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Abstract: Zagier proved that the generating functions of traces of singular values of Jm(z)

are weight 3
2

weakly holomorphic modular forms. In this paper we prove that there is the
sign-periodicity of traces of singular values of Jm(z).
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1. Introduction and Statement of Results

Singular moduli are the values of a modular function at the points in the upper half plane H that satisfy
a quadratic equation with rational coefficients. These algebraic numbers play prominent roles in number
theory. For example, they generate Hilbert class fields of imaginary quadratic fields and isomorphism
classes of elliptic curves with complex multiplication, distinguished by singular moduli.

In his renowned paper [1], D. Zagier displayed an amazing formula, which relates the traces of
singular moduli to the Fourier coefficients of a weakly holomorphic modular form of weight 3

2
and

provided new proof of Borcherds’ theorem on the infinite product expansions of integer weight modular
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forms on SL2(Z) with Heegner divisor. In particular, he showed that the trace of the singular moduli for
discriminant −d appears as the d-th Fourier coefficient of the weakly holomorphic modular form g1(z)

g1(z) =
η2(z)

η(2z)

E4(4z)

η6(4z)
= q−1 − 2 + 248q3 − 492q4 + · · · (1)

where η(z) = q1/24
∏∞

n=1(1−qn) is the Dedekind eta function andE4(z) = 1+240
∑∞

n=1 σ3(n)qn is the
Eisenstein series of weight 4. This result has motivated numerous studies : Arithmetic property of traces
of singular moduli [2–4], modular form grids [4–6], and generalizations [7–9]. Further, sign changes of
the Fourier coefficients of modular forms f(z) (especially, when f(z) is a Hecke eigenform) have been
extensively studied [10–13]. This is particularly interesting when Fourier coefficients of the modular
form encode interesting arithmetic information. For example, the sign-periodicity of certain rank and/or
crank differences of integer partitions have been investigated [14–16].

Our aim in this note is to study the sign-periodicity of traces of singular moduli. We prove that
the signs of traces of singular moduli of J(z) change periodically by looking at the signs of Fourier
coefficients of g1(z). Here, J(z) is the normalized Hauptmodul for SL2(Z) defined by J(z) = j(z)−744

and j(z) is the modular invariant. Actually, we show the sign-periodicity for the traces of singular moduli
of Jm(z), defined for every non-negative integer m as the unique modular function having the Fourier
expansion of the form q−m +O(q).

First we recall the basic notions of the traces of singular moduli following the discussion in [1]. Let
d be a positive integer with d ≡ 0 or 3 (mod 4). We denote by Qd the set of positive definite binary
quadratic forms Q = [a, b, c] = aX2 + bXY + cY 2 (a, b, c ∈ Z) of discriminant b2− 4ac = −d with the
usual action of SL2(Z). Then the modular trace function tm(d) is defined by

tm(d) :=
∑

Q∈Qd/SL2(Z)

1

ωQ
Jm(αQ) (2)

for all d and all m ≥ 1, where ωQ = |SL2(Z)Q| and αQ is the unique root of Q in the upper half plane H.
Our main result determines the sign of tm(d).

Theorem 1 With the above notations, we have

sign(tm(d)) =

+ if dm2 ≡ 0 (mod 4)

− if dm2 ≡ 3 (mod 4)
(3)

This theorem follows from the result concerning the signs of Fourier coefficients of g1(z) and
(g1| 3

2
T (m2))(z), where | 3

2
T (m2) denotes the action of the mth Hecke operator on M !,+

3
2

(Γ0(4)). Here,

M !,+
3
2

(Γ0(4)) is the Kohnen plus space of weakly holomorphic modular forms of weight 3
2

on Γ0(4).

For any positive integer m let Bm(1, d) denote the coefficient of qd in (g1| 3
2
T (m2))(z). Zagier proved

the beautiful relation between the modular trace function tm(d) and the Fourier coefficient Bm(1, d)

(see Theorem 5 in [1])
tm(d) = −Bm(1, d) (4)

Therefore, the sign-periodicity of tm(d) in Theorem 1 is an immediate consequence of the
following theorem.
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Theorem 2 With the above notations, we have

sign(Bm(1, d)) =

− if dm2 ≡ 0 (mod 4)

+ if dm2 ≡ 3 (mod 4)
(5)

Remark 1 By the famous duality result (see Theorem 5 in [1]), the above theorem also says the
sign-periodicity of Am(1, d), where Am(1, d) is the 1st Fourier coefficient of ((fd)| 1

2
T (m2))(z). Here,

| 1
2
T (m2) denotes the action of themth Hecke operator on the spaceM !,+

1
2

(Γ0(4)) and fd(z) is the unique

modular form in M !,+
1
2

(Γ0(4)) having the Fourier expansion of the form q−d +O(q).

To prove Theorem 2, we obtain an effective estimate of B1(1, d) by employing the circle method.
For the sign of Bm(1, d) of general m, we use the Fourier coefficient formula for the Hecke operator
T (m2). Since the main term in the estimation of B1(1, d) increases exponentially, one expects the sign
of Bm(1, d) is determined by B1(m

2d) for sufficiently large d. The main part of the proof is to find the
effective bound for d. Then we can verify the sign-periodicity by checking the first few Bm(1, d).

2. Proof of Theorem 2

We first estimate B1(1, d) with an effective bound by employing the circle method. Before that, we
recall basic facts on the circle method. For a series expansion of the form f(s) :=

∑∞
n=0 b(n)sn, by

Cauchy’s integral formula, we have

b(n) =
1

2πi

∫
|s|=r

f(s)

sn+1
ds (6)

We will integrate Equation (6) over a circle of radius r = e
−2π

N2 := e−2πρ for a positive integer N to be
determined. By following the dissection given in (pp. 115–117 in [14]) or ([17] [Chapter 5]) and setting
z = k(ρ− iϕ) and τ = h+iz

k
, we arrive at

b(n) =
∑

1≤k≤N

∑
0≤h≤k
(h,k)=1

e
−2πinh

k

∫
ξh,k

f(τ)e2πnρe−2πinϕdϕ (7)

where ξh,k = [−θ′h,k, θ′′h,k] and

θ′h,k =
h

k
− h0 + h

k0 + k
(8)

θ′′h,k =
h1 + h

k1 + k
− h

k
(9)

Here, h0

k0
, h
k
, h1

k1
are three consecutive terms of the Farey sequence of order N . Note that each θ satisfies

1
2kN
≤ θ ≤ 1

kN
.

The following transformation formula of the Dedekind eta function plays an important role in the
circle method. For γ = ( a bc d ) ∈ SL2(Z), we have

η(γz) = e−πis(d,c)e
πi(a+d)

12c

√
−i(cz + d)η(z) (10)

where s(d, c) is the Dedekind sum defined by s(d, c) =
∑c−1

r=1

(
r
c
−
[
r
c

]
− 1

2

) (
dr
c
−
[
dr
c

]
− 1

2

)
.

We define ωh,k = eπis(h,k). From Equation (10) andE4(z) ∈M4(Γ0(1)), we derive the transformation
property of G(z) = qg1(z).
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Proposition 1 Let h, k be integers such that k > 0 and (h, k) = 1. For each d, let hd be an integer such
that dhhd ≡ −(d, k) (mod k). Then,

G(exp(2πiτ)) = ω(h, k) exp

(
π

12k

(
−o(G, k)

1

z
− 24z

))
z−3/2

√
(4, k)2

8(2, k)

×
F
(

exp
(

(2,k)h2

k
+ i (2,k)

2

2kz

))
F 6
(

exp
(

(4,k)h4

k
+ i (4,k)

2

4kz

))
F 2
(
exp

(
h1

k
+ i 1

kz

))
× E4

(
exp

(
(4, k)h4

k
+ i

(4, k)2

4kz

))
(11)

where F (e2πiz) = q1/24

(η(z))
, ω(h, k) = exp

(
πi
(
−2s(h, k) + s( 2h

(2,k)
, k

(2,k)
) + 6s( 4h

(4,k)
, k

(4,k)
)
))

and
o(G, k) = 0,−6,−24 according to (k, 4) = 1, 2, 4.

The following lemma and two estimations are crucial when we determine the main term and the bound
of the error term.

Lemma 1 Let us define

I :=

∫
ξh,k

z−
3
2 exp

(
π

12k

(
b

z
− cz

))
e2πnρe−2πinϕdϕ (12)

where b is a positive integer. Then,

I =

√
48

kb
sinh

(
π

k

√
2b

3
(n− c

24
)

)
+ E(I) (13)

where |E(I)| ≤ e
πb
3 (2N)3/2 e

2π(n− c
24 )ρ

π(n− c
24

)
.

Let P (q) =
∏∞

n=0(1 − qn)−1 =
∑∞

n=0 p(n)qn be the generating function for p(n). We use the
following estimation given by Chan ([14] [Equation (3.19)]):

∞∑
n=0

p(n)e−2πyn ≤ exp

(
e−2πy

(1− e−2πy)2

)
=: Up(y) (14)

where y is a positive real number. By using a trivial bound σ3(n) ≤ n4, we also see that

1 + 240
∞∑
n=1

σ3(n)e−2πyn ≤ 1 + 240
∞∑
n=1

n4e−2πyn ≤ 1 + 5760
e−2πy

(1− e−2πy)5
=: UE(y) (15)

Now we are ready to estimate B1(1, d). As the procedure of the proof is similar to that of [14] and
the detailed calculation for bounding error term is tedious, we give only outlines. By Equation (7) and
G(z) = qg1(z), we see that

B1(1, n− 1) =

 ∑
1≤k≤N
(k,4)=1

+
∑

1≤k≤N
(k,4)=2

+
∑

1≤k≤N
4|k

 ∑
0≤h≤k
(h,k)=1

e
−2πinh

k

∫
ξh,k

G(τ)e2πnρe−2πinϕdϕ (16)

=: S1(A) + S2(A) + S3(A)
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where A is the integrand.
For the first sum S1(A), by using the transformation formula (Proposition 1), Equations (14) and (15),

and the fact that 2π
k

Re1
z
≥ π, we obtain

|A| ≤ 1√
8
Up

(
1

8

)7

UE

(
1

8

)
|z|−

3
2 e2π(n−1)ρ (17)

Here, we have used the fact that
∏∞

k=1
(1−q2k)2

1−qk is a generating function for the number of 2-core partitions
of n, and therefore t(n) ≤ p7(n) for all positive integers n, where

∞∑
n=0

t(n)qn =
∞∏
k=1

(1− q4k)2

(1− qk)6(1− q2n)
and

∞∑
n=0

p7(n)qn =
∞∏
k=1

1

(1− qk)7
(18)

Since the length of the integration is less than 2
kN

and |z|−3/2 ≤ k−3/2N3, we see that

|S1(A)| ≤ 1√
2
ζ(3/2)Up

(
1

8

)7

UE

(
1

8

)
e2π(n−1)ρN2 (19)

where ζ(s) is the Riemann zeta function.
We now turn to the estimation of S3. By applying Proposition 1, we observe that

S3 =
∑

1≤k≤N
4|k

∑
0≤h≤k
(h,k)=1

e
−2πinh

k

∫
ξh,k

ω(h, k)
√

2z−
3
2 exp

(
24π

12k
(z − 1

z
)

)
e2πnρe−2πinϕdϕ

+
∑

1≤k≤N
4|k

∑
0≤h≤k
(h,k)=1

e
−2πinh

k

∫
ξh,k

ω(h, k)
√

2 (G(τ ′)− 1) z−
3
2 exp

(
24π

12k
(z − 1

z
)

)
e2πnρe−2πinϕdϕ

=: T31 + T32 (20)

Estimation of T32 is very similar to that of S1:

|T32| ≤ 2
√

2e−πζ(3/2)

(
Up

(
1

2

)9

UE (2)− 1

)
e2π(n−1)ρN2 (21)

From Lemma 1, we see that

T31 =
∑

1≤k≤N
4|k

∑
0≤h≤k
(h,k)=1

e
−2πinh

k ω(h, k)

√
2

k
sinh

(
4π

k

√
n− 1

)
+ E1,n (22)

where

|E1,n| ≤
√

2e8π(2N)3/2 e
2π(n−1)ρ

π(n− 1)
(23)

For S2, by decomposing as S3 case, we see that

|T22| ≤ e−π/4ζ(3/2)

(
Up

(
1

2

)5

UE

(
1

2

)
− 1

)
e2π(n−1)ρN2 (24)
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and

T21 =
∑

1≤k≤N
(k,4)=2

∑
0≤h≤k
(h,k)=1

e
−2πinh

k ω(h, k)

√
2

k
sinh

(
2π

k

√
n− 1

)
+ E2,n (25)

where

|E2,n| ≤
√

2e2π(2N)3/2 e
2π(n−1)ρ

π(n− 1)
(26)

In summary, we have shown that

B1(1, n) ∼ 1

2
C(n+ 1) exp

(
π
√
n
)

(27)

where √
2C(n) :=

√
2e−πniω(1, 2) + e−πni/2ω(1, 4) + e−3πni/2ω(3, 4) (28)

Therefore, the sign of B1(1, n) is determined by that of C(n + 1) for sufficiently large n. We note that
C(n) is of period 4 with

C(1) = −2, C(2) = C(3) = 0, C(4) = 2 (29)

Note that g1(z) is in Kohnen’s plus space, and hence n-th Fourier coefficient vanishes if n ≡ 1 or 2

(mod 4). After a simple, but lengthy calculation, we find that error terms are dominated by
√

2

2
(2πn)3/2 exp

(π
3

√
n
)

(30)

for all integers n > 875. By checking the first 874 terms, we observe that∣∣∣∣B1(1, n)− 1

2
C(n+ 1) exp

(
π
√
n
)∣∣∣∣ ≤ 1

2
(2πn)3/2 exp

(π
3

√
n
)

(31)

for all positive integers n. Since exp (π
√
n) > (2πn)3/2 exp(π

3

√
n) for all integers n > 1, we find that

the sign of B1(1, n) is determined by C(n+ 1) for all positive integers n by checking the first term.
Now we turn to the investigation on the image of g1(z) under Hecke operators. For a prime p, we

define the Hecke operator T (p2) on M !,+
3
2

(Γ0(4)) by

(f | 3
2
T (p2))(z) :=

∑
n∈Z

n≡0,3 (mod 4)

(
c(p2n) +

(
−n
p

)
c(n) + pc(n/p2)

)
qn (32)

where f(z) =
∑

n∈Z c(n)qn (see [18][Proposition 2]). For a positive integer m, the Hecke operator
T (m2) is defined by the following recursive relation (see [19][Theorem 1])

T (p2l+2) = T (p2)T (p2l)− pT (p2l−2) (33)

and the multiplicity property that T (m2m′2) = T (m2)T (m′2) whenever (m,m′) = 1. We derive that

(f | 3
2
T (m2))(z) =

∑
n∈Z

n≡0,3 (mod 4)

∑
d|m2

b(d)c(m2n/d2)

 qn (34)
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where b(d) ∈ R depending on d. After some computations we find that |b(d)| ≤ m2 for all d. Recall
that, for all positive integers n, we have obtained

|B1(1, n)| < A(n) +B(n) (35)

and

B(n) <
3

2
A(n) (36)

where A(n) = 1
2
C(n+ 1) exp (π

√
n) and B(n) =

√
2

2
(2πn)

3
2 exp

(
π
3

√
n
)
. Therefore, we arrive at

∣∣Bm(1, n)− A(m2n)
∣∣ =

∣∣∣∣∣∣
∑
d|m2

b(d)B1(1,m
2n/d2)− A(m2n)

∣∣∣∣∣∣ (37)

< B(m2n) +
∑

d|m2 and d6=1

5

2
b(d)A(m2n/d2)

< B(m2n) + 5m3A(m2n/4)

where the last inequality comes from the fact that
∑

d|m2 1 ≤ 2m for all positive integers m. Hence, we
see that ∣∣Bm(1, n)− A(m2n)

∣∣ < B(m2n) + 5(m2n)2A(m2n/4) (38)

and observe that A(k) > B(k) + 5k2A(k/4) for all integers k > 27. Therefore, the sign of Bm(1, n) is
determined by B1(1,m

2n) if m2n > 24 and we can easily verify that the same is true for m2n ≤ 27.
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