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Abstract: The current manuscript displays elegant numerical results for cubic-quartic optical solitons
associated with the perturbed Fokas–Lenells equations. To do so, we devise a generalized iterative
method for the model using the improved Adomian decomposition method (ADM) and further
seek validation from certain well-known results in the literature. As proven, the proposed scheme is
efficient and possess a high level of accuracy.

Keywords: improved adomian decomposition method; optical soliton; Fokas–Lenells equations;
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1. Introduction

Optical solitons, which emerge from nonlinear evolution equations, have been studied
for the past few decades. The self-phase modulation (SPM) that comes from intensity-
dependent refractive index of light coupled with the chromatic dispersion (CD) leads to a
delicate balance, which sustains the solitons that travel down the fiber for intercontinental
distances. Several models that give way to optical solitons are addressed in Mathematics,
Physics and telecommunications engineering. The notion of cubic-quartic (CQ) solitons
surfaced in the realm of nonlinear fiber optics for the first time in 2017, and an avalanche of
results were eventually visible. Prior to this, it is the concept of pure-quartic solitons that
was visible [1]. Such CQ solitons were introduced due to the sheer necessity whenever CD
is low enough to be ignored and thus third-order dispersion (3OD) and fourth-order dis-
persion (4OD) effects are able to compensate for this depletion. This allows the sustainment
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of the necessary balance between the dispersion effects and SPM to be restored, allowing
stable solitons to be transmitted across intercontinental distances.

Furthermore, optical solitons have painstakingly fashioned pulse transmission tech-
nology for several waveguides [2–4]. This technical feat is described at a spectacular level
by several mathematical models. The Fokas–Lenells equation (FLE), which governs this
dynamic, was originally launched almost a decade ago [5–7]. Since its initial introduction,
this model has garnered widespread recognition in the fiber-optics community. In the past,
several types of soliton solutions for this model were recovered. However, none of these
studies have explored the implications of perturbation terms that emerge as a result of
natural factors in soliton transmission dynamics. The FLE is examined in this study, along
with a few perturbative effects.

As all previous efforts on CQ solitons have been analytical in nature, it is therefore
imperative to consider such solitons from a numerical standpoint. Thus, this article employs
a numerical approach to CQ solitons. However, the methodology used to present the
findings in this manuscript is the enhanced form of the strongly reliant Adomian’s method
called the improved Adomian decomposition method (ADM) [8]. We will, therefore,
suggest an efficient numerical scheme for solving CQ optical solitons associated with the
perturbed FLE. The approach will be based on the improved ADM. Besides, improved
ADM is a fast numerical approach for integral and functional solutions that is based on
Adomian’s method [9]. Validation of the suggested method will be carried out with recent
analytical results in the literature. The integration method reveals promising results without
the need of either linearization or any artificial boundary condition. Lastly, the improved
ADM architecture has its shortcomings. It fails to capture the effect of soliton radiation that
is a major detrimental factor in the soliton propagation.

The manuscript is arranged in the following manner: the perturbed FLE is described
in Section 2; while the governing model is addressed via the improved ADM in Section 3.
The simulated numerical results are retrieved in Section 4, and some concluding comments
are reported in Section 5.

2. Governing Model

The dimensionless form of the CQ solitons with the perturbed FLE is indicated be-
low [10]

iqt + iaqxxx + bqxxxx + |q|2(cq + idqx) = i
[
αqx + λ

(
|q|2q

)
x
+ µ

(
|q|2
)

x
q
]
, (1)

where x and t are the independent spatial and temporal variables, sequentially; while
the function q = q(x, t) is the complex wave profile. Additionally, starting with the left-
hand side, the first component indicates the temporal evolution, whereas a and b are the
coefficients of the 3OD and 4OD, sequentially; while d gives the nonlinear dispersion
term and the coefficient c is the Kerr law nonlinearity. Additionally for Equation (1), λ
is the self-steepening term, whereas the coefficients µ and α are for the higher-order and
inter-modal dispersions, sequentially.

3. Analysis of the Method

This section introduces the efficient improved ADM to derive a numerical scheme
for the CQ–FLE given in Equation (1). Initially, we offer the fundamental technique for
constructing nonlinear wave solutions of the equation. In our analysis, the complex CQ–
FLE given in Equation (1) will be converted to a real system using

q(x, t) = u1 + iu2. (2)

Plugging Equation (2) into Equation (1), we have
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i(u1 + iu2 )t + ia(u1 + iu2 )xxx + b(u1 + iu2 )xxxx
+|u1 + iu2 |2(c(u1 + iu2 ) + id(u1 + iu2 )x) = i[α(u1 + iu2 )x

+λ
(
|qu1 + iu2 |2(u1 + iu2 )

)
x
+ µ

(
|u1 + iu2 |2

)
x
(u1 + iu2 )].

(3)

Thus, from the above equation, the following system is obtained, after splitting the
real and imaginary parts as follows

u1t + au1xxx + bu2xxxx +
(
u2

1 + u2
2
)
(cu2 + du1x )

= αu1x + λ
((

q2u2
1 + u2

2
)
u2
)

x + µ
(
u2

1 + u2
2
)

xu2,
(4)

and
−u2t − au2xxx + bu1xxxx +

(
u2

1 + u2
2
)
(cu1 − du2x )

= −αu2x + λ
((

q2u2
1 + u2

2
)
u1
)

x + µ
(
u2

1 + u2
2
)

xu1,
(5)

where
u1(x, 0) = [q(x, 0)]R,

and
u2(x, 0) = [q(x, 0)]I .

Now, on using the Adomian’s approach, the solution of the above system transforms
into the following infinite series

u1(x, t) =
∞

∑
n=0

u1n(x, t), (6)

and

u2(x, t) =
∞

∑
n=0

u2n(x, t). (7)

Here u1n, u2n, n ≥ 0, will be obtained recurrently. Furthermore, in an operator form,
we re-express Equations (4) and (5) as follows

Lt(u1) + au1xxx + bu2xxxx +
(
u2

1 + u2
2
)
(cu2 + du1x )

= αu1x + λ
((

q2u2
1 + u2

2
)
u2
)

x + µ
(
u2

1 + u2
2
)

xu2,
(8)

and
Lt(u2) + au2xxx − bu1xxxx −

(
u2

1 + u2
2
)
(cu1 − du2x )

= αu2x − λ
((

q2u2
1 + u2

2
)
u1
)

x − µ
(
u2

1 + u2
2
)

xu1,
(9)

where
Lt =

∂

∂t
.

Further, using the inverse operator L−1
t on both sides of Equations (8) and (9) yields

u1(x, t) = u1(x, 0)− L−1
t au1xxx − L−1

t bu2xxxx − L−1
t
(
u2

1 + u2
2
)
(cu2 + du1x )

+L−1
t αu1x + λ

((
q2u2

1 + u2
2
)
u2
)

x + L−1
t µ

(
u2

1 + u2
2
)

xu2,

and

u2(x, t) = u2(x, 0)− L−1
t au2xxx + L−1

t bu1xxxx + L−1
t
(
u2

1 + u2
2
)
(cu1 − du2x )

+L−1
t αu2x − L−1

t λ
((

q2u2
1 + u2

2
)
u1
)

x − L−1
t µ

(
u2

1 + u2
2
)

xu1.

Next, re-expressing the above system via the Adomian polynomials, we have

u1(x, t) = u1(x, 0)− L−1
t au1xxx + L−1

t bu2xxxx + L−1
t αu1x + L−1

t A1, (10)

and
u2(x, t) = u2(x, 0)− L−1

t au2xxx − L−1
t bu1xxxx + L−1

t αu2x + L−1
t A2, (11)
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where the terms A1 and A2 in Equations (10) and (11) are the nonlinear terms represented by

A1 = −
(

u2
1 + u2

2

)
(cu2 + du1x ) + λ

((
q2u2

1 + u2
2

)
u2

)
x
+ µ

(
u2

1 + u2
2

)
x
u2, (12)

and
A2 =

(
u2

1 + u2
2

)
(cu1 − du2x )− λ

((
q2u2

1 + u2
2

)
u1

)
x
− µ

(
u2

1 + u2
2

)
x
u1, (13)

Of which A1 = ∑∞
n=0 A1n and A2 = ∑∞

n=0 A2n, where A1n, . . . , A2n, . . . are the Adomian
polynomials, which may be generated from all types of nonlinearity, using Adomian’s
specific algorithms. Plugging the solution forms in Equations (5) and (6), as well as A1 and
A2 in Equations (12) and (13), into Equations (10) and (11) yields

∑∞
n=0 u1n(x, t) = u1(x, 0)− L−1

t a ∑∞
n=0 (u1n(x, t))xxx

+L−1
t b ∑∞

n=0 (u2n(x, t))xxxx + L−1
t ∑∞

n=0 A1n,
(14)

and
∞
∑

n=0
u2n(x, t) = u2(x, 0)− L−1

t a
∞
∑

n=0
(u2n(x, t))xxx

+L−1
t b

∞
∑

n=0
(u1n(x, t))xxxx + L−1

t

∞
∑

n=0
A2n.

(15)

The following recursive relations are introduced as a result of the decomposition analysis

u1,0(x, t) = u1(x, 0), (16)

u2,0(x, t) = u2(x, 0), (17)

u1,k+1(x, t) = −L−1
t a ∑∞

n=0 (u1n(x, t))xxx
+L−1

t b ∑∞
n=0 (u2n(x, t))xxxx + L−1

t ∑A1n
n=0 A1n,

(18)

and
u2,k+1(x, t) = −L−1

t a ∑∞
n=0 (u2n(x, t))xxx

+L−1
t b ∑∞

n=0 (u1n(x, t))xxxx + L−1
t ∑∞

n=0 A2n.
(19)

Thus, we determine u1 and u2 as follows

u1 = u1,0 + u1,1 + u1,2 + . . . ,

and
u2 = u2,0 + u2,1 + u2,2 + . . . ,

and the entire approximate solution for Equation (1) is derived by plugging the preceding
equations into Equation (2), which is connected to Equations (16)–(19) to yield the following

q(x, t) = u1,0 + u1,1 + u1,2 + · · ·+ i(u2,0 + u2,1 + u2,2 + · · ·). (20)

4. Numerical Results

This section analyzes three distinct scenarios for the CQ–FLE given in Equation (1)
to demonstrate how the improved ADM scheme derived in the previous Section might
be applied. We analyze the CQ bright soliton of the perturbed FLE, which was recently
derived by Elsayed et al. [10] that is formulated as

q(x, t) = Asec h[B(x –vt)]ei(−kl x+ωl t+θ), (21)

where A and B are the soliton’s amplitude and width, sequentially, that are structured as

A = ±∆0

10

√
− 30

∆1
, (22)
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and

B =
1
2

√
−∆0

5
, (23)

along with
v = −α− 3ak2 + 4bk3,

∆0 =
1
b

(
3ak− 6bk2

)
,

and
∆3 =

1
b
(c + dk + λk).

Moreover, from Equations (22)–(23), the constraint criteria for the possibility of bright
solitons were given by

∆0 < 0, ∆3 < 0.

The phase component in Equation (21) represents the soliton’s velocity. θ is the phase
constant. The soliton’s frequency is

k = − a
4b

,

while the wave number is

ω = −
k
(
36ka2 − 119abk2 + 119b2k3 + 25bα

)
25b

.

Consider the CQ-FLE (1) along with the parameters [10]

α = 0.1, λ = 1, µ = 1, d = 3λ + 2µ.

In addition, the initial condition at t = 0 from Equation (21) follows as

q(x, 0) = A sech[B(x)]ei(−kx+θ) . (24)

However, for the sake of numerical simulation, we consider the following three cases
of the model fixed parameters:

Case 1:
a = 0.5, b = −1, c = 1.

Case 2:
a = 1, b = −2, c = 2 .

Case 3:
a = 0.5, b = −0.5, c = 1.

In what follows, we report the absolute error differences between the exact solution
and that of the approximate solution using the improved ADM of the three solution cases
in Tables 1–3. Furthermore, we portray the respective solution cases in Figures 1–3 for
various values of t over the interval −50 ≤ x ≤ 50. Without loss of generality, these figures
are self-explanatory, as the proposed numerical method performs excellently. Additionally,
an absolute agreement is noted in these figures in the bulk parts of the bell-shaped solution;
only a small disparity is noted at the peak of the curves. This disparity can equally be
overcome when the model’s parameters are suitably chosen and, also by considering more
iterates/approximants in the series summation.
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Table 1. Absolute error for Case 1 for x = 20, x = 50.

t Error When x = 20 Error When x = 50

0.0 0.00304922317 0.0000878266951
0.1 0.00306667344 0.0000883416821
0.2 0.00308409727 0.0000888560318
0.3 0.00310149460 0.0000893697436
0.4 0.00311886552 0.0000898828190
0.5 0.00313621000 0.0000903952578

Table 2. Absolute error for Case 2 for x = 20, x = 50.

t Error When x = 20 Error When x = 50

0.0 0.00692281558 0.0001996291264
0.1 0.00692913128 0.0001998464016
0.2 0.00693539773 0.0002000633452
0.3 0.00694161507 0.0002002799558
0.4 0.00694778339 0.0002004962310
0.5 0.00695390283 0.0002007121745

Table 3. Absolute error for Case 3 for x = 20, x = 50.

t Error When x = 20 Error When x = 50

0.0 0.000574951108 4.67316035 × 10−7

0.1 0.000570769757 4.63918739 × 10−7

0.2 0.000566597435 4.60529257 × 10−7

0.3 0.000562434066 4.57147514 × 10−7

0.4 0.000558279554 4.5377342 × 10−7

0.5 0.000554133811 4.50406915 × 10−7

5. Conclusions

In conclusion, CQ optical solitons are a modern topic of great interest in the field of
optical communications. In this paper, the effect of changing the optical parameters of such
CQ solitons with perturbed FLE was studied.

The unperturbed FLE, coupled with the chromatic dispersion and spatiotemporal
dispersion has been studied for the past few decades [5–7]. The initial-boundary value
problems, that are referred to as the linearizable boundary conditions, for the FLE are
analyzed in [5]. A class of exact combined solitary wave solutions of the FLE is constructed
by adopting the complex envelope function ansatz [6]. The influences of spatiotemporal
dispersion on the characteristics of combined solitary waves are also discussed in [6]. A class
of chirped soliton-like solutions including bright, dark and kink solitons is derived in [8].
The associated chirp, including linear and nonlinear contributions, is also determined for
each of optical pulses in [7]. When compared with [5–7], none of these studies have explored
the implications of perturbation terms that emerge as a result of natural factors in soliton
transmission dynamics. Therefore, the FLE is examined in this study along with a few
perturbative effects that are crucial to many applications in photonics, performing essential
functions in lasing, frequency conversion, and entangled-photon generation. Furthermore,
these perturbative effects may be used to generate new frequency components from high
power pulses, resulting in optical pulses with spectral widths much larger than the gain-
bandwidth of optical fiber amplifiers. In other words, these nonlinear effects can be used
to make useful devices capable of processing high-speed optical signals. Additionally,
none of the works in [5–7] have addressed the implications of cubic-quartic solitons. Thus,
the current paper reports cubic-quartic solitons that are the sheer necessity whenever
CD is low enough to be ignored. As a result, CQ solitons compensate for this depletion.
Hence, CQ solitons allow the sustainment of the necessary balance between the dispersion



Mathematics 2022, 10, 138 10 of 11

effects and self-phase modulation to be restored, allowing stable solitons to be transmitted
across intercontinental distances. The results of the current paper are new and are elegant
numerical results for cubic-quartic optical solitons associated with the perturbed FLE,
where the perturbation terms are all of Hamiltonian type and the chromatic dispersion is
replaced by a combination of third-order dispersion and fourth-order dispersion.

Cubic-quartic solitons with the perturbed FLE (1) have been addressed for the ana-
lytical study and revealed quite a number of interesting solitons in nonlinear optics [10],
where bright and singular solitons have been yielded by a couple of integration approaches.
While all previous efforts on CQ solitons have been analytical in nature [10], it is therefore
imperative to consider such solitons from a numerical standpoint. Thus, the current paper
focuses on the integrability of the perturbed FLE (1) for the numerical investigation using
the improved ADM architecture for the very first time. Analytical solutions are possible
using simplifying assumptions that may not realistically reflect reality. In many applica-
tions, analytical solutions are impossible to achieve. Hence, numerical methods make it
possible to obtain realistic solutions without the need for simplifying assumptions. The
improved ADM adopted in this paper leads to the emergence of bright soliton solutions
and is being reported for the first time in this paper, which makes these results novel. The
bright soliton solutions are very important, and these soliton solutions are used to sustain
pulse transmission through optical fibers in the telecommunications industry.

A promising technique called the improved ADM, which was based on the famous
Adomian’s method, was utilized to derive a recurrent numerical scheme for the governing
model and, furthermore, was successfully applied to the model through bright soliton
solutions. The integration method firstly converts a special case of the complex-valued
system into a real-valued system. Next, the integration scheme decomposes the solutions
into infinite sums of components called infinite series. When compared with the famous
Adomian’s method, the improved ADM reveals promising results without the need of
either linearization or any artificial boundary condition. The scheme is indeed reliable as
it was discovered to display results with higher accuracy. The numerical computations
are simpler and faster than most of the traditional techniques. Finally, the method is
recommended to investigate additional evolution equations.
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