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Abstract: Using simple fuzzy numbers to approximate general fuzzy numbers is an important
research aspect of fuzzy number theory and application. The existing results in this field are basically
based on the unweighted metric to establish the best approximation method for solving general
fuzzy numbers. In order to obtain more objective and reasonable best approximation, in this paper,
we use the weighted distance as the evaluation standard to establish a method to solve the best
approximation of general fuzzy numbers. Firstly, the conceptions of I-nearest r-s piecewise linear
approximation (in short, PLA) and the II-nearest r-s piecewise linear approximation (in short, PLA)
are introduced for a general fuzzy number. Then, most importantly, taking weighted metric as a
criterion, we obtain a group of formulas to get the I-nearest r-s PLA and the II-nearest r-s PLA. Finally,
we also present specific examples to show the effectiveness and usability of the methods proposed in
this paper.

Keywords: approximations of fuzzy numbers; weighted metric; membership functions; r-s piecewise
linear fuzzy number

1. Introduction

Due to the complexity of the environment and the limitations of human inherent
cognition, daily life is full of uncertain information. There are various approaches used to
express and process this uncertain information, such as interval analysis [1,2], stochastic
process [3] and fuzzy set theory [4]. In fuzzy set theory, a fuzzy number, which the
notion was proposed by Zadeh in [5–7], has a good application in dealing with uncertain
information. In recent years, a fuzzy number is very popular in the fields of cluster analysis,
image recognition, system evaluation, automatic control, artificial intelligence and so on.
Among them, multi-attribute decision making (MADM) with fuzzy information is the focus
of scholars’ research [8,9].

In fact, when describing the characteristics of some fuzzy events, some fuzzy numbers
are too complex. Therefore, the approximation of fuzzy numbers using regular fuzzy
numbers to approximate complex fuzzy numbers has been deeply studied in fuzzy multi-
attribute decision making. In the past few years, many scholars have obtained relevant
important conclusions in this research field. For example, in [10], Ibrahim, Al-shami
and Elbarbary defined the concept of (3,2)-fuzzy sets and establish the idea of relation
in a (3,2)-fuzzy set and applied it to decision-making problems. In [11], with the aid of
fuzzy soft β−neighborhoods, Atef, Ali and Al-shami introduced fuzzy soft covering-based
multi-granulation fuzzy rough set models, which have a good application in solving multi-
attribute group decision making (MAGDM) problems. In [12], Wang, Wan and Zhang
further studied topological structures induced by L-fuzzifying approximation operators,
where L denotes a completely distributive De Morgan algebra. In [13], Coroianu and
Stefanini approximated fuzzy numbers by using the extended F-transform which always
preserves the quasi-concavity property of a fuzzy number. In [14], by using the convolution
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method with useful properties for a general fuzzy number, Huang, Wu and Xie et al. con-
structed approximations comprising fuzzy number sequences. In [15], the approximation
of fuzzy numbers by LR fuzzy numbers without constraints in the Euclidean class was
studied by Yeh and Chu.

In addition, due to the simplification of calculation, data processing and management
of uncertainty, the interval, triangular and trapezoidal approximation are very popularly
studied and applied. In [16], Chanas proposed the notion of an approximation interval of
a fuzzy number, and in [17,18], Grzegorzewski suggested two kinds of interval approxi-
mation operators successively to solve the problem of the interval approximation of fuzzy
numbers. In [19], Ban and Coroianu found there exists at least a symmetric triangular fuzzy
number which preserves a fixed parameter p ∈ P, which is a real parameter set related
to fuzzy numbers. In [20], Abbasbandy and Hajjari suggested a weighted trapezoidal
approximation of an arbitrary fuzzy number which preserves that the core is always a
fuzzy number. In [21], Khastan and Moradi considered the width invariant trapezoidal and
triangular approximations of fuzzy numbers, and its present methods avoid the effortful
computation of Karush–Kuhn–Tucker theorem.

However, in some application situations, the trapezoidal approximation may be too
restrictive and idealistic. Hence, in order to avoid the limitation of trapezoidal approxima-
tion and improve the accuracy, in [22], Coroianu, Gagolewski and Grzegorzewski defined
the so-called piecewise linear 1-knot fuzzy numbers, which is simple enough and flexible
to reconstruct the input fuzzy concepts, and further investigated some properties of the
piecewise linear approximation of fuzzy numbers in [23]. Then, Wang and Shen proposed
methods of approximating general fuzzy number by using a multi-knots piecewise linear
fuzzy number in [24].

For a fuzzy number, it is known that the greater the value of the membership de-
gree, the greater the contribution of the point to the fuzzy number, that is, the more
important the point with the membership degree is. Therefore, compared with un-

weighted metric d(u, v) =
√∫ 1

0 (u(r)− v(r))2dr +
∫ 1

0 (u(r)− v(r))2dr, weighted metric

d∗(u, v) =
√∫ 1

0 2r(u(r)− v(r))2dr +
∫ 1

0 2r(u(r)− v(r))2dr is more reasonable and objec-
tive in describing the degree of difference between two fuzzy numbers.

In the study of approximating general fuzzy numbers with simple fuzzy numbers, for
the convenience and simplicity of calculation, the methods established by predecessors
(for example, see [22–24]) are basically based on unweighted metric. In order to establish a
method to obtain a more objective and reasonable approximation solution, in this paper,
we are going to use the weighted metric as the evaluation standard to explore the problem
of using simple fuzzy numbers to approximate general fuzzy numbers. Of course, from the
structure of the two metrics, the establishing of a method of solving the best approximation
fuzzy numbers based on weighted metric is much more complex to calculate than that
based on unweighted metric. This will bring some difficulties to the work we will do.
However, from the structure of fuzzy numbers, the method we will establish will be able to
obtain more reasonable and objective approximate solutions of general fuzzy numbers.

The specific arrangement of this paper is as follows: In Section 2, we briefly review
some basic definitions, notations and results about fuzzy numbers. In Section 3, we give
the conceptions of I−nearest r− s piecewise linear approximation and I I−nearest r− s
piecewise linear approximation for a general fuzzy number. Then, for a general fuzzy
number, we obtain a group of calculation formulas of the I−nearest r− s piecewise linear
approximation and the I I−nearest r− s piecewise linear approximation. In Section 4, we
give specific examples to show the effectiveness and usability of the methods in this paper,
and compare some approximation methods of fuzzy numbers of the piecewise linear type.
In Section 5, we make a brief summary to this paper and identify future research directions.
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2. Basic Definitions and Notations

A fuzzy subset (in short, a fuzzy set) of the real line R is a function u : R → [0, 1].
For each such fuzzy set u, we denote by [u]r = {x ∈ R : u(x) ≥ r} for any r ∈ (0, 1], its
r−level set. By suppu, we denote the support of u, i.e., the {x ∈ R : u(x) > 0}. By [u]0,
we denote the closure (according to the usual Euclidean topology on R) of the suppu, i.e.,
[u]0 = {x ∈ R : u(x) > 0}.

If u is a normal and fuzzy convex fuzzy set of R, u(x) is upper semi-continuous, and
[u]0 is compact (according to the usual Euclidean topology on R), then we call u a fuzzy
number, and denote the collection of all fuzzy numbers by E.

It is known that if u ∈ E, then for each r ∈ [0, 1], [u]r is a convex compact set in R, i.e.,
a closed interval. For u ∈ E, we denote the closed interval as [u]r = [u(r), u(r)] for any
r ∈ [0, 1].

For any u, v ∈ E, define u ≤ v if and only if u(r) ≤ v(r) and u(r) ≤ v(r) for any
r ∈ [0, 1].

The unweighted metric d on fuzzy numbers space E is defined [25] as

d(u, v) =

√∫ 1

0
(u(r)− v(r))2dr +

∫ 1

0
(u(r)− v(r))2dr (1)

for any u, v ∈ E.
The weighted metric d∗ on fuzzy numbers space E is defined [26] as

d∗(u, v) =

√∫ 1

0
2r(u(r)− v(r))2dr +

∫ 1

0
2r(u(r)− v(r))2dr (2)

for any u, v ∈ E.
Let r = (r0, r1, r2, · · · , rm, rm+1), s = (s0, s1, s2, · · · , sn, sn+1) with 0 = r0 < r1 <

r2 < · · · < rm < rm+1 = 1 = sn+1 > sn > · · · > s2 > s1 > s0 = 0. For any A =
(a0, a1, · · · , am+1) and B = (b0, b1, · · · , bn+1) with a0 ≤ a1 ≤ a2 ≤ · · · ≤ am ≤ am+1 ≤
bn+1 ≤ bn ≤ · · · b2 ≤ b1 ≤ b0, then we call the fuzzy number u defined as

u(x) =



0, x < a0
r1

x−a0
a1−a0

, x ∈ [a0, a1)

r1 + (r2 − r1)
x−a1
a2−a1

, x ∈ [a1, a2)
...
rm−1 + (rm − rm−1)

x−am−1
am−am−1

, x ∈ [am−1, am)

rm + (1− rm)
x−am

am+1−am
, x ∈ [am, am+1)

1, x ∈ [am+1, bn+1]

sn + (1− sn)
bn−x

bn−bn+1
, x ∈ (bn+1, bn]

sn−1 + (sn − sn−1)
bn−1−x
bn−1−bn

, x ∈ (bn, bn−1]
...
s1 + (s2 − s1)

b1−x
b1−b2

, x ∈ (b2, b1]

s1
b0−x
b0−b1

, x ∈ (b1, b0]

0, x > b0

(3)
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is a r− s piecewise linear fuzzy number, and denote it as

upl = PL(AT , rT ; BT , sT) = PL




a0 r0
a1 r1
...

...
am rm

am+1 rm+1

;


b0 s0
b1 s1
...

...
bm sm

bm+1 sm+1



 (4)

and call r and s the left threshold value set and the right threshold value set of upl , respec-
tively. Specially, as r = s, we call the fuzzy number upl a r−knots (i.e., r−knots) piecewise
linear fuzzy number, and call r (i.e., s) the threshold value set of upl .

For example, as r = (0, 0.3, 0.6, 0.9, 1), s = (0, 0.2, 0.5, 0.8, 1), A = (−1,−0.7,−0.6,
−0.2,−0.1) and B = (1, 0.6, 0.4, 0.1, 0), the membership function of ũ = PL(AT , rT ; BT , sT)
(see Figure 1), i.e.,

ũ = PL



−1 0
−0.7 0.3
−0.6 0.6
−0.2 0.9
−0.1 1

;


1 0

0.6 0.2
0.4 0.5
0.1 0.8
0 1




is as follows:

ũ(x) =



0, x < −1
0.3 x−(−1)
−0.7−(−1) , x ∈ [−1,−0.7)

0.3 + (0.6− 0.3) x−(−0.7)
−0.6−(−0.7) , x ∈ [−0.7,−0.6)

0.6 + (0.9− 0.6) x−(−0.6)
−0.2−(−0.6) , x ∈ [−0.6,−0.2)

0.9 + (1− 0.9) x−(−0.2)
−0.1−(−0.2) , x ∈ [−0.2,−0.1)

1, x ∈ [−0.1, 0]
0.8 + (1− 0.8) 0.1−x

0.1−0 , x ∈ (0, 0.1]
0.5 + (0.8− 0.5) 0.4−x

0.4−0.1 , x ∈ (0.1, 0.4]
0.2 + (0.5− 0.2) 0.6−x

0.6−0.4 , x ∈ (0.4, 0.6]
0.2 1−x

1−0.6 , x ∈ (0.6, 1]
0, x > 1

i.e.,

ũ(x) =



0, x < −1
x + 1, x ∈ [−1,−0.7)
3x + 2.4, x ∈ [−0.7,−0.6)
0.75x + 1.05, x ∈ [−0.6,−0.2)
x + 1.1, x ∈ [−0.2,−0.1)
1, x ∈ [−0.1, 0]
1− x, x ∈ (0, 0.1]
0.9− x, x ∈ (0.1, 0.4]
1.1− x, x ∈ (0.4, 0.6]
1−x

2 , x ∈ (0.6, 1]
0, x > 1

For fixed ri, sj ∈ [0, 1] with 0 = r0 < r1 < r2 < · · · < rm < rm+1 = 1 = sn+1 > sn >
· · · > s2 > s1 > s0 = 0, we denote the collection r− s piecewise linear fuzzy numbers by
rPLs(E), and denote the collection of all r−knots (s−knots) piecewise linear fuzzy numbers
by PLr(E) (i.e., PLs(E)).
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Let u = upl ∈ rPLs(E). Then,

u(r) =



a0 + (a1 − a0)
r
r1

, r ∈ [r0, r1] = [0, r1]

a1 + (a2 − a1)
r−r1
r2−r1

, r ∈ (r1, r2]
...
am−1 + (am − am−1)

r−rm−1
rm−rm−1

, r ∈ (rm−1, rm]

am + (am+1 − am)
r−rm
1−rm

, r ∈ (rm, rm+1] = (rm, 1]

(5)

and

u(r) =



b0 + (b1 − b0)
r
s1

, r ∈ [s0, s1] = [0, s1]

b1 + (b2 − b1)
r−s1
s2−s1

, r ∈ (s1, s2]
...
bn−1 + (bn − bn−1)

r−sn−1
sn−sn−1

, r ∈ (sn−1, sn]

bn + (bn+1 − bn)
r−sn
1−sn

, r ∈ (sn, sn+1] = (sn, 1]

(6)

for r ∈ [0, 1].

-1 -0.5 0 0.5 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(-1,0)

(-0.7,0.3)

(-0.6,0.6)

(-0.2,0.9)

(-0.1,1) (0,1)

(0.1,0.8)

(0.4,0.5)

(0.6,0.2)

(1,0)

ũ(x)

Figure 1. (0, 0.3, 0.6, 0.9, 1)− (0, 0.2, 0.5, 0.8, 1) piecewise linear fuzzy number ũ.

Let Rn×n be the collection of all n × n real matrices (i.e., the matrices with all real
number elements). If matrix A = (aij)n×n ∈ Rn×n satisfies

|aii| >
n

∑
j=1,j 6=i

|aij|, i = 1, 2, · · · , n

then A is a strictly diagonally dominant matrix (see Theorem I in [27]).
If A = (aij)n×n ∈ Rn×n is a strictly diagonally dominant matrix with positive diagonal

entries (i.e., aii > 0, i = 1, 2, · · · , n), then

λi > 0

for any i = 1, 2, · · · , n, where λi(i = 1, 2, · · · , n) is the eigenvalues of A (see Theorem VII
in [27]).
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3. The Approximations of Membership Functions

In [18], Coroianu, Gagolewski and Grzegorzewski give a method of approximating
general fuzzy numbers by using piecewise linear 1−knot fuzzy numbers with respect
to the metric d. In this section, we are going to establish a recursion formula to obtain
the r − s piecewise linear fuzzy number which is the nearest (with respect to metric d∗)
approximation with the left threshold value set r and the right threshold value set s. To do
this, we first give the following definitions and theorems.

Definition 1. Let ri, sj ∈ [0, 1] with 0 = r0 < r1 < r2 < · · · < rm < rm+1 = 1 = sn+1 > sn >
· · · > s2 > s1 > s0 = 0. If there exists upl ∈ rPLs(E) with upl(0) = u(0), upl(0) = u(0),

upl(1) = u(1), upl(1) = u(1) (i.e., [upl ]
0 = [u]0 and [upl ]

1 = [u]1) such that

d∗(u, upl) = min{d∗(u, v) : v ∈ rPLs(E) with [v]0 = [u]0, [v]1 = [u]1}

then we say upl to be the I−nearest (with respect to metric d∗) r− s piecewise linear approximation
(in short, PLA) of fuzzy number u. Specially, as r = s, we say upl to be the I−nearest (with
respect to metric d∗) r−knots (i.e., s−knots) piecewise linear approximation (in short, PLA) of
fuzzy number u.

Definition 2. Let ri, sj ∈ [0, 1] with 0 = r0 < r1 < r2 < · · · < rm < rm+1 = 1 = sn+1 > sn >
· · · > s2 > s1 > s0 = 0. If there exists upl ∈ rPLs(E) such that

d∗(u, upl) = min{d∗(u, v) : v ∈ rPLs(E)}

then we say upl to be the I I−nearest (with respect to metric d∗) r− s piecewise linear approximation
(in short, PLA) of fuzzy number u. Specially, as r = s, we say upl to be the I I−nearest (with
respect to metric d∗) r−knots (i.e., s−knots) piecewise linear approximation (in short, PLA) of
fuzzy number u.

By the definitions of the I−nearest (with respect to metric d∗) r − s piecewise lin-
ear approximation and the I I−nearest (with respect to metric d∗) r− s piecewise linear
approximation of a fuzzy number, we can directly get the following result:

Proposition 1. Let u ∈ E and ri, sj ∈ [0, 1] with 0= r0 < r1 < r2 < · · · < rm < rm+1 = 1
= sn+1 > sn > · · · > s2 > s1 > s0 = 0 to be the I−nearest (with respect to metric d∗) r− s
piecewise linear approximation of fuzzy number u, and vpl to be the I I−nearest (with respect to
metric d∗) r− s piecewise linear approximation of fuzzy number u. Then,

d∗(u, vpl) ≤ d∗(u, upl)

i.e., vpl is a better approximation of fuzzy number u than upl .

Proof. From

{d∗(u, v) : v ∈ rPLs(E) with [v]0 = [u]0, [v]1 = [u]1} ⊂ {d∗(u, v) : v ∈ rPLs(E)}

We see that

d∗(u, upl) = min{d∗(u, v) : v ∈ rPLs(E) with [v]0 = [u]0, [v]1 = [u]1}
≥ min{d∗(u, v) : v ∈ rPLs(E)}
= d∗(u, vpl)

The proof of the proposition can be completed.
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For convenience, we give the following notations:
Let r = (r0, r1, r2, · · · , rm, rm+1), s = (s0, s1, s2, · · · , sn, sn+1) with 0 = r0 < r1 < r2 <

· · · < rm < rm+1 = 1 = sn+1 > sn > · · · > s2 > s1 > s0 = 0. We give the following
notations:

αi =


∆r2

2
Σr2

2−Σr1
2 , i = 1

∆r2
i+1

Σri+1
2−Σri

2−∆r2
i αi−1

, i = 2, 3, · · · , m− 1
(7)

βi =


γ1+λ1−r2

1u(0)
Σr2

2−Σr1
2 , i = 1

γi+λi−∆r2
i βi−1

Σri+1
2−Σri

2−∆r2
i αi−1

, i = 2, 3, · · · , m− 1
(8)

where, Σri = ri + ri−1, ∆r2
i = r2

i − r2
i−1, γi = 12

ri−ri−1

∫ ri
ri−1

u(r)(r − ri−1)rdr and λi =
12

ri+1−ri

∫ ri+1
ri

u(r)(ri+1 − r)rdr.

αj =


∆s2

2
Σs2

2−Σs1
2 , j = 1

∆s2
j+1

Σsj+1
2−Σsj

2−∆s2
j αj−1

, j = 2, 3, · · · , n− 1
(9)

β j =


γ1+λ1−s2

1u(0)
Σs2

2−Σs1
2 , j = 1

γj+λj−∆s2
j β j−1

Σsj+1
2−Σsj

2−∆s2
j αj−1

, j = 2, 3, · · · , n− 1
(10)

where, Σsj = sj + sj−1, ∆s2
j = s2

j − s2
j−1, γj = 12

sj−sj−1

∫ sj
sj−1

u(r)(r − sj−1)rdr and λj =

12
sj+1−sj

∫ sj+1
sj

u(r)(sj+1 − r)rdr.

Theorem 1. Let r = (r0, r1, r2, · · · , rm, rm+1), s = (s0, s1, s2, · · · , sn, sn+1) with 0 = r0 < r1 <
r2 < · · · < rm < rm+1 = 1 = sn+1 > sn > · · · > s2 > s1 > s0 = 0. If ai, bj ∈ R(i =
1, 2, · · · , m, j = 1, 2, · · · , n) are respectively determined by following recursion formulas:

 am =
γm+λm−(1−r2

m)u(1)−∆r2
m βm−1

Σrm+1
2−Σrm

2−∆r2
mαm−1

ai = βi − αi · ai+1, i = m− 1, m− 2, · · · , 1
(11)

and {
bn = γn+λn−(1−s2

n)u(1)−∆s2
n βn−1

Σsn+1
2−Σsn

2−∆s2
nαn−1

bj = β j − αj · bj+1, j = n− 1, n− 2, · · · , 1
(12)

and satisfy u(0) = a0 ≤ a1 ≤ a2 ≤ · · · ≤ am ≤ am+1 = u(1) ≤ u(1) = bn+1 ≤ bn ≤ · · · b2 ≤
b1 ≤ b0 = u(0), then

upl = PL(AT , rT ; BT , sT) = PL




a0 r0
a1 r1
...

...
am rm

am+1 rm+1

,


b0 s0
b1 s1
...

...
bm sm

bm+1 sm+1




is the I−nearest (with respect to metric d∗) r− s piecewise linear approximation of fuzzy num-
ber u, where A = (a0, a1, · · · am+1) = (u(0), a1, · · · , u(1)) and B = (b0, b1, · · · bn+1) =
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(u(0), b1, · · · , u(1)), and αi, βi, αj, β j (i = 1, 2, · · · , m, j = 1, 2, · · · , n) are respectively de-
termined by Formulas (7)–(10).

Proof. We denote the n−dimensional Euclidean space as Rn for positive integer n. For
any x = (x1, · · · , xm) ∈ Rm, y = (y1, · · · , yn) ∈ Rn with x1 ≤ x2 ≤ · · · ≤ xm ≤ yn ≤
· · · y2 ≤ y1, we denote X = (u(0), x1, x2, · · · , xm, u(1)), Y = (u(0), y1, y2, · · · , yn, u(1)) and
ux,y = PL(X, r; Y, s).

We define D : Rm+n → R as

D(x1, x2, · · · , xm, y1, y2, · · · , yn) = D(x, y) = (d∗(u, ux,y))
2

for any (x, y) = (x1, x2, · · · , xm, y1, y2, · · · , yn) ∈ Rm+n. By the definition of weighted
metric d∗ (i.e, Equation (2)), we see that

D(x1, x2, · · · , xm, y1, y2, · · · , yn) =
∫ 1

0
2r(u(r)− ux,y(r))2dr +

∫ 1

0
2r(u(r)− ux,y(r))2dr

By the definition of u(r) and u(r) (see Formulas (5) and (6)), let r0 = 0, rm+1 = 1, x0 =
u(0), xm+1 = u(1), s0 = 0, sn+1 = 1, y0 = u(0) and yn+1 = u(1), we have that∫ 1

0
2r(u(r)− ux,y(r))2dr

=
∫ r1

0
2r(u(r)− u(0)− (x1 − u(0))

r
r1
)2dr +

∫ r2

r1

2r(u(r)− x1 − (x2 − x1)
r− r1

r2 − r1
)2dr

+
i−2

∑
k=2

∫ rk+1

rk

2r(u(r)− xk − (xk+1 − xk)
r− rk

rk+1 − rk
)2dr

+
∫ ri

ri−1

2r(u(r)−xi−1−(xi−xi−1)
r−ri−1

ri−ri−1
)2dr+

∫ ri+1

ri

2r(u(r)−xi−(xi+1−xi)
r−ri

ri+1−ri
)2dr

+
m−2

∑
k=i+1

∫ rk+1

rk

2r(u(r)− xk − (xk+1 − xk)
r− rk

rk+1 − rk
)2dr

+
∫ rm

rm−1

2r(u(r)−xm−1−(xm−xm−1)
r−rm−1

rm−rm−1
)2dr+

∫ 1

rm
2r(u(r)−xm−(u(1)−xm)

r−rm

1−rm
)2dr

and ∫ 1

0
2r(u(r)− ux,y(r))2dr

=
∫ s1

0
2r(u(r)− u(0)− (y1 − u(0))

r
s1
)2dr +

∫ s2

s1

2r(u(r)− y1 − (y2 − y1)
r− s1

s2 − s1
)2dr

+
j−2

∑
k=2

∫ sk+1

sk

2r(u(r)− yk − (yk+1 − yk)
r− sk

sk+1 − sk
)2dr

+
∫ sj

sj−1

2r(u(r)−yj−1−(yj−yj−1)
r−sj−1

sj−sj−1
)2dr+

∫ sj+1

sj

2r(u(r)−yj−(yj+1−yj)
r−sj

sj+1−sj
)2dr

+
n−2

∑
k=j+1

∫ sk+1

sk

2r(u(r)− yk − (yk+1 − yk)
r− sk

sk+1 − sk
)2dr

+
∫ sn

sn−1

2r(u(r)−yn−1−(yn−yn−1)
r−sn−1

sn−sn−1
)2dr+

∫ 1

sn
2r(u(r)−yn−(u(1)−yn)

r−sn

1−sn
)2dr
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Then, for any fixed i = 1, 2, · · · , m, we have that

∂D(x1, x2, · · · , xm, y1, y2, · · · , yn)

∂xi

=
∂

∂xi
[
∫ ri

ri−1

2r(u(r)−xi−1−(xi−xi−1
r−ri−1

ri−ri−1
)2dr+

∫ ri+1

ri

2r(u(r)−xi−(xi+1−xi
r−ri

ri+1−ri
)2dr]

=
∂

∂xi
[

x2
i

(ri−ri−1)2

∫ ri

ri−1

2r(r−ri−1)
2dr− 2xi

ri−ri−1

∫ ri

ri−1

2r(r−ri−1)(u(r)−xi−1
ri−r

ri−ri−1
)dr

+
∫ ri

ri−1

2r(u(r)−xi−1
ri−r

ri−ri−1
)2dr +

x2
i

(ri+1−ri)2

∫ ri+1

ri

2r(ri+1−r)2dr

− 2xi
ri+1−ri

∫ ri+1

ri

2r(ri+1−r)(u(r)−xi+1
r−ri

ri+1−ri
)dr+

∫ ri+1

ri

2r(u(r)−xi+1
r−ri

ri+1−ri
)2dr]

=
4xi

(ri−ri−1)2

∫ ri

ri−1

r(r−ri−1)
2dr− 4

ri−ri−1

∫ ri

ri−1

r(r−ri−1)(u(r)−xi−1
ri−r

ri−ri−1
)dr

+
4xi

(ri+1−ri)2

∫ ri+1

ri

r(ri+1−r)2dr− 4
ri+1−ri

∫ ri+1

ri

r(ri+1−r)(u(r)−xi+1
r−ri

ri+1−ri
)dr

=
1
3
(r2

i −r2
i−1)xi−1 +

1
3
((ri+1+ri)

2−(ri+ri−1)
2)xi +

1
3
(r2

i+1−r2
i )xi+1

− 4
ri−ri−1

∫ ri

ri−1

u(r)(r−ri−1)rdr− 4
ri+1−ri

∫ ri+1

ri

u(r)(ri+1−r)rdr

Likewise, for any fixed j = 1, 2, · · · , n, we have that

∂D(x1, x2, · · · , xm, y1, y2, · · · , yn)

∂yj

=
∂

∂yj
[
∫ sj

sj−1

2r(u(r)−yj−1−(yj−yj−1
r−sj−1

sj−sj−1
)2dr+

∫ sj+1

sj

2r(u(r)−yj−(yj+1−yj
r−sj

sj+1−sj
)2dr]

=
∂

∂yj
[

y2
j

(sj−sj−1)2

∫ sj

sj−1

2r(r−sj−1)
2dr−

2yj

sj−sj−1

∫ sj

sj−1

2r(r−sj−1)(u(r)−yj−1
sj−r

sj−sj−1
)dr

+
∫ sj

sj−1

2r(u(r)−yj−1
sj − r

sj − sj−1
)2dr+

y2
j

(sj+1−sj)2

∫ sj+1

sj

2r(sj+1−r)2dr

−
2yj

sj+1−sj

∫ sj+1

sj

2r(sj+1−r)(u(r)−yj+1
r−sj

sj+1−sj
)dr+

∫ sj+1

sj

2r(u(r)−yj+1
r−sj

sj+1−sj
)2dr]

=
4yj

(sj−sj−1)2

∫ sj

sj−1

r(r−sj−1)
2dr− 4

sj−sj−1

∫ sj

sj−1

r(r−sj−1)(u(r)−yj−1
sj−r

sj−sj−1
)dr

+
4yj

(sj+1−sj)2

∫ sj+1

sj

r(sj+1−r)2dr− 4
sj+1−sj

∫ sj+1

sj

r(sj+1−r)(u(r)−yj+1
r−sj

sj+1−sj
)dr

=
1
3
(s2

j−s2
j−1)yj−1+

1
3
((sj+1+sj)

2−(sj+sj−1)
2)yj +

1
3
(s2

j+1−s2
j )yj+1

− 4
sj−sj−1

∫ sj

sj−1

u(r)(r−sj−1)rdr− 4
sj+1−sj

∫ sj+1

sj

u(r)(sj+1−r)rdr

Let
∂D(x1, x2, · · · , xm, y1, y2, · · · , yn)

∂xi
= 0, i = 1, 2, · · · , m

and
∂D(x1, x2, · · · , xm, y1, y2, · · · , yn)

∂yj
= 0, j = 1, 2, · · · , n
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Then, we can obtain that

C1xT =



γ1 + λ1 − r2
1u(0)

γ2 + λ2
...

γi + λi
...

γm + λm − (1− r2
m)u(1)


(13)

and

C2yT =



γ1 + λ1 − r2
1u(0)

γ2 + λ2
...

γj + λj
...

γn + λn − (1− s2
n)u(1)


(14)

where, xT is the transposition of x = (x1, x2 · · · , xm), yT is the transposition of y =
(y1, y2 · · · , yn), and

C1 =


Σr2

2−Σr1
2 ∆r2

2 0 · · · 0 0 0
∆r2

2 Σr3
2−Σr2

2 ∆r2
3 · · · 0 0 0

...
...

...
. . .

...
...

...
0 0 0 · · · ∆r2

m−1 Σrm
2−Σrm−1

2 ∆r2
m

0 0 0 · · · 0 ∆r2
m Σrm+1

2−Σrm
2


and

C2 =


Σs2

2−Σs1
2 ∆s2

2 0 · · · 0 0 0
∆s2

2 Σs3
2−Σs2

2 ∆s2
3 · · · 0 0 0

...
...

...
. . .

...
...

...
0 0 0 · · · ∆s2

n−1 Σsn
2−Σsn−1

2 ∆s2
n

0 0 0 · · · 0 ∆s2
n Σsn+1

2−Σsn
2


From 0 = r0 < r1 < r2 < · · · < rm < rm+1 = 1 = sn+1 > sn > · · · > s2 > s1 > s0 = 0,

we see that ∆r2
i+1 > 0, i = 1, 2, · · · , m and ∆s2

j+1 > 0, j = 1, 2, · · · , n, so
|Σr2

2 − Σr1
2| > |∆r2

2|
|Σri+1

2 − Σri
2| > |∆r2

i |+ |∆r2
i+1|, i = 2, 3, · · · , m− 1

|Σrm+1
2 − Σrm

2| > |∆r2
m|

and 
|Σs2

2 − Σs1
2| > |∆s2

2|
|Σsj+1

2 − Σsj
2| > |∆s2

j |+ |∆s2
j+1|, i = 2, 3, · · · , n− 1

|Σsn+1
2 − Σsn

2| > |∆s2
n|

Therefore, C1 and C2 are both a strictly diagonally dominant matrix. Thus, by Thomas
algorithm in [27], we know that there is a unique set of solutions for the two equations
for linear Equations (13) of unknown quantities x1, x2 · · · , xm and linear Equations (14)
of unknown quantities y1, y2 · · · , yn (denote the solutions set of (13) as (a1, a2, · · · , am)
and the solutions set of (14) as (b1, b2, · · · , bn)), and the solutions sets (a1, a2, · · · , am) and
(b1, b2, · · · , bn) are determined by recursion formulas (11) and (12).
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Denoting A = (a0, a1, a2, · · · , am, am+1) = (u(0), a1, a2, · · · , am, u(1)), B = (b0, b1, b2,
· · · , bn, bn+1) = (u(0), b1, b2, · · · , bn, u(1)), by u(0) = a0 ≤ a1 ≤ a2 ≤ · · · ≤ am ≤
am+1 = u(1) ≤ u(1) = bn+1 ≤ bn ≤ · · · b2 ≤ b1 ≤ b0 = u(0), we can define the r-s
piecewise linear fuzzy number as upl = PL(AT , rT ; BT , sT).

In the following, in order to show that the r− s piecewise linear fuzzy number upl is the
I−nearest (with respect to metric d∗) r− s piecewise linear approximation of fuzzy number
u, we only show that the Hessian matrix of the function D(x1, x2, · · ·, xm, y1, y2, · · ·, yn) of
m + n variables is a positive definite matrix as (x1, x2, · · ·, xm, y1, y2, · · ·, yn) = (a1, a2, · · ·,
am, b1, b2, · · ·, bn).

From the expressions of ∂D(x1,x2,··· ,xm ,y1,y2,··· ,yn)
∂xi

(i = 1, 2, · · · , m), which we obtained
before, we have that

∂D(x1, x2, · · · , xm, y1, y2, · · · , yn)

∂x1∂xk
=


1
3 (Σr2

2 − Σr1
2), k = 1

1
3 ∆r2

2, k = 2
0, k = 3, 4, · · · , m

∂D(x1, x2, · · · , xm, y1, y2, · · · , yn)

∂xi∂xk
=


1
3 ∆r2

i , k = i−1
1
3 (Σri+1

2 − Σri
2), k = i

1
3 ∆r2

i+1, k = i+1
0, k = 1, 2, · · ·, i−2, i+2, · · ·, m

for i = 2, 3, · · · , m−1, and

∂D(x1, x2, · · · , xm, y1, y2, · · · , yn)

∂xm∂xk
=


1
3 ∆r2

m, k = m−1
1
3 (Σrm+1

2 − Σrm
2), k = m

0, k = 1, 2, · · · , m−2

From the expressions of ∂D(x1,x2,··· ,xm ,y1,y2,··· ,yn)
∂yj

(j = 1, 2, · · · , n), which we obtained
before, we have that

∂D(x1, x2, · · · , xm, y1, y2, · · · , yn)

∂y1∂yk
=


1
3 (Σs2

2 − Σs1
2), k = 1

1
3 ∆s2

2, k = 2
0, k = 3, 4, · · · , n

∂D(x1, x2, · · · , xm, y1, y2, · · · , yn)

∂yj∂yk
=


1
3 ∆s2

j , k = j−1
1
3 (Σsj+1

2 − Σsj
2), k = j

1
3 ∆s2

j+1, k = j+1
0, k = 1, 2, · · ·, j−2, j+2, · · ·, n

for j = 2, 3, · · · , n−1, and

∂D(x1, x2, · · · , xm, y1, y2, · · · , yn)

∂yn∂yk
=


1
3 ∆s2

n, k = n−1
1
3 (Σsn+1

2 − Σsn
2), k = n

0, k = 1, 2, · · · , n−2

Therefore, we can obtain the Hessian matrix of the function D(x1, x2, · · · , xm, y1,
y2, · · · , yn) at (a1, a2, · · · , am, b1, b2, · · · , bn) as follow:

C =
1
3

(
C1 0
0 C2

)
Since C1 and C2 are all strictly diagonally dominant and real symmetric, C is strictly

diagonally dominant and real symmetric. It implies that the eigenvalues of C are all positive
values, so C is a positive matrix. Therefore, (a1, a2, · · · , am, b1, b2, · · · , bn) is the minimum
point of D(x1, x2, · · · , xm, y1, y2, · · · , yn). Thus, we see that upl = PL(AT , rT ; BT , sT) is
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the I−nearest (with respect to metric d∗) r − s piecewise linear approximation of fuzzy
number u.

By Proposition 1, we see that for u ∈ E and r = (r0, r1, r2, · · · , rm, rm+1), s =
(s0, s1, s2, · · · , sn, sn+1) with 0 = r0 < r1 < r2 < · · · < rm < rm+1 = 1 = sn+1 > sn >
· · · > s2 > s1 > s0 = 0, the I I−nearest (with respect to metric d∗) r− s piecewise linear
approximation vpl of fuzzy number u is better than the I−nearest (with respect to metric
d∗) r− s piecewise linear approximation upl of fuzzy number u. In the following, we are
going to give the recursion formulas to calculate I I−nearest (with respect to metric d∗) r− s
piecewise linear approximation. For this purpose, we first give the following notations:

Let u ∈ E and 0 = r0 < r1 < r2 < · · · < rm < rm+1 = 1 = sn+1 > sn > · · · > s2 >
s1 > s0 = 0. We denote

ζi =

 1, i = 0
∆r2

i+1
Σri+1

2−Σri
2−∆r2

i ζi−1
, i = 1, 2, · · · , m (15)

ηi =


λ0

r2
1

, i = 0
γi+λi−∆r2

i ηi−1

Σri+1
2−Σri

2−∆r2
i ζi−1

, i = 1, 2, · · · , m
(16)

where, Σri = ri + ri−1, ∆r2
i = r2

i − r2
i−1, γi = 12

ri−ri−1

∫ ri
ri−1

u(r)(r − ri−1)rdr and λi =
12

ri+1−ri

∫ ri+1
ri

u(r)(ri+1 − r)rdr.

ζ j =

 1, j = 0
∆s2

j+1

Σsj+1
2−Σsj

2−∆s2
j αj−1

, j = 1, 2, · · · , n (17)

ηj =


λ0
s2

1
, j = 0
γj+λj−∆s2

j β j−1

Σsj+1
2−Σsj

2−∆s2
j αj−1

, j = 1, 2, · · · , n
(18)

where, Σsj = sj + sj−1, ∆s2
j = s2

j − s2
j−1, γj = 12

sj−sj−1

∫ sj
sj−1

u(r)(r − sj−1)rdr and λj =

12
sj+1−sj

∫ sj+1
sj

u(r)(sj+1 − r)rdr.

Theorem 2. Let u ∈ E and r = (r0, r1, r2, · · · , rm, rm+1), s = (s0, s1, s2, · · · , sn, sn+1) with
0 = r0 < r1 < r2 < · · · < rm < rm+1 = 1 = sn+1 > sn > · · · > s2 > s1 > s0 = 0. If
ai, bj ∈ R(i = 0, 1, 2, · · · , m + 1, j = 0, 1, 2, · · · , n + 1) are respectively determined by following
recursion formulas:  am+1 =

γm+1−∆r2
m+1ηm

(3rm+1+rm)(rm+1−rm)−∆r2
m+1ζm

ai = ηi − ζi · ai+1, i = m, m− 1, · · · , 1, 0
(19)

and  bn+1 =
γn+1−∆s2

n+1ηn

(3sn+1+sn)(sn+1−sn)−∆s2
n+1ζn

bj = ηj − ζ j · bj+1, j = n− 1, n− 2, · · · , 1
(20)
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and satisfy a0 ≤ a1 ≤ a2 ≤ · · · ≤ am ≤ am+1 ≤ bn ≤ bn+1 ≤ · · · b2 ≤ b1 ≤ b0, then

upl = PL(AT , rT ; BT , sT) = PL




a0 r0
a1 r1
...

...
am rm

am+1 rm+1

,


b0 s0
b1 s1
...

...
bm sm

bm+1 sm+1




is the I I−nearest (with respect to metric d∗) r− s piecewise linear approximation of fuzzy number u,
where A = (a0, a1, · · · am+1) and B = (b0, b1, · · · bn+1), and ζi, ηi, ζ j, ηj (i = 0, 1, 2, · · · , m, j =
0, 1, 2, · · · , n) are respectively determined by Formulas (15)–(18).

Proof. The Theorem 2 can be proved by the similar method as in Theorem 1. We omit the
proof process.

4. Examples and Comparisons of Some Approximation Methods

In this section, firstly, we compare the new methods with approximation algorithms
in [24] by an example. In addition, then, we are going to give a specific example to show
the effectiveness and usability of the methods proposed by us in this paper.

Example 1. Let fuzzy number u be defined as

u(x) =

{
2

x2+1 − 1, x ∈ [−1, 1]
0, x /∈ [−1, 1]

By the definition of u(r) and u(r), we have that u(r) = −
√

2
r+1 − 1 and u(r) =

√
2

r+1 − 1
and u(0) = −1, u(1) = 0, u(0) = 0, u(1) = 1.

It should be noted that the membership function is left–right symmetric, so for the convenience
of observation, we give that the left threshold value set r and the right threshold value set s are equal.

In [24], the authors demonstrated how to approximate the given fuzzy number u by us-
ing a multi-knots piecewise linear fuzzy number with respect to metric d. If we take r = s =
(0, 0.3, 0.6, 0.9, 1), then by the theorem in [24], we have that A = (−1,−0.729,−0.502,−0.251, 0)
and B = (1, 0.729, 0.502, 0.251, 0). Therefore, we know that the piecewise linear fuzzy number (see
Figure 2)

upl = PL




−1 0
−0.729 0.3
−0.502 0.6
−0.251 0.9

0 1

;


1 0

0.729 0.3
0.502 0.6
0.251 0.9

0 1




is the I−nearest (0, 0.3, 0.6, 0.9, 1)−knots piecewise linear approximation of fuzzy number u, where
A = (−1,−0.729,−0.502,−0.251, 0) and B = (1, 0.729, 0.502, 0.251, 0).

On the other hand, if we apply the methods (Formulas (11) and (12)) proposed in this paper,
we can obtain that A = (−1,−0.731,−0.501,−0.252, 0) and B = (1, 0.731, 0.501, 0.252, 0).
Therefore, by Theorem 1, we know that the piecewise linear fuzzy number (see Figure 3)

upl = PL




−1 0
−0.731 0.3
−0.501 0.6
−0.252 0.9

0 1

;


1 0

0.731 0.3
0.501 0.6
0.252 0.9

0 1




is the I−nearest (0, 0.3, 0.6, 0.9, 1) piecewise linear approximation of fuzzy number u, where
A = (−1,−0.731,−0.501,−0.252, 0) and B = (1, 0.731, 0.501, 0.252, 0).
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(0.251,0.9)
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(0.729,0.3)
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u(x)

u
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(x)

Figure 2. u and I−nearest (0, 0.3, 0.6, 0.9, 1)−KPLA upl .
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(0.501,0.6)

(0.731,0.3)

(1,0)

u(x)
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Figure 3. u and I−nearest (0, 0.3, 0.6, 0.9, 1) PLA upl .

Remark 1. Although the approximation effects of the two methods are not significantly different
from Figures 2 and 3, it should be admitted that, theoretically, the approximation method using
weighted metric d∗ is better than that using unweighted metric d, and the approximation effect is
better with the increase of the level threshold.

Example 2. Let fuzzy number u be defined as

u(x) =


(x− 1)2, x ∈ [1, 2)
1, x ∈ [2, 3]√

4− x, x ∈ (3, 4]
0, x /∈ [1, 4]

By the definition of u(r) and u(r), we have that u(r) = 1 +
√

r and u(r) = 4− r2 and
u(0) = 1, u(1) = 2, u(0) = 4, u(1) = 3.
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If we take r = (0, 0.2, 0.5, 0.8, 1) and s = (0, 0.3, 0.6, 0.9, 1), then by Formulas (11) and (12),
we have that A = (1, 1.476, 1.710, 1.897, 2) and B = (4, 3.927, 3.656, 3.201, 3). Therefore, by
Theorem 1, we know that the piecewise linear fuzzy number (see Figure 4)

upl = PL




1 0
1.476 0.2
1.710 0.5
1.897 0.8

2 1

,


4 0

3.927 0.3
3.656 0.6
3.201 0.9

3 1




is the I−nearest (0, 0.2, 0.5, 0.8, 1)− (0, 0.3, 0.6, 0.9, 1) piecewise linear approximation of fuzzy
number u.

Likewise, by Formulas (19) and (20), we have that A = (1.153, 1.461, 1.713, 1.896, 2.000)
and B = (4.023, 3.924, 3.657, 3.201, 2.997). Therefore, by Theorem 2, we know that the piecewise
linear fuzzy number (see Figure 5)

upl = PL




1.153 0
1.460 0.2
1.713 0.5
1.896 0.8
2.000 1

,


4.023 0
3.924 0.3
3.657 0.6
3.201 0.9
2.997 1




is the I I−nearest (0, 0.2, 0.5, 0.8, 1)− (0, 0.3, 0.6, 0.9, 1) piecewise linear approximation of fuzzy
number u.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(1,0)

(1.476,0.2)

(1.710,0.5)

(1.897,0.8)

(2,1) (3,1)

(3.201,0.9)

(3.656,0.6)

(3.927,0.3)

(4,0)

u(x)

u
pl

(x)

Figure 4. u and I−nearest (0, 0.2, 0.5, 0.8, 1)− (0, 0.3, 0.6, 0.9, 1) PLA upl .
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u
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(x)

Figure 5. u and I I−nearest (0, 0.2, 0.5, 0.8, 1)− (0, 0.3, 0.6, 0.9, 1) PLA upl .

Remark 2. The difference between the I−nearest r− s piecewise linear approximation (Definition 1)
and the I I−nearest r− s piecewise linear approximation (Definition 2) is that I−nearest r− s
piecewise linear approximation remains the same as the kernel of the original fuzzy number to
be approximated, however, the I I−nearest r− s piecewise linear approximation re-optimizes the
kernel of the approximate solution. Through the comparison of Figures 4 and 5 in Example 2, we
know again that the method given in Theorem 2 is better than the method given in Theorem 1 for
approximating a general fuzzy number by using piecewise linear fuzzy number.

5. Conclusions and Future Research Directions

In this paper, based on weighted metric d∗, we give the definition (Definition 1) of
I−nearest r− s (with respect to metric d∗) piecewise linear approximation and I I−nearest
(with respect to metric d∗) r− s piecewise linear approximation (Definition 2) for a general
fuzzy number, and obtain the theorem (Proposition 1) of the relation between the two
kinds of r − s piecewise linear approximations. Then, we obtain the method to get the
I−nearest (with respect to metric d∗) r− s piecewise linear approximation (Theorem 1) and
the I I−nearest (with respect to metric d∗) r− s piecewise linear approximation (Theorem 2)
for a general fuzzy number. Finally, we give a specific example to compare the new
methods with approximation algorithms with respect to unweighted metric d (Example 1)
and another example to show the effectiveness and usability of the methods proposed by
us using weighted metric d∗(Example 2).

In this paper, we establish a method to solve the best approximation when r and s
are known. In the future, we can consider establishing a method to approximate a general
fuzzy number with a simple fuzzy number when r and s are unknown. In addition, we can
also discuss the approximation of high-dimensional fuzzy numbers.
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