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Abstract: In this paper we focus on providing sufficient conditions for some well-known stochastic
orders in reliability but dealing with the discrete versions of them, filling a gap in the literature. In
particular, we find conditions based on the unimodality of the likelihood ratio for the comparison in
some stochastic orders of two discrete random variables. These results have interest in comparing
discrete random variables because the sufficient conditions are easy to check when there are no
closed expressions for the survival functions, which occurs in many cases. In addition, the results are
applied to compare several parametric families of discrete distributions.
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1. Introduction

The comparison of random quantities in terms of the so called “stochastic orders”
has received great attention along the last 50 years and we can find applications of this
topic in different fields such as reliability, insurance, risks, finance, epidemics, and so on
(see [1–6]). This topic deals with several criteria to compare two random quantities in order
to select which one is “larger”, according to their magnitude, dispersion, residual lifetimes,
concentration, and so on. An interesting topic in this context is that of finding sufficient
conditions for several stochastic orders when there are no closed expressions for some of
the functions used in the comparison. Results in this direction can be traced from [7] up to
most recent ones by [8–10] and the references therein. Whereas most of the results on this
topic are given for continuous random variables, it is hard to find results in the discrete
case. As far as we know, there is just one paper related to the comparison of two discrete
random variables in the usual stochastic order (see [11]). The purpose of this paper is to
fill the gap and provide tools that are easy to deal with, to check if two discrete random
variables are ordered according to the most prominent stochastic orders in reliability and
survival analysis, which are the hazard rate and mean residual life orders.

Usually, the lifetime of a unit or a living organism is treated as a continuous random
variable. However, there are situations where the random lifetime has to be treated as a
discrete random variable. For example, in some cases, the number of operations completed
correctly prior to the failure of the system or the number of times switching a device to turn
it on till it fails is more interesting than the time until failure Moreover, even if the failure
time has interest, we deal with discrete times whenever the unit or the system is checked
only once per time period. Along the last two decades, there is an increasing interest in the
study of reliability modeling and survival analysis in discrete time as can be seen in [12].
Therefore, it is natural to study the hazard rate and mean residual life orders for discrete
random variables.

Despite being a powerful tool to compare the residual lifetime of two random lifetimes,
the checking of these criteria requires the computation of series which usually do not have
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a closed expression, which is an important disadvantage in real problems. It is well-known
that a sufficient condition for both criteria is the likelihood ratio order, which is satisfied
when the ratio of the mass probability (density) functions is monotone. However, there are
many situations where this ratio is not monotone but it is unimodal. In the continuous case,
the unimodality of the likelihood ratio has been proved to be a sufficient condition, under
some additional mild conditions, for the hazard rate and mean residual life orders. In the
discrete case, ref. [11] related the unimodality of the ratio of two mass probability functions
to the usual stochastic order, as well as applying the results to compare some well-known
discrete families of distributions.

In this paper, we show that there are situations where the unimodality of the likelihood
ratio is a sufficient condition for the hazard rate order (which is stronger than the stochastic
order) or the mean residual life order. These results will be applied to the comparison of
some of the most important discrete families of distributions in the context of reliability in
discrete time.

The organization of the paper is as follows. In Section 2 we state the notation and
main definitions of reliability measures and stochastic orders that are considered along the
paper. The main results are provided in Section 3, where the unimodality of the likelihood
ratio is related to the comparison of hazard rate and mean residual life functions. Later, in
Section 4, we provide applications of these results to the comparison of specific discrete
parametric models of interest in reliability.

2. Notations and Definitions

In this section we provide the definition of the main reliability measures and stochastic
orders considered in the context of reliability in discrete time. In order to provide a unified
framework, we have followed [12]. Along this paper “increasing” and “decreasing” mean
“nondecreasing” and “nonincreasing,” respectively. For any random variable X and any
event A, we use {X|A} to denote the random variable whose distribution is the conditional
distribution of X given A. Given a discrete random variable X the mass probability function
will be denoted by fX(x) = P(X = x), the distribution function by FX(x) = P(X ≤ x) and
the support by Supp(X). The lower and upper extremes of the support will be denoted
by lX and uX , respectively. Given that in this context a random variable X represents the
random lifetime of an item or a living organism, the random variable is non negative with
Supp(X) ⊆ N0 = N∪ {0} and lX = 0.

First, we provide the definitions of the survival, hazard rate, and mean residual life
functions.

Definition 1. Let X be a discrete random variable with mass probability function fX .
We define the following reliability measures:

(i) The survival function of X, denoted by SX , is defined as

SX(x) = P(X ≥ x) =
uX

∑
i=x

fX(i), for all x ∈ N0.

This function provides the probability of being alive at time x for a unit with random lifetime
X.

(ii) The hazard rate function of X, denoted by hX , is defined as

hX(x) = P(X = x|X ≥ x) =
fX(x)
SX(x)

, for all x ∈ N0 such that SX(x) > 0.

The hazard rate at time X is the probability to fail at time x for a unit that has survived up to
time x, which is not the case for continuous distributions. Therefore, it is a local measure.
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(iii) The mean residual life function of X, denoted by mX , is defined as

mX(x) = E[X− x|X > x] =
∑∞

i=x+1 SX(i)
SX(x + 1)

, for all x ∈ N0 ∪ {−1}

such that SX(x + 1) > 0.

The mean residual life is the expected additional time for a unit that has survived beyond x.
This function is more informative than the hazard rate, given that it takes into account the
history of the unit beyond x.

Remark 1. (i) If the support of X is {0, 1, . . . , uX}, with uX < ∞, then hX(uX) = 1. As a
convention, we consider hX(x) = 1, for all x > uX. It is clear that 0 ≤ hX(x) ≤ 1, for all
x ∈ N0. Therefore, the interpretation and the boundedness of the hazard rate is different from
that of the continuous case.

(ii) From Definition 1 (iii) trivially follows that mX(−1) = E[X] + 1.

Now, we introduce the discrete versions of the stochastic orders based on the previous
reliability measures. Additionally, we give the definition of the likelihood ratio order.

Definition 2. Let X and Y be two discrete non negative random variables with lX = lY = 0. We
say that:

(i) X is less than Y in the stochastic order, denoted by X ≤st Y, if

SX(x) ≤ SY(x), for all x ∈ N0.

(ii) X is less than Y in the hazard rate order, denoted by X ≤hr Y, if

hX(x) ≥ hY(x), for all x ∈ N0 such that x ≤ k∗,

where k∗ = max{uX , uY}.
(iii) X is less than Y in the mean residual life order, denoted by X ≤mrl Y, if

mX(x) ≤ mY(x), for all x ∈ N0 ∪ {−1} such that x ≤ min{uX , uY}.

(iv) X is less than Y in the likelihood ratio order, denoted by X ≤lr Y, if

fX(x)
fY(x)

is decreasing over the union of the supports,

where a/0 is taken to be equal to +∞ whenever a > 0.

Remark 2. Taking into account that SX(x + 1) = SX(x) − fX(x), it is easy to see that the
condition in Definition 2 (ii) is equivalent to the following one

SX(x)
SY(x)

is decreasing over {0, . . . , k∗}. (1)

The ratio fX(x)
fY(x) is usually known as the likelihood ratio.

It is well-known that the following implications between the previous criteria hold

X ≤lr Y =⇒ X ≤hr Y =⇒ X ≤st Y
⇓ ⇓

X ≤mrl Y =⇒ E[X] ≤ E[Y].
(2)
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3. Sufficient Conditions Based on the Unimodality of the Likelihood Ratio

According to (2), the monotonicity of the likelihood ratio is a sufficient condition for
the hazard rate order (and the mean residual life and stochastic orders). However, there
are situations where the likelihood ratio is non monotone. The purpose of this section is
to provide sufficient conditions for the hazard rate and mean residual life orders when
the likelihood ratio order is not satisfied, or equivalently, when the likelihood ratio is non
monotone. Along the paper, we will denote by l the ratio of the mass probability functions
of X and Y, that is, the likelihood ratio will be denoted by

l(x) =
fX(x)
fY(x)

, for all x ∈ {0, . . . , k∗}.

In addition, we will assume that l is (strictly) unimodal, that is, there exists a value
0 < x0 < k∗, such that l(x) is increasing (not constant) over {0, . . . , x0} and decreasing (not
constant) over {x0, . . . , k∗}. Despite the fact that a unimodal function can be increasing or
decreasing according to the literature, the distinction among strictly unimodal functions and
monotone functions is fundamental in our study. Therefore, when we assume unimodality,
we mean strict unimodality.

The first theorem states the behavior of the ratio of the survival functions when l(x)
is unimodal. As we will see, under some additional condition, the hazard rate order is
satisfied when the likelihood ratio order does not hold. As we have mentioned previously,
along this section we will assume that lX = lY = 0.

Theorem 1. Let X and Y be two discrete random variables with supports Supp(X) ⊆ Supp(Y).
If l is unimodal over Supp(Y), then

(i) SX(x)/SY(x) is decreasing over {0, 1, . . . , k∗} if, and only if, l(0) ≥ 1.
(ii) SX(x)/SY(x) is unimodal over {0, 1, . . . , k∗} if, and only if, l(0) < 1.

Proof. Let us assume that l(x) is increasing for all 0 ≤ x ≤ k0 and decreasing for all
k0 ≤ x ≤ k∗, where 0 < k0 < k∗.

Then [X|X ≥ k0] ≤lr [Y|Y ≥ k0] and, from (2), [X|X ≥ k0] ≤hr [Y|Y ≥ k0]. According
to (1), this inequality is equivalent to the following property

SX(x)
SY(x)

is decreasing over {k0, . . . , k∗}. (3)

Now, let us define the following function

t(x) = SX(x)− l(x)SY(x), for all x ∈ {0, . . . , k0}.

Since l(x) is increasing over such set, we have for all x1 < x2 ≤ x0 that

t(x1) =
x2−1

∑
j=x1

( fX(j)− l(x1) fY(j)) +
∞

∑
j=x2

( fX(j)− l(x1) fY(j))

≥
∞

∑
j=x2

( fX(j)− l(x1) fY(j)) ≥
∞

∑
j=x2

( fX(j)− l(x2) fY(j))

= t(x2).

Therefore, t(x) is decreasing for all x ∈ {0, . . . , k0}. Furthermore, since l(x) is decreas-
ing for all x ≥ k0, it is easy to see that t(k0) ≤ 0.

Now, let us distinguish the following cases.

(i) l(0) ≥ 1: In this case, we have that

t(0) = SX(0)− l(0)SY(0)) ≤ (SX(0)− SY(0)) = 0
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and, therefore, t(x) ≤ 0 for all x ∈ {0, . . . , k0}. Therefore,

SX(x)
SY(x)

≤ l(x) for all x ∈ {0, . . . , k0},

or, equivalently, hX(x) ≥ hY(x), for all x ∈ {0, . . . , k0}, which is equivalent to
SX(x)/SY(x) be decreasing over {0, . . . , k0}. Therefore, SX(x)/SY(x) is decreasing
over {0, . . . , k∗}. It is easy to see that, if SX(x)/SY(x) is decreasing over {0, . . . , k∗},
then l(0) ≥ 1.

(ii) l(0) < 1: In this case, we have that

t(0) = SX(0)− l(0)SY(0) > SX(0)− SY(0) = 0.

Then, there exists a value 0 < km ≤ k0 such that t(x) > 0 for all 0 ≤ x < km
and t(x) ≤ 0 for all km ≤ x ≤ k0. Analogously to the previous case, we get that
SX(x)/SY(x) is (strictly) increasing for all 0 ≤ x ≤ km and decreasing for all km ≤ x ≤
k0. Therefore, SX(x)/SY(x) is unimodal over {0, 1, . . . , k0}. Given the characterization
in (i), if SX(x)/SY(x) is unimodal over {0, 1, . . . , k∗}, then l(0) < 1.

To sum up, combining (3) with the previous discussion, we conclude that SX/SY is
decreasing if, and only if, ł(0) ≥ 1 and it is unimodal otherwise.

We observe that the conditions on l(0) can be described in terms of the comparison
of probability of failed components before to put into operation. For example if X is the
lifetime of a device after a burn-in process then l(0) = 0 < 1.

Therefore, there are situations where l(x) is unimodal but the hazard rate order holds
and, consequently, the mean residual life order too. Now, a natural question arises: In the
situations where the ratio of the survival functions is unimodal, does the mean residual life
order hold? Ref. [10] provides a result in this direction in the continuous case. Given that
the mean residual life function in the discrete case can be obtained from the formula in the
continuous case, the next result trivially follows from Theorem 2.3 in [10].

Theorem 2. Let X and Y be two discrete random variables with supports Supp(X) ⊆ Supp(Y),
and survival functions such that SX(x)/SY(x) is unimodal over {0, . . . , k∗}. Then, X ≤mrl Y if,
and only if, E[X] ≤ E[Y].

Remark 3. We also want to point out that the mean residual life order holds when the survival
ratio SX/SY is unimodal and E[X] ≤ E[Y], but the stochastic order does not hold. Let us justify
this assertion. Given that SX/SY is unimodal we have that SX(x) ≥ SY(x), for all 0 ≤ x ≤ k0.
Furthermore, there exists at least a value x′ such that SX(x′) < SY(x′), since otherwise we have
E[X] > E[Y]. Therefore, the stochastic order does not hold in such situations in any sense.

Taking into account this remark and Theorems 1 and 2, we can state the following
corollary that characterizes the hazard rate and the mean residual life orders when the ratio
of the mass probability functions is unimodal.

Corollary 1. Let X and Y be two discrete random variables with supports Supp(X) ⊆ Supp(Y) ⊆
N0. If l is unimodal over Supp(Y), then

(i) X ≤hr Y if, and only if, l(0) ≥ 1.
(ii) X ≤mrl Y (X �st Y) if, and only if, l(0) < 1 and E[X] ≤ E[Y].

As we have mentioned in the introduction, ref. [11] has dealt with the unimodality of
l to establish conditions for the usual stochastic order for two discrete random variables.
In particular, they prove that the umimodality and the condition in Corollary 1 (i) imply
the stochastic order. Therefore, we have improved their result, concluding that the hazard
rate order holds under such condition, which is stronger than the stochastic one. In fact,
they also ask for another assumption on the limit of l which is not necessary. Furthermore,
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we also state what happens in the situations where the limit condition is not satisfied,
which characterizes all the possible scenarios in terms of these stochastic orders when the
likelihood ratio l is unimodal.

4. Applications

In this section we apply Corollary 1 and Theorem 2 to compare two random variables
belonging to some of the most important discrete parametric families in reliability. The
starting point is to apply Corollary 1 to look for situations where the likelihood ratio is
unimodal. Unluckily, there are situations where this is not an easy task. It is well-known
that a sufficient condition for the unimodality is the property of logconcavity. Let us
formally define it.

Definition 3. Let A = {aj}k
j=0 be a succession of real values, then A is said to be logconcave if

a2
j ≥ aj+1aj−1, for all 1 ≤ j < k, where k can be finite or infinite.

It is easy to see that if A = {aj}k
j=0 is a succession of positive real values, then

an

an−1
≥ an+1

an
, for all n < k. (4)

A well-known property is that if A = {aj}k
j=0 is logoncave and positive then A is (not

strictly) unimodal, that is, there exists a value j ∈ N0 such that a0 ≤ . . . ≤ aj−1 ≤ aj ≥
aj+1 ≥ . . . ≥ an ≥ . . . (see [13]) and, therefore, A can be increasing, decreasing, or unimodal.
In order to apply the results of the previous section, it is fundamental to determine if the
succession of the likelihood ratio values is monotone or strictly unimodal. Next, we give a
result that characterizes these two situations.

Proposition 1. Let A = {aj}k
j=0 be a logoncave and positive succession, and let us assume that

limj→k aj+1/aj exists. Then,

(i) A is decreasing if, and only if, a1/a0 ≤ 1.
(ii) A is increasing if, and only if, limj→k aj+1/aj ≥ 1.
(iii) A is unimodal if, and only if, a1/a0 > 1 and limj→k aj+1/aj < 1.

Proof. Case (i): Let us assume first that A is decreasing, then we have that a1/a0 ≤ 1.
Let us prove now the reversed implication. From (4) we have that aj+1/aj is decreasing,
therefore aj+1/aj ≤ a1/a0 ≤ 1 and then A is decreasing.

Case (ii): It follows under similar arguments as in case (i).
Case (iii): If A is unimodal the result follows from (i) and (ii).

Next, we combine the previous proposition with Corollary 1 to provide sufficient con-
ditions for the likelihood, hazard rate, and mean residual life orders, under the assumption
of logconcavity of the likelihood ratio.

Proposition 2. Let X and Y be two discrete random variables with support in N0, such that
Supp(X) ⊆ Supp(Y), and mass probability functions such that l(x) is logconcave over 0 ≤ x ≤
uX . Then we have the following results:

(i) X ≤lr Y if, and only if, l(1)/l(0) ≤ 1.
(ii) If

uX < uY and
l(1)
l(0)

> 1,

or

uX = uY,
l(1)
l(0)

> 1 and lim
j→uX

l(j + 1)
l(j)

< 1,

then
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(ii.a) X ≤hr Y (X �lr Y) if, and only if, l(0) ≥ 1.
(ii.b) X ≤mrl Y (X �hr Y) if, and only if, l(0) < 1 and E[X] ≤ E[Y].

Now, we provide an application of this result to the most classical parametric discrete
models of interest in reliability, that is, the binomial, negative binomial and Poisson dis-
tributions, which are particular cases of the Panjer’s family. It is easy to see that l(x) is
logconcave for any pair of Panjer’s distributions and, therefore, we can apply Proposition 2
to compare two random variables belonging to each one of these families. Let us formally
define the Panjer’s family.

Example 1. Panjer’s family: Ref. [14] considered a family of discrete random variables with mass
probability function satisfying the following relationship

fX(x) =
ax + b

x
fX(x− 1), for all x ∈ N,

where a, b ∈ R and f (0) > 0. Ref. [15] proved that the only three discrete distributions that satisfy
the previous relationship are the Poisson, binomial, and negative binomial distributions, with the
following parameters:

(a) Poisson P(λ): a = 0, b = λ and fX(0) = e−λ, where λ ∈ R+.
(b) Binomial B(n, p): a = −p/(1− p), b = (n + 1)p/(1− p) and fX(0) = (1− p)n, where

n ∈ N and p ∈ (0, 1).
(c) Negative binomial NB(p, r): a = p− 1, b = (r− 1)(p− 1) and fX(0) = pr, where r ∈ N

and p ∈ (0, 1).

Let X and Y be defined according to the Panjer’s family with parameters a1, b1 and a2,
b2, respectively, fX(0), fY(0) > 0 and uX ≤ uY. Since l(x) = a1x+b1

a2x+b2
l(x − 1) > 0, for all

x ∈ {0, 1, . . . , uX}, we have that

l(x + 1)
l(x)

=
a1x + b1

a2x + b2
, for all x ∈ {0, 1, . . . , uX},

and it is easy to see that

l(x + 1)
l(x)

is decreasing if, and only if, a1b2 ≤ a2b1.

Therefore, according to Proposition 2, the succession l(x) is logoncave for x in{0, . . . , uX} if,
and only if, a1b2 ≤ a2b1. In addition, we have that

l(1)
l(0)

=
a1 + b1

a2 + b2
.

Then, by the previous discussion, we can easily state the following results applying Proposition 2.

(a) Poisson: Let X ∼ P(λ1) and Y ∼ P(λ2). Then, X ≤lr Y if, and only if,

λ1 ≤ λ2.

(b) Binomial: Let X ∼ B(n1, p1) and Y ∼ B(n2, p2), where n1 ≤ n2 without loss of generality.
Then,

(b.1) X ≤lr Y if, and only if,

n1 p1(1− p2) ≤ n2 p2(1− p1).

(b.2) X ≤hr Y (and X �lr Y) if, and only if,{
n1 p1(1− p2) > n2 p2(1− p1)

(1− p1)
n1 ≥ (1− p2)

n2 .

}
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(b.3) X ≤mrl Y (and X �hr Y) if, and only if,
n1 p1(1− p2) > n2 p2(1− p1)

(1− p1)
n1 < (1− p2)

n2

n1 p1 ≤ n2 p2.


(c) Negative binomial: Let X ∼ NB(p1, r1) and Y ∼ NB(p2, r2), where r1 ≥ r2 without loss

of generality. Then,

(c.1) X ≤lr Y if, and only if,
r1(1− p1) ≤ r2(1− p2).

(c.2) X ≤hr Y (and X �lr Y) if, and only if,
r1(1− p1) > r2(1− p2)

p1 > p2
pr1

1 ≥ pr2
2 .


(c.3) X ≤mrl Y (and X �hr Y) if, and only if,

r1(1− p1) > r2(1− p2)
p1 > p2

pr1
1 < pr2

2
r1(1− p1)p2 ≤ r2(1− p2)p1.


Let us now make some comments on the previous results. As for the Poisson family

regards, it is an already well-known result in the literature. As the binomial is concerned,
the previous result improves Theorem 1.1 in [11] since they establish the stochastic order
under the same conditions as we do for the hazard rate order. Finally, regarding the
binomial negative family, our result also improves Theorem 1.1 in [11] because in those
cases where r1 ≥ r2 the likelihood order or the hazard rate order hold under the same
conditions as the stochastic order. Let us point out that the assumption r1 ≥ r2 is not a
restriction since, otherwise, the roles of X and Y can be exchanged.

Next, we consider a discrete version of the continuous Weibull distribution. Ref. [16]
introduced the Weibull discrete family in the context of reliability in discrete time. The
problem of estimation of its parameters can be seen in [17,18]. In this case the results follow
from the analysis of the ratio of the survival functions.

Example 2. Discrete Weibull distribution: Let X be a discrete random variable. We say that X
follows a discrete Weibull distribution with parameters α > 0 and β > 0, denoted by X ∼W(α, β),
if its mass probability function is given by

fX(x) = qxβ − q(x+1)β
, for all x ∈ N0,

where q = exp{−1/αβ} ∈ (0, 1). The survival function has also a closed expression and it is
given by

SX(x) = qxβ
, for all x ∈ N0.

Let X ∼W(α1, β1) and Y ∼W(α2, β2) be two random variables with Weibull distributions
and let us assume without loss of generality that β1 ≥ β2. Then,

(a) X ≤hr Y if, and only if.

α
β1
1 ≤ α

β2
2 . (5)

(b) X ≤mrl Y (and X �hr Y) if, and only if,{
α

β1
1 > α

β2
2

E[X] ≤ E[Y].

}
(6)
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Let us see the justification of the previous results. Denoting by L(x) the ratio of the survival
functions, that is, L(x) = SX(x)/SY(x) = qxβ1

1 /qxβ2
2 , it is not difficult to prove that L is unimodal

over R+ (not necessarily over N0), where the maximum is attained at

x0 =
(

β1α
β2
2 /(β2α

β1
1 )
)1/(β2−β1)

.

Given that L(0) = 1, it is easy to see that L(x) is decreasing for all x ∈ N0 if, and only if,
L(1) ≤ 1 and it is unimodal otherwise. In other words, we have that X ≤hr Y if, and only if,
(5) holds. Furthermore, if (5) does not hold, we have that L(x) is unimodal and, applying Theorem 2,
we have that X ≤mrl Y if, and only if, (6) holds.

In Figure 1, we provide examples of the two previous situations.
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Figure 1. Likelihood ratio, ratio of survival functions and mean residual life difference for case
(a) where X ∼ W(0.3, 0.3) and Y ∼ W(0.5, 0.2) (black) and case (b) where X ∼ W(0.75, 0.3) and
Y ∼W(0.5, 0.2) (blue).

The upcoming applications are based on the unimodality of the likelihood ratio. First,
we consider a generalization of the Poisson family that covers some other situations apart
from the Poisson distribution. A comprehensive study of this distribution is available
in [19].

Example 3. Generalized Poisson’ family: Let X be a discrete random variable. We say that X
follows a generalized Poisson distribution with parameters θ > 0 and 0 < λ < 1, denoted by
X ∼ P(θ, λ), if its mass probability function is given by

fX(x) =
θ(θ + xλ)x−1

x!
exp{−(θ + λx)}, for all x ∈ N0.

The distribution function has no closed expression and the mean is given by θ/(1− λ).
Let X ∼ GP(θ1, λ1) and Y ∼ GP(θ2, λ2) be two random variables with generalized Poisson

distributions where λ1 ≤ λ2 without loss of generality. Then,

(a) X ≤lr Y if, and only if,
λ2θ1 < λ1θ2 (7)

or {
λ2θ1 > λ1θ2

log
(

θ2
θ1

)
≥ λ2θ1−λ1θ2

θ1θ2
+ λ2 − λ1.

}
(8)
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(b) X ≤hr Y ( and X �lr Y) if, and only if,
λ2θ1 > λ1θ2

log
(

θ2
θ1

)
< λ2θ1−λ1θ2

θ1θ2
+ λ2 − λ1

θ1 ≤ θ2.

 (9)

(c) X ≤mrl Y ( and X �hr Y) if, and only if,
λ2θ1 > λ1θ2

log
(

θ2
θ1

)
< λ2θ1−λ1θ2

θ1θ2
+ λ2 − λ1

θ1 > θ2
θ1(1− λ2) ≤ θ2(1− λ1).

 (10)

Let us justify the previous results. First, we show that

l(x) =
θ1

θ2

(
θ1 + xλ1

θ2 + xλ2

)x−1
exp{−θ1 + θ2 + x(λ1 − λ2)}

is decreasing or unimodal over N0 whenever λ1 ≤ λ2. In order to prove it, we consider the behavior
of l(x) over R+ or, equivalently, the behavior of log l(x) over R+. After some computations, we get
that (log l(x))′ = c1(x)− c2(x) where

c1(x) =
[
(x− 1)(θ2λ1 − θ1λ2)

(θ1 + xλ1)(θ2 + xλ2)
+ λ2 − λ1

]
and

c2(x) =
[

log
(

θ2 + xλ2

θ1 + xλ1

)]
.

On the one hand, it is easy to see that c2(x) is increasing (decreasing), whenever λ2θ1 ≥ (≤)λ1θ2.
We also have that

lim
x→0+

c2(x) = log
(

θ2

θ1

)
and lim

x→+∞
c2(x) = log

(
λ2

λ1

)
.

On the other hand, we get that c1(x) is decreasing for all 0 ≤ x ≤ x0 and increasing for all
x ≥ x0, where

x0 = 1 +

√
1 +

θ2/θ1 + λ1θ2 + λ2θ1

λ2/λ1
.

We also have that

lim
x→0+

c1(x) =
λ2θ1 − λ1θ2

θ1θ2
+ λ2 − λ1 and lim

x→+∞
c1(x) = λ2 − λ1.

Taking into account the previous information, we get that the modes of l(x) are the crossing
points of an increasing (decreasing) function with a parabola with a minimum. Now, since λ1 ≤ λ2
implies

lim
x→+∞

c1(x) = λ2 − λ1 ≤ log
(

λ2

λ1

)
= lim

x→+∞
c2(x),

it is easy to see that l(x) is decreasing for all x ∈ N0 if, and only if, (7) or (8) holds. Otherwise, l(x)
is unimodal. Now, applying Corollary 1 and taking into account that

lim
x→0+

l(x) = exp{θ2 − θ1},

we get that X ≤hr Y (and X �lr Y) if, and only if, (9) holds and X ≤mrl Y (and X �hr Y) if, and
only if, (10) holds.
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In Figure 2, we provide examples of the previous situations.

0 5 10 15 20

0
1

2
3

4

Likelihood ratio

0 5 10 15 20

0.
0

1.
0

Survival ratio

0 5 10 15

0
5

10
15

MRL difference

Figure 2. Likelihood ratio, ratio of survival functions, and mean residual life difference for case (a)
(condition (7)) where X ∼ GP(2, 0.25) and Y ∼ GP(3, 0.5) (black), case (a) (conditions (8)) where
X ∼ GP(1, 0.5) and Y ∼ GP(3, 0.75) (blue), case (b) where X ∼ GP(2, 0.3) and Y ∼ GP(3, 0.75) (red)
and case (c) where X ∼ GP(2, .0.5) and Y ∼ GP(1, 0.75) (green).

Finally, we deal with the Hurwitz-Lerch family. Ref. [20] introduced this family as
a unified representation of some discrete distributions. Particular cases of this family are
Zipf, Zipf-Mandelbrot, and Good distributions. Ref. [21] study several properties of this
family as well as their application in reliability. The reader can find a detailed study and
further references in [12]. As we will see, the left extreme of the support is 1 instead of 0.
The results provided in this paper have been given for random variables with left extreme
equal to 0, but it is clear that can be used for non zero common left extremes considering a
change of origin.

Example 4. Hurwitz-Lerch’s family: Let X be a discrete random variable. We say that X follows
a Hurwitz-Lerch distribution with parameters s ≥ 0, 0 < z ≤ 1 and 0 ≤ a ≤ 1, denoted by
X ∼ HL(z, s, a), if its mass probability function is given by

fX(x) =
zx

T(z, s, a)(a + x)s+1 , for all x ∈ N,

where T(z, s, a) = ∑∞
x=1 zx/(a + x)s+1. Once again, the distribution function does not have a

closed expression and the mean is given by T(z, s− 1, a)/T(z, s, a)− a.
Let X ∼ HL(z1, s1, a1) and Y ∼ HL(z2, s2, a2) be two random variables with Hurwitz-Lerch

distributions such that a1 ≥ a2 without loss of generality. Then,

(a) If a1 = a2 = a, then

(a.1) X ≤lr Y if, and only if, {
z1 ≤ z2

l(1) ≥ l(2).

}
(a.2) X ≤hr Y (and X �lr Y) if, and only if,

z1 ≤ z2
l(1) < l(2)

T(z2,s2,a)(a+1)s2−s1

z2
≥ T(z1,s1,a)

z1
.


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(a.3) X ≤mrl Y (and X �hr Y) if, and only if
z1 ≤ z2

l(1) < l(2)
T(z2,s2,a)(a+1)s2−s1

z2
< T(z1,s1,a)

z1
E[X] ≤ E[Y].


(b) If a1 > a2, then

(b.1) X ≤lr Y if, and only if, either (11), or (12) or (13) holds, where{
z1 ≤ z2

s1+1
a1+1 + log

(
z2
z1

)
≥ s2+1

a2+1 .

}
(11)


z1 < z2

s1+1
a1+1 + log

(
z2
z1

)
< s2+1

a2+1

l(1) ≥ l(2).

 (12)


z1 = z2
s1 > s2

s1+1
a1+1 < s2+1

a2+1
l(1) ≥ l(2).

 (13)

(b.2) X ≤hr Y (and X �lr Y) if, and only if, either (14) or (15) holds, where
z1 < z2

s1+1
a1+1 + log

(
z2
z1

)
< s2+1

a2+1

l(1) < l(2)
T(z2,s2,a2)(a2+1)s2+1

z2
≥ T(z1,s1,a1)(a1+1)s1+1

z1
.

 (14)



z1 = z2
s1 > s2

(s1 + 1)(a2 + 1) < (s2 + 1)(a1 + 1)
l(1) < l(2)

T(z2,s2,a2)(a2+1)s2+1

z2
≥ T(z1,s1,a1)(a1+1)s1+1

z1
.


(15)

(b.3) X ≤mrl Y (and X �hr Y) if, and only if, either (16) or (17) holds, where

z1 < z2
s1+1
a1+1 + log

(
z2
z1

)
< s2+1

a2+1

l(1) < l(2)
T(z2,s2,a2)(a2+1)s2+1

z2
< T(z1,s1,a1)(a1+1)s1+1

z1
E[X] ≤ E[Y].


(16)



z1 = z2
s1 > s2

(s1 + 1)(a2 + 1) < (s2 + 1)(a1 + 1)
l(1) < l(2)

T(z2,s2,a2)(a2+1)s2+1

z2
< T(z1,s1,a1)(a1+1)s1+1

z1
E[X] ≤ E[Y].


(17)

In Figure 3, we provide some examples of the previous situations.
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Figure 3. Likelihood ratio, ratio of survival functions, and mean residual life difference for case
(a.1) (conditions (11)) where X ∼ HL(0.2, 1, 0.7) and Y ∼ HL(0.5, 1.5, 0.3) (black), case (a.1) (con-
ditions (12)) where X ∼ HL(0.2, 1, 0.7) and Y ∼ HL(0.5, 2, 0.3) (blue), case (b.2) (condition (14))
where X ∼ HL(0.2, 1, 0.7) and Y ∼ HL(0.5, 2.3, 0.3) (red) and case (b.3) (condition (16)) where
X ∼ HL(0.2, 1.5, 0.7) and Y ∼ HL(0.5, 2.75, 0.3) (green).

Additionally, we can provide similar results on the different stochastic orders in the reverse
sense that do not follow just exchanging the role of the random variables.

(a) X ≥lr Y if, and only if, one of the following sets of conditions holds:{
z1 = z2
s1 ≤ s2.

}
{

z1 > z2
s1+1
a1+1 + log

(
z2
z1

)
≤ s2+1

a2+1 .

}


z1 > z2
s1+1
a1+1 + log

(
z2
z1

)
> s2+1

a2+1

l(1) ≤ l(2).


(b) X ≥hr Y (and X �lr Y) if, and only if,

z1 > z2
s1+1
a1+1 + log

(
z2
z1

)
> s2+1

a2+1

l(1) > l(2)
T(z2,s2,a2)(a2+1)s2+1

z2
≤ T(z1,s1,a1)(a1+1)s1+1

z1
.


(c) X ≥mrl Y (and X �hr Y) if, and only if,

z1 > z2
s1+1
a1+1 + log

(
z2
z1

)
> s2+1

a2+1

l(1) > l(2)
T(z2,s2,a2)(a2+1)s2+1

z2
> T(z1,s1,a1)(a1+1)s1+1

z1
E[X] ≥ E[Y].


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Let us provide a justification of these results. In this case, we have that

l(x) =
T(z2, s2, a2)

T(z1, s1, a1)

(
z1

z2

)x (a2 + x)s2+1

(a1 + x)s1+1 .

The study of the changes of monotonicity of l(x) over R+ is equivalent to study the sign
changes of

(s2 + 1)
a1 + x
a2 + x

−
(

log
(

z2

z1

)
x + a1 log

(
z2

z1

)
+ s1 + 1

)
.

Taking into account that the previous expression is the difference between a convex decreasing
function (since a1 ≥ a2) and a linear function, using geometric arguments we conclude that l(x) is
either unimodal or monotone, setting the situations where each one occurs. Then, the arguments for
the comparison of two members of this family are similar to those provided in the previous example
and will not be reproduced with detail due to their length.

Let us point out that [22] provides several results for the comparison of two Hurwitz-
Lerch distributions in the likelihood ratio order. The conditions that we have stated
improved their result for the likelihood ratio order, since we have characterized the situa-
tions where this criterion holds in some sense. In addition, we give situations where the
hazard rate and the mean residual life orders hold.

5. Conclusions

In the present paper we have provided several results on the comparison of two
discrete distributions according to the likelihood ratio, the hazard rate and the mean
residual life orders. These results fill the gap in the literature since there are only results
for comparing discrete distributions in the usual stochastic order. The results have been
applied to compare some well-known families of discrete distributions in the context of
reliability in discrete time.
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