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Abstract: We develop a class of Steffensen-like schemes for approximating solution of Banach space
valued equations. The sequences generated by these schemes are, converging to the solution under
certain hypotheses that are weaker than in earlier studies. Hence, extending the region of applicability
of these schemes without additional hypotheses. Benefits include: more choices for initial points; the
computation of fewer iterates to reach a certain accuracy in the error distances, and a more precise
knowledge of the solution. Technique is applicable on other schemes our due to its generality.
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1. Introduction

A plethora of problems from optimal control, variational inequations, mathemati-
cal programming and other disciplines can be converted to finding a solution x∗ of the
generalized equation

0 ∈ F(x) + Q(x), (1)

with F : B1 → B2 being a continuous operators, Q a set valued operator mapping B1 into
subsets of B2 that have closed graph, and B1,B2 are standing for Banach spaces.

The Steffensen-like scheme (SLS)

0 ∈ F(xn) + F[q1(xn), q2(xn)](xn+1 − xn) + Q(xn+1), (2)

has been developed (see [1]) to produce a sequence approximating x∗, and F[·, ·] is a divided
difference of order one.

Notice that G := 0, then SLS reduces to the classical Steffensen scheme (SS)

xn+1 = xn − F[q1(xn), q2(xn)]
−1F(xn), (3)

and if F is differentiable (Fréchet) with qj(x) = x, then SLS becomes Newton’s scheme
(NS) for solving Equation (1), which is given by

0 ∈ F(xn) + F′(xn)(xn+1 − xn) + Q(xn). (4)
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Special choices of mapping qj have been studied, such as:

q1(x) = x

qj(x) = xn − F′(xn)
−1F(xn)

(
Newton′s scheme

)
; q1(xn) = xn,

q2(xn−1) = xn − F[xn−1, xn−2]
−1F(xn−1)

(
secant scheme

)
;

q1(xn−1) = xn + an(xn−1 − xn), and q2(xn) = xn;

q1(x) = x and q2(x) = x− F(x).

Dontchev [2] showed convergence under the continuity due to Aubin (F + Q)−1

together with continuity by Lipschitz for NS. Argyros [3] showed convergence of NS when
F is i ≥ 2 differentiable.

Convergence of NS under Hölder like conditions can be found in [4]. For

q1(xn) = αxn + (1− α)xn−1 and q2(xn) = xn, α ∈ [0, 1),

scheme (2) was studied in [5]. Later a local convergence result was prescribed in [1] who
generalized earlier results [6–8].

Based on the aforementioned, there is a need to find unifying convergence criteria
under weaker conditions. Moreover, we are concerned with optimization considerations.
These ideas and concerns constitute our motivation for this paper. In particular, we extend
the region of applicability of SLS by finding more initial point x0; providing fewer iterates
for achieving a certain accuracy and we give a better information related to the where about
x∗. These are obtained without additional hypothesis by developing the center-Lipchitz
idea. This technique may be utilized to extend the applicability of other schemes with the
same benefits. Another novelty of our idea is that all the benefits are obtained without
additional to the previous works hypotheses.

In order to create a self-contained study, we present a background and auxiliary
definitions and results in Section 2. The convergence analysis local is given for various
cases in Sections 3 and 4 with examples. A concluding Section 7 completes this study.

2. Background and Auxiliary Results

We present material necessary for only understanding our results. A more detailed
inside in the topics developed can be found in [2,9–11]. A distance from x ∈ B1 to a region
S in (B3, ‖ · ‖) (Banach space) is given by

DIST(x,S) := inf ‖x− y‖, (y ∈ S).

If A ⊆ B3, then the excess E is defined as

E(A,S) := sup DIST(x,S), (x ∈ A).

If T : B1 → B2 stands for a set-valued operator, then

GPHT =
{
(u, v) ∈ B1 ×B2, v ∈ T(u)

}
to be the graph of T and T−1(v) = {u ∈ B1, v ∈ T(u)} is the inverse operator of T. Let
L(B1,B2) stand for the space of continuous linear operators mapping B1 into B2. Then,
notation U[x, r] is used to denote a ball (closed) of center x ∈ B1 and radius r > 0.

Definition 1 ([2]). We say that T is Lipschitz (pseudo) about (x0, y0) ∈ GPHT with modulus µ
is there exist parameters α ≥ 0 and β ≥ 0 such that for each u, v ∈ U[x0, β]

E
(

T(u) ∩U[y0, α], T(v)
)
≤ µ‖u− v‖. (5)
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Remark 1.

(a) Let vn ⊂ B1. Then, limn→∞ vn = x∗ (linearly), if for en = ‖xn − x∗‖.
(b) Divided difference F[·, ·] : B1 ×B2 → L(B1,B2) satisfies

F[u, v] = F(u)− F(v) for each u, v ∈ B1 with u 6= v. (6)

If F is differentiable, we get F[x, x] = F′(x) [8].

Definition 2. This definition does not uniquely specify the divided difference. But a popular choice
is [4,11,12]

F[u, v] =
∫ 1

0
F′
(

u + τ(v− u)
)

dτ. (7)

We need the auxiliary result on fixed points.

Proposition 1 ([1,2]). Consider f to be a set-valued operator. Suppose that the following hypotheses
hold for σ0 ∈ B1, ρ ≥ 0 and p ∈ [0, 1)

(i) DIST
(

σ0, f (σ0)
)
≤ (1− p)ρ .

(ii) E
(

f (u) ∩U[σ0, ρ], f (v)
)
≤ p‖u− v‖ for each u, v ∈ U[σ0, ρ].

Then, f has a fixed point x in U[σ0, ρ].

Moreover, if f is a single valued function, then x is a unique fixed point for f in
U[σ0, ρ].

The following hypotheses H shall be used. Suppose:

(H1) Operators qj : W →W are qj center-Lipshitz and

qj(x∗) = x∗, where qj ∈ [0, 1).

(H2)
∥∥∥F[x∗, x]− F[q1(x), q2(x)]

∥∥∥ ≤ g
(
‖x∗ − q1(x)‖, ‖x∗ − q2(x)‖

)
for all x ∈W, and some

functions g : [0, ∞)× [0, ∞)→ [0, ∞), which is continuous and non-decreasing.

(H3) The operator Q−1 is Lipschitz (pseudo) about
(
− F(x∗), x∗

)
.

(H4) ‖F[u, v]‖ ≤ δ and

µ
[
δ + g

(
a1α, (1 + a2)α

)]
< 1,

for all u, v ∈W.

Remark 2. In [1], the following hypotheses (H)′ were used.

(H1)′ Operators qj : W →W are q̄j center-Lipshitz and

qj(x∗) = x∗, where q̄j ∈ [0, 1).

(H2)′
∥∥∥F[x, y]− F[u, v]

∥∥∥ ≤ ḡ
(
‖x− u‖, ‖x− v‖

)
for all x ∈W, and some function g : [0, ∞)×

[0, ∞)→ [0, ∞) which is continuous and non-decreasing.
(H3)′ = (H3).
(H4)′ ‖F[u, v]‖ ≤ δ and

µ
[
δ + ḡ

(
ā1α, (1 + ā2)α

)]
< 1,

for all u, v ∈W.

Then, clearly
aj ≤ āj, (8)

g ≤ ḡ, (9)
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(H2)
′ ⇒ (H2), (10)

and
(H4)

′ ⇒ (H4). (11)

In view of items (8)–(11), the results that follow improve the corresponding ones in [1].
Examples where items (8)–(11) are strict can be found in [13].

Next, we show that weaker and actually needed hypotheses (H) can replace (H)′.

3. Convergence for SLS

We shall show the main local convergence result for SLS under hypotheses (H).

Theorem 1. Under hypotheses (H), choose c ∈ (c0, 1), where

c0 =
µ f
(

a1α, (1 + a2)α
)

1− µδ
.

Then, there exists ε > 0, such that for any x0 ∈ U[x∗, ε]− {x∗}, sequence {xn} generated
by SLS converges to x∗ so that for en = ‖xn − x∗‖:

en+1 ≤ cen. (12)

Some notations and discussion follow to help with the proof of Theorem 1.
Define set-valued operators G : B1 → B2 and ψn : B1 → B2 as

G(·) := F(x∗) + Q(·), ψn(·) := G−1
(

Pn(·)
)

,

where Pn : B1 → B2 is given by

Pn(x) := F(x∗)− F(xn)− F
[
q1(xn), q2(xn)

]
(x− xn).

Notice that iterate x1 is such that ψ0(x1) = x1 if and only if

0 ∈ F(x0) + F
[
q1(xn), q2(xn)

]
(x1 − x0) + Q(x1).

Lemma 1. Suppose hypotheses (H) hold. Then, there exists ε > 0 such that ψ0 has a fixed point
in U[x∗, ε] so that

e1 ≤ ce0. (13)

Proof. Choose ε < c2, where
c2 = min{α, c1},

and
c1 =

β

δ + 2g
(

a1α, (1 + a2)α
) .

Using (H3), we get

E
(

G−1(u) ∩U[x∗, α], G−1(v)
)
≤ µ‖u− v‖, (14)

for each u, v ∈ U[0, β].
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By the definition of Pn, (H1), (H2) and (H4), we can write in turn for x ∈ U[x∗, ε]:

‖P0(x)‖ =
∥∥∥F(x∗)− F(x0)− F[q1(x0), q2(x0)](x1 − x0)

∥∥∥
=
∥∥∥F[x∗, x0]

(
(x∗ − x) + (x− x0)

)
− F[q1(x0), q2(x0)](x1 − x0)

∥∥∥
≤ ‖F[x∗, x0]‖‖x∗ − x‖+

∥∥∥F[x∗, x0]− F[q1(x0), q2(x0)]
∥∥∥‖x− x0‖

≤ δ‖x∗ − x‖+ g
(
‖x∗ − q1(x0)‖, ‖x∗ − q2(x0)‖,

)
‖x− x0‖.

(15)

By (7), (14), (15) and for a proposition σ0 = x∗, p = µδ, ρ = ρ0 = ce0, we have in turn
that

DIST
(

x∗, ψ0(x∗)
)
≤ E

(
G−1(0) ∩U[x∗, ε], ψ0(x1)

)
≤ µg

(
a1α, (1 + a2)α

)
e0 ≤ c(1− p)e0.

(16)

(By the choice of c and (16)).
Hence, hypothesis (i) of the Proposition 1 is true. Next, by the choice of ε and (15) we

conclude that for each x ∈ U[x∗, ε], we obtain

P0(x) ∈ U[0, β].

Hence for each u, v ∈ U[x∗, r], we get in turn that

E
(

ψ0(u) ∩U[x∗, ρ0], ψ0(v)
)
≤ E

(
ψ0(u) ∩U[x∗, ε], ψ0(v)

)
≤ µ‖P0(u)− P0(v)‖ ≤ µ‖F[q1(x0), q2(x0)‖‖u− v‖
≤ p‖v− u‖,

showing (ii) of Proposition 1. Hence, we conclude that ψ0(x1) = x1 ∈ U[x∗, ρ0], so that (13)
holds.

Next, we present the proof of Theorem 1.

Proof of Theorem 1. Set ρ := ρn = cen. Then, mathematical induction and the proof and
application of Lemma 1 imply ψn(xn+1) = xn+1 ∈ U[x∗, ρn], so (12) holds.

Remark 3. Our results are connected to the one in [1,4,5,7,8,10–12] so they can extend them as
follows. Consider hypothesis (see (H2))

‖F[x∗, x]‖ − F[q1(x), q2(x)]‖ ≤ µ
(
‖x∗ − q1(x)‖δ0 + ‖x∗ − q2(x)‖δ0

)
, (17)

for µ > 0, δ0 ∈ [0, 1] and each x ∈W. Then, we can choose

g(s1, s2) = µ(sδ0
1 + sδ0

2 ).

In the case of (H2)
′, we first introduce hypothesis

‖F[x, y]‖ − F[u, v]‖ ≤ µ̄
(
‖x− u‖δ0 + ‖x− v‖δ0

)
. (18)

Then, we can choose
ḡ(s1, s2) = µ̄(sδ0

1 + sδ0
2 ).

Clearly, in this case we have
µ ≤ µ̄, (19)

so the same benefits are obtained in this special case too in particular with the function g as previously
defined, we have:
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Proposition 2. Suppose hypotheses (H) hold. Then, for each

c >
µκ
(

aδ0
1 + (1 + a2)

δ0
)

1− µ6δ
,

there exists ε > 0 so that sequence generated by SLS converges to x∗ and

en+1 = ceδ0+1
n .

Proof. Simply follow the steps of the proof of Theorem 1, but choose the convergence
radius ε < ε1 so that where

ε1 = min
{

α,
1

δ0
√

c
,

β

2δ
, c1

}
,

and

c1 =

 β

4κ
(

aδ0
1 + (1 + a2)δ0

)


1
δ0+1

.

Notice that if δ0 = 1 quadratic convergence is attained.

4. Inexact Scheme

A combination of a derivative and a divided difference has been used in a scheme to
solve equations containing a non-differentiable term [4]. We extend the results of Section 3
in an analogous way to solve generalized equation

0 ∈ F(x) + H(x) + Q(x), (20)

where H is differentiable for x = x∗ but not necessarily so in W. The corresponding to (20)
inexact defined by

0 ∈ F(xn) + H(xn) +
(

F′(xn) + F[q1(xn), q2(xn)]
)
(xn+1 − xn) + Q(xn+1). (21)

As in Section 3, we use hypotheses (H)1. Suppose:

(H1)
1 = (H1).

(H2)
1 = (H2), (for F being H).

(H3)
1
(

F′(x∗)(−x∗) + H(·) + Q(·)
)−1

is Lipschitz (pseudo) about
(
− F(x∗), x∗

)
(see defi-

nition 1).
(H4)

1 ‖F′(x)− F′(x∗)‖ ≤ d0(‖x− x∗‖) for each x ∈ W and some function d0 : [0, ∞) →
[0, ∞)and which is continuous and non-decreasing.

Remark 4. (a) The hypotheses (H)2 were used in [1]

(H1)
2 = (H1)

′.
(H2)

2 =(H2)
′ (for F being H).

(H3)
2 = (H3)

′.
(H4)

2 ‖F′(y)− F′(x)‖ ≤ d(‖y− x‖) for each x, y ∈W and some function d : [0, ∞)→ [0, ∞),
which is continuous and non-decreasing.

Notice that
d0 ≤ d, (22)

so the hypotheses (H)1 can be used of (H)2 in the proofs in [1] to extend those results too. In
particular, we have:
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Theorem 2. Suppose: hypotheses (H)1 hold and

R = µ
(

d0(α) + g
(
a1α, (1 + a2)α

))
< 1.

Then, for each c2 ∈ (R, 1), there exists c2 > 0 so that sequence {xn} generated by ISLS is in
U[x∗, c2], limn→∞ xn = x∗ and en+1 ≤ c1en.

Proof. Simply follow the steps of the proof in Theorem 1, but define

G1(x) :=F(x∗) + H(x) + F′(x∗)(x− x∗) + Q(x),

ψ1
n(x) :=

(
G1
)−1(

P1
n(x)

)
,

where
P1

n(x) :=F(xn) + H(x) + F′(x∗)(x− x∗)− F(xn)− H(xn)

=−
(

F′(xn) + H[q1(xn), q2(xn)]
)
(x− xn).

5. Convergence of Higher Order Schemes

We shall demonstrate how to extend the ideas of the previous section in the case of
some special schemes of high convergence order. The same idea can be used on other
schemes.

In particular, we revisit the fourth convergence order scheme defined by

yn = xn − F[zn, xn]
−1F(xn), zn = xn + F(xn)

xn+1 = yn − A−1
n

(
F[yn, xn] + F[yn, zn]− F[zn, xn]

)
F[yn, xn]F(yn),

(23)

used to solve equation
F(x) = 0, (24)

where An = F[yn, xn] + 2F[yn, zn] − 2F[zn, xn] and F : Ω ⊂ B1 → B1 for some Ω open
and Ω 6= 0. The fourth order of convergence of scheme (23) was established in [8] in the
special case when B1 = B2 = Ri using Taylor series requiring the existence of up to the
fifth derivative (not on scheme (23)), which restrict the applicability of scheme (23). Let
us consider a motivational example. Therefore, we assume the following function G on
B1 = B2 = R, Ω = [− 1

2 , 3
2 ] as:

G(t) =
{

t3 ln t2 + t5 − t4, t 6= 0
0, t = 0

. (25)

We yield
G′(t) = 3t2 ln t2 + 5t4 − 4t3 + 2t2,

G′′(t) = 6t ln t2 + 20t3 − 12t2 + 10t,

G′′′(t) = 6 ln t2 + 60t2 − 12t + 22.

So, we identify that G′′′(t) is not bounded in Ω. Therefore, results requiring the
existence of G′′′(t) or higher cannot apply for studying the convergence of (23).

In order to extend the applicability of scheme (23), we introduce hypotheses on only
the divided difference F[·, ·] and F′(x∗).

We first develop some non-negative functions and parameters. Set D = [0, ∞) and
consider θ0 ≥ 0, θ ≥ 0. Suppose function:

(i) ζ0(t) − 1 has a least zero τ0 ∈ D0 − {0}, for some function ζ0 : D → D, which is
continuous and non-decreasing. Set D0 = [0, τ0).
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(ii) Γ1(t) − 1 has a least zero τ1 ∈ D − {0}, where Γ1 : D0 → D, Γ1(t) = ζ(t)
1−ζ0(t)

and
function ζ : D0 → D is continuous and non-decreasing.

(iii) ζ3(t)− 1 has a least zero τ2 ∈ D0 − {0}, where ζ3(t) = ζ1(t) + 2ζ2(t) + 2ζ0(t), where
functions ζ1 and ζ2 are the functions as ζ.

(iv) ζ1(t)− 1 has a least zero τ3 ∈ D0 − {0}. Set τ4 = min{τ2, τ3} and D1 = [0, τ4].
(v) Γ2(t)− 1 has a least zero τ5 ∈ D1 − {0}, where Γ2 : D1 → D is defined by

Γ2(t) =

 ζ3(t) + 2ζ2(t) + 2ζ(t)
1− ζ3(t)

+

(
ζ2(t) + ζ0(t)

)
θ(

1− ζ1(t)
)(

1− ζ3(t)
)
Γ1(t),

where functions ζ3 and ζ3 are the functions as ζ2.

Next, we shall show that parameter

τ∗ = min{τ1, τ5}, (26)

is a convergence radius for scheme (23). Set D2 = [0, τ∗).
By the definition of τ∗ it follows that for each t ∈ D2

0 ≤ ζ0(t) < 1, 0 ≤ ζ1(t) < 1, (27)

0 ≤ ζ3(t) < 1, (28)

0 ≤ Γ1(t) < 1, (29)

and
0 ≤ Γ2(t) < 1. (30)

The hypotheses (C) are needed with “ζ” functions as previously given and x∗ being a
simple solution of Equation (24). Suppose:

(C1) For each x ∈ Ω ∥∥∥F′(x∗)−1
(

F[x + F(x), x]− F′(x∗)
)∥∥∥ ≤ ζ0(‖x− ζ0‖)

and ∥∥∥I + F[x, x∗]
∥∥∥ ≤ θ0.

Set Ω1 = U[x∗, τ0] ∩Ω.
(C2) For each x, y ∈ Ω0∥∥∥F′(x∗)−1

(
F[x + F(x), x]− F[x, x∗]

)∥∥∥ ≤ ζ(‖x− x∗‖),∥∥∥F′(x∗)−1
(

F[y, x]− F′(x∗)
)∥∥∥ ≤ ζ1(‖x− x∗‖),∥∥∥F′(x∗)−1

(
F[y, x]− F[y, x∗]

)∥∥∥ ≤ ζ2(‖x− x∗‖),

and ∥∥∥F′(x∗)−1F[x, x∗]
∥∥∥ ≤ θ.

(C3) U[x∗, τ̄] ⊂ Ω, where τ̄ = max{τ∗, θ0τ∗}.
Next, we present the local convergence analysis of scheme (23) using the hypotheses

(C).

Theorem 3. Under hypotheses (C) further choose x0 ∈ U[x∗, τ∗]− {x∗}. Then, lim
n→∞

xn = x∗,

where sequence {xn} is generated by scheme (23).
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Proof. The following assertions shall be shown based on mathematical induction:

{xn} ⊂ U[x∗, τ∗], (31)

‖yn − x∗‖ ≤ Γ1(en) ≤ en < τ∗ (32)

and
en+1 ≤ Γ2(en) ≤ en. (33)

By hypotheses (C1), (26), (27) and x0 ∈ U[x∗, τ∗]− {x∗}, we have in turn that∥∥∥F′(x∗)−1
(

F[x + F(x), x]− F′(x∗)
)∥∥∥ ≤ ζ0(‖x− x∗‖) ≤ ζ0(τ∗) < 1.

So the Banach Lemma for linear invertible operators [8] gives F[x + F(x), x]−1 ∈
L(B1,B2) and ∥∥∥F[x + F(x), x]−1F′(x∗)

∥∥∥ ≤ 1
1− ζ0(‖x− x∗‖)

, (34)

where we also used

‖x + F(x)− x∗‖ ≤ ‖(I + F[x, x∗])(x− x∗)‖
≤ ‖I + F[x, x∗]‖‖x− x∗‖ ≤ θ0τ∗ ≤ τ̄.

Notice that for x = x0 iterate y0 is well defined by the first substep of scheme (23) from
which we can also write

y0 − x∗ =
(

F[z0, x0]
−1F′(x∗)

)(
F′(x∗)−1(F[z0, x0]− F[x0, x∗])(x0 − x∗)

)
. (35)

In view of (C2), (26), (29), (34) (for x = x0) and (35), we get in turn that

‖y− x∗‖ ≤
ζ(‖x0 − x∗‖)‖x0 − x∗‖

1− ζ(‖x0 − x∗‖)
≤ Γ1(‖x0 − x∗‖)‖x0 − x∗‖

≤ ‖x0 − x∗‖ ≤ τ∗,
(36)

showing (32) for n = 0 and y0 ∈ U[x∗, τ∗]. Next, we shall show that A0 and [y0, x0]
−1 ∈

L(B1,B1). Using (26), (28) and (C2), we obtain in turn∥∥∥F′(x∗)−1(A0 − F′(x∗))
∥∥∥ ≤ ∥∥∥F′(x∗)−1(F[y0, x0]− F′(x∗))

∥∥∥
+ 2
∥∥∥F′(x∗)−1(F[y0, z0]− F′(x∗))

∥∥∥
+ 2
∥∥∥F′(x∗)−1(F[z0, x0]− F′(x∗))

∥∥∥
≤ ζ1(‖x0 − x∗‖) + 2ζ2(‖x0 − x∗‖) + 2ζ0(‖x0 − x∗‖)
≤ ζ3(‖x0 − x∗‖) ≤ ζ3(τ∗) < 1,

so ∥∥∥A−1
0 F′(x∗)

∥∥∥ ≤ 1
1− ζ3(‖x0 − x∗‖)

. (37)

Similarly by using (27) and (C2), we get∥∥∥F[y0, x0]
−1F′(x∗)

∥∥∥ ≤ 1
1− ζ1(‖x0 − x∗‖)

. (38)

Hence, iterate x1 is well defined by the second substep of scheme (23) from which we
can also write

x1 − x∗ = y0 − x∗ − A−1
0 F(y0)− A−1

0 (F[y0, z0]− F[z0, x0])F[y0, x0]
−1F(y0). (39)
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By (26), (30), (C2) and (37)–(39), we obtain in turn

‖x1 − x∗‖ ≤
[

3ζ2(‖x0 − x∗‖) + 2ζ(‖x0 − x∗‖)
1− ζ3(‖x0 − x∗‖)

+
θ
(

ζ2(‖x0 − x∗‖) + ζ0(‖x0 − x∗‖)
)

(1− ζ3(‖x0 − x∗‖))(1− ζ1(‖x0 − x∗‖))

]
‖y0 − x∗‖

≤ ζ̄2(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖,

(40)

showing (33) for n = 0 and ζ ∈ U[x∗, τ∗]. Simply exchange x0, z0, y0, x1 by xm, zm, ym, xm+1,
respectively, in the previous calculations to terminate the induction for the items (31)–(33).
It then follows from the estimation

‖xm+1 − x∗‖ ≤ l‖xm − x∗‖ < τ∗, (41)

where l = Γ2(‖x0 − x∗‖) ∈ [0, 1), we deduce xm+1 ∈ U[x∗, τ∗] and limm→∞ xm = x∗.

Next, concerning the uniqueness of the solution, we give a result not necessarily
relying on the hypotheses (C).

Proposition 3. Suppose: equation F(x) = 0 has a simple solution x∗ ∈ Ω.

‖xm+1 − x∗‖ ≤ l‖xm − x∗‖ < τ∗,

For all x ∈ Ω ∥∥∥F′(x∗)−1(F[x, x∗]− F′(x∗))
∥∥∥ ≤ ζ4(‖xm − x∗‖), (42)

and function ζ4(t)− 1 has a smallest positive zero τ6, where ζ4 : M → M is a continuous and
non-decreasing function. Set Ω1 = S[x∗, ρ̄] ∩Ω for τ < τ6. Then, the only solution of equation
F(x) = 0 in the region Ω1 is x∗.

Proof. Set U = F[x∗, x∗] for some x∗ ∈ Ω1 with F(x∗) = 0. Then, using (42), we get∥∥∥F′(x∗)−1
(

U − F′(x∗)
)∥∥∥ ≤ ζ4(‖x− x∗‖) ≤ ζ4(τ̄) < 1,

so U−1 ∈ L(X, X) and x∗ = x∗ follows from U(x∗ − x∗) = F(x∗)− F(x∗).

Remark 5. Let us consider choices

F[x, y] =
1
2

(
F′(x) + F′(y)

)
or

F[x, y] =
∫ 1

0
F′(x + θ(y− x))dθ

or the standard definition of the divided difference when X = Ri [12].
Moreover, suppose ∥∥∥F′(x∗)−1

(
F′(x)− F′(x∗)

)∥∥∥ ≤ φ0(‖x− x∗‖)

and ∥∥∥F′(x∗)−1
(

F′(x)− F′(y)
)∥∥∥ ≤ φ(‖x− x∗‖)
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where function φ0 : M→ M, φ : M→ M are continuous and non-decreasing . Then, under the
first or second choice above it can easily be seen that the hypotheses (C) require

ζ0(t) =
1
2

(
φ0(θ0t) + φ0(t)

)
,

ζ(t) =
1
2

(
φ(θt) + φ0(t)

)
,

ζ1(t) =
1
2

[
φ0(t) + φ0(t)

]
,

ζ2(t) = ζ(t).

6. Numerical Examples

Here, we present the computational results based on the suggested theoretical results
in this paper. We choose a applied science problem for the computational results, which is
illustrated in Example 1. The results are listed in Table 1. Additionally, we obtain the COC
approximated by means of

λ =
ln ‖xn+1−x∗‖

|xn−x∗‖

ln ‖xn−x∗‖
‖xn−1−x∗‖

, for n = 1, 2, . . . (43)

or ACOC [13] by:

λ∗ =
ln ‖xn+1−xn‖
‖xn−xn−1‖

ln ‖xn−xn−1‖
‖xn−1−xn−2‖

, for n = 2, 3, . . . (44)

The computations are performed with the package Mathematica 11 with multiple
precision arithmetic.

Example 1. Let B1 = B2 = R3 and Ω = S(0, 1). Assume F on Ω with v = (x, y, z)T as

F(u) = F(u1, u2, u3) =

(
eu1 − 1,

e− 1
2

u2
2 + u2, u3

)T
, (45)

where, u = (u1, u2, u3)
T . Then, we obtain

F′(u) =

eu1 0 0
0 (e− 1)u2 + 1 0
0 0 1

,

the Fréchet-derivative. Hence, for x∗ = (0, 0, 0)T , F′(x∗) = F′(x∗)−1 = diag{1, 1, 1}, we
have

φ0(t) = (e− 1)t, φ(t) = e
1

e−1 t θ0 =
1
2

(
3 + e

1
e−1

)
, and θ =

1
2

(
1 + e

1
e−1

)
.

So, we obtain convergence radii that are mentioned in Table 1.

Table 1. Radii for Example 1.

τ0 τ1 τ2 τ3 τ5 τ∗

0.342865 0.199053 0.0849919 0.581976 0.06169217 0.0849919

Example 2. Define scalar function

h(t) = ξ0t + ξ1 + ξ2 sin ξ3t, x0 = 0
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where ξ j, j = 0, 1, 2, 3 are scalars. Choose ϕ0(t) = Kt and ϕ(t) = Lt. Then, clearly for ξ3 large
and ξ2 small, K0

L can be small (arbitrarily). Notice that K
L → 0. In early studies [1], K = L. Hence,

our results constitute a significant improvement without additional hypotheses, since in practice the
computation of L requires that of K as a special case.

7. Conclusions

The region of applicability for SLS and ISLS has been extended to solve generalized
Equations (1) and (21), respectively, and under weaker or the same hypotheses. Moreover,
tighter error distances are realized as well as a more precise knowledge of the where abouts
of the solution x∗. Due to its generality of our idea can provide the same benefits when
applied to other methods.
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