z[x], we find that x2−3

divides the characteristic polynomial of Mq.

We now finish the proof of Theorem 1.1.

Proposition 3.2. The characteristic polynomial of Mq is divisible by (x2 − q) q−5
2 .

Proof. We begin by defining the following matrix related to Mq. Let p, q be as above. Let
M̃q = (φq(1− ij))i,j∈Fq

be a q × q matrix indexed by values of Fq. Then Mq is a the conjugate of

a sub-matrix of M̃q. Suppose M̃q has an eigenspace of dimension d. Then this eigenspace has a subspace
of dimension d − 2 of eigenvectors (vk) with v0 = v1 = 0. Thus it can be easily seen that Mq has an
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eigenspace of dimension d− 2 corresponding to the same eigenvalue. Using this fact, it suffices to prove
that the characteristic polynomial of M̃q is divisible by (x2 − q) q−1

2 .
Consider the matrix M̃2

q =
(∑

k∈Fq
φq(1− ik)φq(1− jk)

)
i,j∈Fq

. For each a ∈ Fq − {0,−1}, let

Va = (vi)i∈Fq be a vector indexed by elements of Fq such that va = 1, v−1 = −φq(−a), and vi = 0 for

all i ∈ Fq − {−1, a}. Then if (ui) = M̃q

2
Va, we have

(ui) =

∑
j∈Fq

vj
∑
k∈Fq

φq(1− ik)φq(1− jk)


=

∑
k∈Fq

φq(1− ik)φq(1− ak)− φq(−a)
∑
k∈Fq

φq(1− ik)φq(1 + k)


Since a 6= 0,−1, by Lemma 1 we find

u0 = 0,

ua = q − 1 + φq(−a)2 = q,

u−1 = −φq(−a)− φq(−a)(q − 1) = −qφq(−a)

For all other i, we have ui = φq(ia) − φq(−a)φq(−i) = 0. Hence Va is an eigenvector for M̃2
q with

eigenvalue q.
We may also define V0 = (vi) so that v0 = 1, and vi = 0 for all other i ∈ Fq. Then if (ui) = M̃q

2
V0, we

have u0 =
∑

k∈Fq
φq(1) = q, and ui =

∑
k∈Fq

φq(1− ik) = 0 for i 6= 0. Hence V0 is also an eigenvector
for the eigenvalue q. This gives us a total of q − 1 linearly independent eigenvectors corresponding to
the eigenvalue q. Each eigenvalue (counting multiplicities) of M̃2

q is the square of an eigenvalue of M̃q.
Thus, M̃q has eigenvalues ±√q of multiplicities that sum to q − 1 and so Mq has eigenvalues ±√q of
multiplicities summing to at least q − 5. By Lemma 1, we have that Trace(Mq) = −1 − φq(−1). But
we already know that the sum of all other eigenvalues is −1 − φq(−1). Hence, the multiplicities of the
±√q eigenvalues must be equal.
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