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Abstract:

 In this paper we provide proofs of two new theorems that provide a broad class of partition inequalities and that illustrate a naïve version of Andrews’ anti-telescoping technique quite well. These new theorems also put to rest any notion that including parts of size 1 is somehow necessary in order to have a valid irreducible partition inequality. In addition, we prove (as a lemma to one of the theorems) a rather nontrivial class of rational functions of three variables has entirely nonnegative power series coefficients.
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1. Introduction

When examining two q-products [image: there is no content] and [image: there is no content] and their corresponding q-series, it sometimes happens that the coefficients in the q-series for [image: there is no content] are never less than the coefficients in the q-series for [image: there is no content]. When that happens, we say that [image: there is no content] is dominant (in this pair of products) and that [image: there is no content] is subordinate, and we express this relationship with the more succinct notation [image: there is no content]≽[image: there is no content]. (Note that ≽ yields a partial ordering on the set of q-products if we identify products that produce the same q-series; then, any given product may be dominant when paired with some products, subordinate when paired with others, neither when paired with still other products, and both dominant and subordinate only when paired with “itself”.) Immediately from this definition it follows that if [image: there is no content]≽[image: there is no content], then the q-series determined by [image: there is no content]-[image: there is no content] must have nonnegative coefficients, i.e., [image: there is no content]-[image: there is no content]≽0. Thus, determining whether a given pair of products is a dominant/subordinate pair solves an equivalent positivity problem.

Using the standard notations [1]



(a;q)L=1ifL=0∏j=0L-1(1-aqj)ifL>0



(1)






[image: there is no content]



(2)




and


[image: there is no content]



(3)




we may say that, for example, in the Rogers–Ramanujan difference


[image: there is no content]



(4)




the first product is dominant and the second product is subordinate. At the 1987 A.M.S. Institute on Theta Functions, Ehrenpreis asked if one can prove this dominance without resorting to the Rogers–Ramanujan identities. In 1999, Kadell [2] provided an affirmative answer to this question. In 2005, Berkovich and Garvan [3] proved a class of finite versions of such inequalities (from which the infinite versions are easily recovered), namely that


[image: there is no content]



(5)




if and only if [image: there is no content] and [image: there is no content]. Note that this last inequality provides the finite version of Equation (4):


[image: there is no content]



(6)




In 2011, Andrews [4] proved the finite little Göllnitz inequality


[image: there is no content]



(7)




which (in 2012) Berkovich and Grizzell [5] generalized to


[image: there is no content]



(8)




where y is any odd integer greater than 1.
For Equations (4), (5), and (8), the proofs in each case relied solely on the construction of a suitable injection. For Equation (7), however, Andrews relied primarily on his anti-telescoping technique. A naïve version of Andrews’ anti-telescoping technique begins with two sequences of products, [image: there is no content] and [image: there is no content], and the desire to show that, for every [image: there is no content],



[image: there is no content]








One then simply writes (letting [image: there is no content])


[image: there is no content]



(9)






=∑[image: there is no content]LQ(i)Q(i-1)-[image: there is no content]P(i-1)P(i)·Q(L)Q(i-1)



(10)




and if one is lucky enough that each addend in Equation (10) is [image: there is no content], then that is all one needs to show in order to prove the desired inequality. This bit of serendipity is by no means trivial; for example, this naïve anti-telescoping fails to help show Equation (6) since, among numerous other terms, the coefficient of [image: there is no content] is [image: there is no content] in the second ([image: there is no content]) addend of the naïve anti-telescoping of Equation (6) for every [image: there is no content]. A less naïve approach might sometimes be more beneficial, but for our purposes in this paper the naïve approach outlined above is sufficient.
Now clearly we could multiply every exponent in any inequality akin to Equations (4)–(8) by some common factor to obtain an inequality without [image: there is no content] as the leading factor in the denominator on the left; when looking at the partition-theoretic interpretation, this creates “reducible” examples (but examples nonetheless) where parts of size 1 are not needed to “fill in the gaps”. In 2012, at the Ramanujan 125 Conference in Gainesville, Florida, Hamza Yesilyurt asked if the inclusion of the factor [image: there is no content] was necessary in all irreducible inequalities. We are pleased to answer in the negative, as stated in the following new theorem.

Theorem 1.1 For any sextuple of positive integers [image: there is no content],



[image: there is no content]








Clearly Theorem 1.1 yields infinitely many irreducible examples. More astounding, however, is that the modulus m can be arbitrary. Even more amazing still is the relative ease with which the proof can be written using naïve anti-telescoping!
It is also possible, albeit more difficult, to use naïve anti-telescoping to yield the following new theorem.

Theorem 1.2 For any octuple of positive integers [image: there is no content],



[image: there is no content]








The extra difficulty in proving Theorem 1.2 comes from the fact that it seems to be impossible to re-write the addends in a natural way that makes it obvious that each addend only contributes nonnegative coefficients to the q-series. Consequently, en route to proving Theorem 1.2, we will require the following unobvious result, which is worthwhile in its own right and is not found anywhere else. (Most notably, we do not find anything of this form in [6], which contains a compendium of rational functions with nonnegative coefficients.)
Lemma 1.3 Let r and s be positive integers. Then the multivariate rational function



[image: there is no content]








with [image: there is no content], [image: there is no content], and [image: there is no content], has nonnegative coefficients when written as a power series centered at [image: there is no content].
In Section 2, we provide a proof of Theorem 1.1 using a simple rational function identity together with naïve anti-telescoping, followed by a discussion of a partition theoretic interpretation of the difference



[image: there is no content]








In Section 3 we give a proof of Lemma 1.3, which will be used in the proof of Theorem 1.2 in Sectionn 4. We then conclude in Section 5 with a brief discussion of a more general inequality.


2. Proof of Theorem 1.1

Let [image: there is no content] and [image: there is no content]. We observe that since the identity



[image: there is no content]








is true, substituting [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content] for x, y, α, and β, respectively, we can conclude that


(1-t[image: there is no content])(1-t[image: there is no content])(1-tqx+y)-(1-t[image: there is no content])(1-t[image: there is no content])(1-tqrx+sy)



(11)




and


t[image: there is no content](1-q(r-1)x)(1-[image: there is no content])(1-t[image: there is no content])+t[image: there is no content](1-q(s-1)y)(1-t[image: there is no content])(1-[image: there is no content])



(12)




are identically equal. Letting [image: there is no content], we may use the equality of Equations (11) and (12) to write


[image: there is no content]








where


V(i):=qm(i-1)+y(1-q(s-1)y)(1-[image: there is no content])[image: there is no content]P(i)·Q(L)/Q(i-1)








and


W(i):=qm(i-1)+x(1-q(r-1)x)(1-[image: there is no content])[image: there is no content]P(i)·Q(L)/Q(i-1)








We note that since (1-[image: there is no content]) and (1-[image: there is no content]) are factors of the product [image: there is no content] and since [image: there is no content] is a factor of the product [image: there is no content], we have [image: there is no content] for [image: there is no content]. To see that [image: there is no content], we consider the following two cases.

	Suppose [image: there is no content]; then (1-[image: there is no content]) and (1-[image: there is no content])=[image: there is no content] are factors of [image: there is no content] and (1-[image: there is no content]) is a factor of [image: there is no content]. Thus, [image: there is no content].


	Suppose [image: there is no content]; then (1-[image: there is no content]), (1-[image: there is no content]), and [image: there is no content] are all independent factors of [image: there is no content]. Thus, [image: there is no content].




Finally, applying the anti-telescoping Equation (9), we have



1P(L)-1Q(L)=∑[image: there is no content]LV(i)+W(i)



(13)




which then suffices to prove the theorem.
It would be nice to have a combinatorial proof of Equation (13), but such has not been discovered by the time this paper was written. We note, however, that a partition interpretation of the right-hand side of Equation (13) is possible. Given a partition π, we let [image: there is no content] denote the part that is equal to [image: there is no content], and we let ν([image: there is no content],π) represent the number of occurrences of the part [image: there is no content] in the partition π. Then, for a fixed L we define



M(p,π):=max{j:ν([image: there is no content],π)>0}∪{0}








and


m(p,π):=min{j:ν([image: there is no content],π)>0}∪{L+1}








We may consider ∑[image: there is no content]LV(i) and ∑[image: there is no content]LW(i), from Equation (13), as two separate generating functions for partitions into parts congruent to (for [image: there is no content]) [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], or [image: there is no content], subject to certain restrictions. (Note: in the cases where a particular part could arise in multiple ways, for example if [image: there is no content] or [image: there is no content], then it would be necessary to treat the parts that arise in different ways as distinct, perhaps by assigning them unique colors based on what the base part is; since the base part is always one of x, y, [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content], no more than six colors should be required.) We may take the restrictions as follows.







	
	Restrictions for ∑[image: there is no content]LV(i):


	V1: [image: there is no content](y, π) ≥ max({1, [image: there is no content](x, π)})


	V2: [image: there is no content](y, π) ≥ [image: there is no content](rx + sy, π)


	V3: m(rx, π) ≥ [image: there is no content](y, π)


	V4: m(sy, π) ≥ [image: there is no content](y, π)


	V5: m(x + y, π) ≥ [image: there is no content](y, π)


	V6: [image: there is no content](x1, π) = o


	V7: [image: there is no content](y1, π) < s ‒ 1




	
	Restrictions for ∑[image: there is no content]LW(i):


	W1: [image: there is no content](x, π) > [image: there is no content](y, π)


	W2: [image: there is no content](x, π) ≥ [image: there is no content](rx + sy, π)


	W3: m(rx, π) ≥ [image: there is no content](x, π)


	W4: m(sy, π) ≥ max({2, [image: there is no content](x, π)


	W5: m(x + y, π) ≥ [image: there is no content](x, π)


	W6: [image: there is no content](x1, π) < r ‒ 1


	W7: [image: there is no content](y1, π) < s









Since the restrictions V1 and W1 are mutually exclusive, we may consider the right-hand side of Equation (13) as the generating function for partitions into parts congruent to (for [image: there is no content]) [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], or [image: there is no content]i such that the partition satisfies either V1–V7 or W1–W7.



3. Proof of Lemma 1.3

Let [image: there is no content] denote the coefficient of [image: there is no content] extracted from [image: there is no content] (when written as a Maclaurin series). Direct calculations yield



[[image: there is no content]]f(x,y,t)=+(1-xy)(xn+1-yn+1)(1-x)(1-y)(x-y)+(-xn+r(1-x2)+xnr+1(1-x2r))(y-ys)(1-x)(1-y)(x-y)(xr-ys)+(-yn+s(1-y2)+yns+1(1-y2s))(x-xr)(1-x)(1-y)(x-y)(xr-ys)+(x(n-1)r(1-x2r)-yn-1(1-y2))yxr(x-xr)(y-ys)(1-x)(1-y)(x-y)(xr-ys)(xr-y)+(y(n-1)s(1-y2s)-xn-1(1-x2))xys(x-xr)(y-ys)(1-x)(1-y)(x-y)(xr-ys)(ys-x)



(14)




Claim:


[[image: there is no content]]f(x,y,t)=+xn(1-yn+1)(1-y)(1-x)+(yn+1-y(n+1)s)(xn-xr)(1-y)(1-x)+(yn-yns)(x2-x2r)(1-y)(1-x)+x(yn-y(n+1)s)1-y+∑j=1n-1x(n-j)r(yj-yjs)(1-x2r)(1-y)(1-x)+∑j=0(n-2-δ(n))/2xn-2j-1ys(2j+1)(1+x)1-y+∑j=1(n-2+δ(n))/2xn-2jy2js(1-ys(n+1-2j))(1+x)1-y+yn1-y+δ(n)xy(n+1)s1-y



(15)




where [image: there is no content] if n is even and [image: there is no content] if n is odd. To verify Equation (15), one first eliminates the sums in Equation (15) to obtain


[[image: there is no content]]f(x,y,t)=+xn(1-yn+1)(1-y)(1-x)+(yn+1-y(n+1)s)(xn-xr)(1-y)(1-x)+(yn-yns)(x2-x2r)(1-y)(1-x)+x(yn-y(n+1)s)1-y+yn1-y+(1+x)xys(xn-1-y(n-1)s)(1-y)(x-ys)+yxr(x(n-1)r-yn-1)(1-x2r)(1-y)(1-x)(xr-y)-ys(n+1)(1+x)(x2-xn)(1-y)(1-x2)-ysxr(x(n-1)r-ys(n-1))(1-x2r)(1-y)(1-x)(xr-ys)



(16)




Then, one can either verify by hand or use any number of symbolic manipulation programs to verify that the right-hand sides of Equations (16) and (14) are equal by simplifying their difference and getting 0. (The authors used Maple.)
We now observe that Equation (15) implies that [[image: there is no content]]f(x,y,t) has nonnegative coefficients, provided [image: there is no content]. Moreover, the only possible negative coefficients are



[xjyk[image: there is no content]]f(x,y,t)with1<r<nandr≤j<n<k<(n+1)s








since all terms of Equation (15) yield manifestly nonnegative coefficients except for the second term when [image: there is no content], where we have


[image: there is no content]








Now suppose that the coefficient of xjyk[image: there is no content] in the power series for [image: there is no content], centered at [image: there is no content], were negative; i.e., [xjyk[image: there is no content]]f(x,y,t)<0. Then, we must have both [image: there is no content] and [image: there is no content]. Further, by the symmetry of [image: there is no content] (with respect to the simultaneous swapping of x and r with y and s, respectively) we would know that [xkyj[image: there is no content]]f(x,y,t)<0 as well, and hence [image: there is no content] and [image: there is no content]. However, we then have a contradiction since we would have both [image: there is no content] and [image: there is no content]. Thus, [xjyk[image: there is no content]]f(x,y,t)≥0, and the lemma is proved.



4. Proof of Theorem 1.2

Let P(i):=([image: there is no content],[image: there is no content],[image: there is no content],qrx+sy+uz;qm)i and Q(i):=([image: there is no content],[image: there is no content],[image: there is no content],qx+y+z;qm)i. Our goal will be to show that each addend in the sum on the right-hand side of Equation (10) has nonnegative coefficients. We will do this by considering two cases based on the index of summation i in Equation (10): [image: there is no content] and [image: there is no content]. First, though, we observe that



[image: there is no content]



(17)




is identically equal to


+12t(x-α)(1-tβ)(1-tγ)(1-yz)+(1-ty)(1-tz)(1-βγ)+12t(y-β)(1-tγ)(1-tα)(1-zx)+(1-tz)(1-tx)(1-γα)+12t(z-γ)(1-tx)(1-ty)(1-αβ)+12t(z-γ)(1-tα)(1-tβ)(1-xy)+[image: there is no content](x-α)(y-β)



(18)




Substituting [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content] for x, y, z, α, β, and γ, respectively, we may then conclude that


-(1-t[image: there is no content])(1-t[image: there is no content])(1-t[image: there is no content])(1-tqx+y+z)-(1-t[image: there is no content])(1-t[image: there is no content])(1-t[image: there is no content])(1-tqrx+sy+uz)



(19)




is identically equal to


+12t[image: there is no content](1-q(r-1)x)(1-t[image: there is no content])(1-t[image: there is no content])(1-qy+z)+(1-t[image: there is no content])(1-t[image: there is no content])(1-qsy+uz)+12t[image: there is no content](1-q(s-1)y)(1-t[image: there is no content])(1-t[image: there is no content])(1-qz+x)+(1-t[image: there is no content])(1-t[image: there is no content])(1-quz+rx)+12t[image: there is no content](1-q(u-1)z)(1-t[image: there is no content])(1-t[image: there is no content])(1-qrx+sy)+12t[image: there is no content](1-q(u-1)z)(1-t[image: there is no content])(1-t[image: there is no content])(1-qx+y)+[image: there is no content]([image: there is no content]-[image: there is no content])([image: there is no content]-[image: there is no content])



(20)




Let [image: there is no content]. Then, the numerator of the ith addend in Equation (10), namely



Q(i)Q(i-1)-[image: there is no content]P(i-1)








is given precisely by Equation (20). Now turning to the denominator of Equation (10), we may write


Q(L)Q(i-1)=([image: there is no content],[image: there is no content],[image: there is no content],qx+y+z;qm)L([image: there is no content],[image: there is no content],[image: there is no content],qx+y+z;qm)i-1=(t[image: there is no content],t[image: there is no content],t[image: there is no content],tqx+y+z;qm)L-i+1








and so we have that


(1-t[image: there is no content])(1-t[image: there is no content])(1-t[image: there is no content])dividesQ(L)Q(i-1)whenever1≤i≤L



(21)




Similarly, from the definition of [image: there is no content] we may deduce that


(1-[image: there is no content])(1-[image: there is no content])(1-[image: there is no content])dividesP(1)



(22)




and whenever [image: there is no content] that


(1-[image: there is no content])(1-[image: there is no content])(1-[image: there is no content])(1-t[image: there is no content])(1-t[image: there is no content])(1-t[image: there is no content])dividesP(i)



(23)




When [image: there is no content] we have [image: there is no content], and hence the numerator of the first addend in Equation (10) simplifies to



Q(1)-P(1)=+12[image: there is no content](1-q(r-1)x)(1-[image: there is no content])(1-[image: there is no content])(1-qy+z)+(1-[image: there is no content])(1-[image: there is no content])(1-qsy+uz)+12[image: there is no content](1-q(s-1)y)(1-[image: there is no content])(1-[image: there is no content])(1-qz+x)+(1-[image: there is no content])(1-[image: there is no content])(1-quz+rx)+12[image: there is no content](1-q(u-1)z)(1-[image: there is no content])(1-[image: there is no content])(1-qrx+sy)+(1-[image: there is no content])(1-[image: there is no content])(1-qx+y)



(24)




Meanwhile, the denominator of the first addend in Equation (10) contains all of the factors indicated in Equation (21): (1-[image: there is no content]), (1-[image: there is no content]), (1-[image: there is no content]). The denominator also contains all of the factors indicated by Equation (22): (1-[image: there is no content]), (1-[image: there is no content]), (1-[image: there is no content]). These factors, together with the “trick” of re-writing, for example,


(1-qx+y)=(1-[image: there is no content])+[image: there is no content](1-[image: there is no content])



(25)




is enough to see that the first addend in Equation (10) only has nonnegative coefficients.
When [image: there is no content], we have [image: there is no content], and hence the numerator of the ith addend in Equation (10) is precisely Equation (20). From Equations (21) and (23) we have the following factors in the denominator: (1-t[image: there is no content]), (1-t[image: there is no content]), (1-t[image: there is no content]), (1-[image: there is no content]), (1-[image: there is no content]), (1-[image: there is no content]), (1-t[image: there is no content]), (1-t[image: there is no content]), (1-t[image: there is no content]). Again employing the “trick” Equation (25) as necessary, we can handle most of the ith addend similar to before, except for the last term of Equation (20), which contains the factor



(1-qx+y)(1-t[image: there is no content])(1-t[image: there is no content])+[image: there is no content]([image: there is no content]-[image: there is no content])([image: there is no content]-[image: there is no content])



(26)




This factor is potentially problematic due to the presence of the factor [image: there is no content] in the second term.
If we let f be given as in Lemma 1.3, then Equation (26) becomes



f([image: there is no content],[image: there is no content],t)(1-t[image: there is no content])(1-t[image: there is no content])(1-[image: there is no content])(1-[image: there is no content])(1-t[image: there is no content])(1-t[image: there is no content])








The last term of Equation (20), when divided by the nine factors listed above, then becomes


12t[image: there is no content](1-q(u-1)z)f([image: there is no content],[image: there is no content],t)(1-t[image: there is no content])(1-[image: there is no content])(1-t[image: there is no content])








which, in light of Lemma 1.3, clearly now has no negative coefficients. Thus, having shown that all addends in Equation (10) admit only nonnegative coefficients, Theorem 1.2 is proved.


5. Concluding Remarks

It seems to always be possible to find a suitable “splitting” to handle the [image: there is no content] case, no matter how many variables are used. For example, if we increase from three to four main variables ([image: there is no content], ..., [image: there is no content], with corresponding [image: there is no content], ..., [image: there is no content]), for [image: there is no content] we have



-1(1-q[image: there is no content])(1-qx2)(1-qx3)(1-q[image: there is no content])(1-q[image: there is no content][image: there is no content]+r2x2+r3x3+[image: there is no content][image: there is no content]))-1(1-q[image: there is no content][image: there is no content])(1-qr2x2)(1-qr3x3)(1-q[image: there is no content][image: there is no content])(1-q[image: there is no content]+x2+x3+[image: there is no content])=h([image: there is no content],x2,x3,[image: there is no content],r2,r3)+h([image: there is no content],x2,[image: there is no content],[image: there is no content],r2,[image: there is no content])+h([image: there is no content],x3,[image: there is no content],[image: there is no content],r3,[image: there is no content])+h(x2,x3,[image: there is no content],r2,r3,[image: there is no content])(1-q[image: there is no content]+x2+x3+[image: there is no content])(1-q[image: there is no content][image: there is no content]+r2x2+r3x3+[image: there is no content][image: there is no content])








where h([image: there is no content],x2,x3,[image: there is no content],r2,r3):=


+q[image: there is no content](1-q([image: there is no content]-1)[image: there is no content])(1-q[image: there is no content])(1-q[image: there is no content][image: there is no content])·qx2(1-q(r2-1)x2)(1-qx2)(1-qr2x2)·qx3(1-q(r3-1)x3)(1-qx3)(1-qr3x3)+12·q[image: there is no content](1-q([image: there is no content]-1)[image: there is no content])(1-q[image: there is no content])(1-q[image: there is no content][image: there is no content])·qx2(1-q(r2-1)x2)(1-qx2)(1-qr2x2)+12·qx2(1-q(r2-1)x2)(1-qx2)(1-qr2x2)·qx3(1-q(r3-1)x3)(1-qx3)(1-qr3x3)+12·q[image: there is no content](1-q([image: there is no content]-1)[image: there is no content])(1-q[image: there is no content])(1-q[image: there is no content][image: there is no content])·qx3(1-q(r3-1)x3)(1-qx3)(1-qr3x3)+12·q[image: there is no content](1-q([image: there is no content]-1)[image: there is no content])1-q[image: there is no content]·qr2x2(1-q[image: there is no content][image: there is no content])(1-qr2x2)+12·q[image: there is no content](1-q([image: there is no content]-1)[image: there is no content])1-q[image: there is no content]·qr3x3(1-q[image: there is no content][image: there is no content])(1-qr3x3)+12·qx2(1-q(r2-1)x2)(1-qx2)(1-qr2x2)·qr3x31-qr3x3+12·qx2(1-q(r2-1)x2)(1-qx2)(1-qr2x2)·q[image: there is no content][image: there is no content]1-q[image: there is no content][image: there is no content]+12·qx3(1-q(r3-1)x3)(1-qx3)(1-qr3x3)·qr2x21-qr2x2+12·qx3(1-q(r3-1)x3)(1-qx3)(1-qr3x3)·q[image: there is no content][image: there is no content]1-q[image: there is no content][image: there is no content]+13·q[image: there is no content](1-q([image: there is no content]-1)[image: there is no content])(1-q[image: there is no content])(1-q[image: there is no content][image: there is no content])+13·qx2(1-q(r2-1)x2)(1-qx2)(1-qr2x2)+13·qx3(1-q(r3-1)x3)(1-qx3)(1-qr3x3)+q[image: there is no content](1-q([image: there is no content]-1)[image: there is no content])(1-q[image: there is no content])(1-q[image: there is no content][image: there is no content])·qx2(1-q(r2-1)x2)(1-qx2)(1-qr2x2)·qr3x31-qr3x3+q[image: there is no content](1-q([image: there is no content]-1)[image: there is no content])(1-q[image: there is no content])(1-q[image: there is no content][image: there is no content])·qx3(1-q(r3-1)x3)(1-qx3)(1-qr3x3)·qr2x21-qr2x2+qx2(1-q(r2-1)x2)(1-qx2)(1-qr2x2)·qx3(1-q(r3-1)x3)(1-qx3)(1-qr3x3)·q[image: there is no content][image: there is no content]1-q[image: there is no content][image: there is no content]+q[image: there is no content](1-q([image: there is no content]-1)[image: there is no content])(1-q[image: there is no content])(1-q[image: there is no content][image: there is no content])·qr2x21-qr2x2·qr3x31-qr3x3+qx2(1-q(r2-1)x2)(1-qx2)(1-qr2x2)·q[image: there is no content][image: there is no content]1-q[image: there is no content][image: there is no content]·qr3x31-qr3x3+qx3(1-q(r3-1)x3)(1-qx3)(1-qr3x3)·qr2x21-qr2x2·q[image: there is no content][image: there is no content]1-q[image: there is no content][image: there is no content]








satisfies h([image: there is no content],x2,x3,[image: there is no content],r2,r3)≽0. Finding a suitable “splitting” with [image: there is no content] inserted into opportune locations, as we did in the proofs of the Theorems 1.1 and 1.2, is a much more difficult task here. (We think of this as inserting the t’s since we wish to recover the [image: there is no content] case when we let [image: there is no content].) The authors of this manuscript do not currently possess such a “splitting” for this case. Nonetheless, the authors are fairly confident in the veracity of the following proposal.
Proposal 5.1 For any [image: there is no content]-tuple L,m,[image: there is no content],⋯,xn,[image: there is no content],⋯,rnof positive integers,



1(q[image: there is no content],⋯,qxn,qΣ;qm)L≽1(q[image: there is no content][image: there is no content],⋯,qrnxn,qσ;qm)L



(27)




where Σ:=[image: there is no content][image: there is no content]+⋯+rnxnand σ:=[image: there is no content]+⋯+xn.
We note that Proposal 5.1 is true for [image: there is no content] since the right-hand side of Equation (27) could be interpreted as the generating function for partitions into parts from the set S:={[image: there is no content],⋯,xn,Σ} (parts with the same numeric value but distinct origins having different colors, thus ensuring [image: there is no content]) such that for any such partition π, there is an integer A with the property that



A≡ν([image: there is no content],π)(mod[image: there is no content])A≡ν(x2,π)(modr2)⋮A≡ν(xn,π)(modrn)








where [image: there is no content] is the number of occurrences of the part p in the partition π. This set of partitions is a subset of the set of all partitions into parts from the set S, which is what the left-hand side of Equation (27) would count. To see this clearly, we let [image: there is no content] be a partition with parts from the set S′:={[image: there is no content][image: there is no content],⋯,rnxn,σ} and let μ′:=min({ν(ri[image: there is no content],[image: there is no content]):1≤i≤n}). Then we can explicitly define an injection (for [image: there is no content]) mapping [image: there is no content]↦π as follows:


ν(Σ,π):=μ′ν([image: there is no content],π):=ri·(ν(ri[image: there is no content],[image: there is no content])-μ′)+ν(σ,[image: there is no content])








Clearly we can then choose A=ν(σ,[image: there is no content]). Now this mapping is invertible since if we let μ:=min({ν([image: there is no content],π):1≤i≤n}) we have


ν(σ,[image: there is no content])=μν(ri[image: there is no content],[image: there is no content])=ν([image: there is no content],π)-μri+ν(Σ,π)








Thus, the proposal is proved for [image: there is no content].
Finally, we intend to explore possible connections with the recent work “A q-rious positivity” by S. Ole Warnaar and Wadim Zudilin (see [7]). In particular, we are quite q-rious as to how the validity of inequalities, like those in this paper, for [image: there is no content] might imply the validity for all positive L, a sentiment that seems echoed by the authors of [7].
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