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Abstract: Associative memories in min and max algebra are of great interest for pattern recognition.
One property of these is that they are one-shot, that is, in an attempt they converge to the solution
without having to iterate. These memories have proven to be very efficient, but they manifest some
weakness with mixed noise. If an appropriate kernel is not used, that is, a subset of the pattern to
be recalled that is not affected by noise, memories fail noticeably. A possible problem for building
kernels with sufficient conditions, using binary and gray-scale images, is not knowing how the noise
is registered in these images. A solution to this problem is presented by analyzing the behavior of
the acquisition noise. What is new about this analysis is that, noise can be mapped to a distance
obtained by a distance transform. Furthermore, this analysis provides the basis for a new model of
min heteroassociative memory that is robust to the acquisition/mixed noise. The proposed model is
novel because min associative memories are typically inoperative to mixed noise. The new model of
heteroassocitative memory obtains very interesting results with this type of noise.

Keywords: associative memories; noise; kernel; Fast Distance Transform

1. Introduction

The human brain is quite intriguing when it comes to learning and remembering its
environment. By just hearing a sound, smelling an aroma, seeing an image, touching a
texture, among other things, our brain, through its neurons, may associate external in-
formation with something that has been learned and consequently indicate how to act
according to that information. The most surprising thing is that very little information
acquired by our senses is enough for our brain to fully remember the learned information.
For example, the brain learns the characteristics of a person’s face in broad daylight and
is able to remember the same characteristics learned from that face on a poorly lit night;
this means that the brain needs minimal but sufficient information to remember. It should
be noted that, if the brain does not have enough minimum information, it ends up be-
ing unable to remember; which implies that, if this same minimum information needed
by the brain is affected by other types of information, like noise, regardless of whether
it is something already learned, it cannot be remembered. This fact has inspired some
researchers, in the area of pattern recognition, to come up with some models that simulate
the behavior of the brain. One of those models is associative memories [1–15]. In the
development of associative memory algorithms, one pushes towards those algorithms
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with greater learning capacity, better performance, and above all, they must be robust to
different types of noise [13,16–21]. Thanks to the versatility of associative memories, they
have been implemented to solve pattern recognition problems in different areas such as
robotics [22–24], medicine [25–27], among others [20,28–38] . One should point out that
the first associative memory presented in the state of the art, that is, the Lernmatrix [1],
is the basis of the associative classifier LMτ9 and has proven to be such a competitive
classifier with most used algorithms in machine learning [39,40]. Owing to their ver-
satility, associative memories have continued to be the subject of research for the last
decade [20,22–33,35–37,41–50].

Generally, an associative memory is a process that aims to recover or fully remember
patterns, from input patterns which may be altered by some type of noise. Associative
memory can be exemplified as a black box that receives an x pattern as input, processes it,
and generates a y pattern as a result, as shown in Figure 1.

X // M // Y

Figure 1. Associative memory as black box.

The term “fully recall” means that the resulting pattern is identical to the pattern that
was learned by associative memory beforehand. The relationship between the input pattern
x and the output pattern y is defined as an ordered pair (x, y), and both are column vectors.
Hence, the associative memory must be able to learn a set of ordered pairs of patterns and
retrieve the output patterns from the input patterns. Memory M is defined as:

{(xω, yω) | ω ∈ {1, 2, . . . , p}} (1)

where p indicates the cardinality of the displayed set. The finite set of patterns in expression (1)
is called fundamental set of patterns and its elements, fundamental patterns, which can be
input or output.

To refer to some element of an x pattern or to that of a y pattern, the following notation
will be adopted, that is, xω

j or yω
j , where j is the index of the pattern element position and

ω is the ordered pair index.
According to Figure 1, M is the learning matrix or the associative memory, and it will

contain the encoded information of the fundamental set after it has learned the pattern;
it will also be operated in a certain way with the previously learned pattern x, where x
can be altered with some kind of noise; and as a result a corresponding output pattern y
is expected.

Associative memories consist of two phases–learning and recalling phases. The
learning phase consists of finding the necessary operator (s), so that, in some way, the
relationship that exists between the input and output patterns is encoded, and through
this encoding the learning matrix M is generated. On the other hand, the recalling phase
consists of finding the necessary operator or operators along with sufficient conditions to
generate an output pattern; that is, once the matrix M has been formed, an input pattern x
that was previously learned is presented, then, M is operated with the needed operator
or operators under certain circumstances together with the x pattern, thereby generating
output pattern y.

In this paper, an input pattern altered by noise will be represented as x̃. For example,
the expression x̃ω represents the input pattern xω altered by noise.

Typically, associative memories are classified into auto and heteroassociative memories.
An associative memory is said to be autoassociative if xµ = yµ ∀µ ∈ {1, 2, . . . , p} and a
memory is hetero-associative if ∃µ ∈ {1, 2, . . . , p} for which xµ 6= yµ.

Associative memories differ in the form of algebra they use; for instance, min and max-
memories, as their names imply, work in the so-called minimax algebra, that is, minimal
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and maximal algebra [16,17,19,21,34,35,45], whereas other types of memories work in real
algebra [1–14].

In this article, we will focus on associative memories based on minimax algebra such as
morphological and αβ memories, which are memories that meet the cited
conditions [16,17,19,21,34,35,45].

1.1. Morphological Associative Memories

There are two types of morphological associative memories: the
∨

(max
∨

) memories
represented by M and the

∧
(min

∧
) memories represented by W. Both memories work

for heteroassociative and autoassociative modes. The fundamental set for morphological
associative memories is:

{(xµ, yµ)|µ = 1, 2, . . . , p}

A ∈ R, xµ =


xµ

1
xµ

2
...

xµ
n

 ∈ An y yµ =


yµ

1
yµ

2
...

yµ
m

 ∈ Am (2)

Two new operations between arrays are defined in terms of the +,
∨

and
∧

operations [16,17] in order to express the learning and recall phases of the morphological
associative memories.

Let D be a matrix
[
dij
]

m×r and H, a matrix
[
hij
]

r×n whose terms are integer numbers.

Definition 1. Maximum product of D and H denoted by C = D
`

H, is a matrix
[
cij
]

m×n whose
ij-th component cij is defined as follows:

cij =
r∨

k=1

(
dik + hkj

)
(3)

Definition 2. The minimum product of D and H, denoted by C = D 4 H, is a matrix
[
cij
]

m×n
whose ij-th component cij is defined as follows:

cij =
r∧

k=1

(
dik + hkj

)
(4)

The learning phase of morphological
∨

memories consists of two stages:

1. In each of the p associations (xµ, yµ), Equation (4) is applied to build memory yµ

4 (−xµ)t of dimension m × n, where the negated transpose of the input pattern
xµ is defined as (−xµ)t = (−xµ

1 ,−xµ
2 , . . . ,−xµ

n). This expression may be elaborated
as follows:

yµ4(−xµ)t =


yµ

1
yµ

2
...

yµ
m

4 (−xµ
1 ,−xµ

2 , . . . ,−xµ
n

)

yµ4(−xµ)t =



yµ
1 − xµ

1 yµ
1 − xµ

2 · · · yµ
1 − xµ

j · · · yµ
1 − xµ

n

yµ
2 − xµ

1 yµ
2 − xµ

2 · · · yµ
2 − xµ

j · · · yµ
2 − xµ

n
...

...
...

...
yµ

i − xµ
1 yµ

i − xµ
2 · · · yµ

i − xµ
j · · · yµ

i − xµ
n

...
...

...
...

yµ
m − xµ

1 yµ
m − xµ

2 · · · yµ
m − xµ

j · · · yµ
m − xµ

n


(5)
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2. Equation (5) is applied to the p matrices to obtain the morphological memory M, as
shown in Equation (6).

M =
p∨

µ=1

[
yµ

i
(−xµ)t

]
=
[
mij
]

m×n

mij =
p∨

µ=1

(
yµ

i − xµ
j

)
(6)

The recall phase consists of applying the minimum product as shown in Equation (4)
between memory M and the input pattern xω , where ω ∈ {1, 2, . . . , p}, in order to obtain a
column vector of dimension m, as shown in Equation (8).

y = M
i

xω (7)

Note that, the i-th component of the vector y is:

yi =
n∧

j=1

(
mij + xω

j

)
(8)

The learning phase for morphological
∧

memories consists of two stages:

1. In each of the p associations (xµ, yµ), Equation (7) is applied to build memory yµ ∇
(−xµ)t of dimension m× n, where the negated transpose of the input pattern xµ is
defined as (−xµ)t = (−xµ

1 ,−xµ
2 , . . . ,−xµ

n). This expression may be expanded as:

yµ∇(−xµ)t =


yµ

1
yµ

2
...

yµ
m

∇(−xµ
1 ,−xµ

2 , . . . ,−xµ
n

)

yµ ∇ (−xµ)t =



yµ
1 − xµ

1 yµ
1 − xµ

2 · · · yµ
1 − xµ

j · · · yµ
1 − xµ

n

yµ
2 − xµ

1 yµ
2 − xµ

2 · · · yµ
2 − xµ

j · · · yµ
2 − xµ

n
...

...
...

...
yµ

i − xµ
1 yµ

i − xµ
2 · · · yµ

i − xµ
j · · · yµ

i − xµ
n

...
...

...
...

yµ
m − xµ

1 yµ
m − xµ

2 · · · yµ
m − xµ

j · · · yµ
m − xµ

n


(9)

2. Equation (4) is applied to the p matrices to obtain the morphological memory W, as
shown in Equation (10).

W=
p∧

µ=1

[
yµ

h
(−xµ)t

]
=
[
wij
]

m×n

wij =
p∧

µ=1

(
yµ

i − xµ
j

)
(10)

The recall phase consists of applying the maximum product as shown in Equation (7)
between memory W and the input pattern xω, where ω ∈ {1, 2, . . . , p} so as to obtain a
column vector of dimension m, as shown in Equation (12).

y = W
h

xω (11)
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Note that, the i-th component of the vector y is:

yi =
n∨

j=1

(
wij + xω

j

)
(12)

1.2. αβ Associative Memories

The αβ associative memories are fundamentally based on the maximum and minimum
of order relationships between the patterns. Both the α operator–used at the learning phase–
and the β operator used at the recall phase were defined. These memories work for both
the autoassociative and heteroassociative modes [34,35,45].

αβ memories require two sets to work, that is, the sets A and B which are defined as
A = {0, 1} y B = {0, 1, 2}.

The binary α = A× A −→ B operation is defined by Table 1.

Table 1. The binary α operation.

x y α(x, y)

0 0 1
0 1 0
1 0 2
1 1 1

The binary β = B× A −→ A operation is defined by Table 2.

Table 2. The binary β operation.

x y β(x, y)

0 0 0
0 1 0
1 0 0
1 1 1
2 0 1
2 1 1

The learning phase for αβ
∨

memories consists of two stages:

1. In each of the p associations (xµ, yµ), Table 1 is applied to build memory yµ dα

(xµ)t of dimension m× n, where the transpose of the input pattern xµ is defined as
(xµ)t = (xµ

1 , xµ
2 , . . . , xµ

n), and the dα operator refers to the order relationship of the
alpha operator. This expression develops as shown below:

yµ dα (xµ)t =


yµ

1
yµ

2
...

yµ
m

 dα

(
xµ

1 , xµ
2 , . . . , xµ

n

)

yµ dα xt =


α(y1, x1) α(y1, x2) · · · α(y1, xn)
α(y2, x1) α(y2, x2) · · · α(y2, xn)

...
...

...
α(ym, x1) α(ym, x2) · · · α(ym, xn)

 (13)

2. The
∨

operator applies to the p matrices obtained from the expression (13) to create
the memory V.

V =
p∨

µ=1

[
yµ dα (xµ)t

]



Mathematics 2022, 10, 148 6 of 35

with the ij-th component of v being:

vij =
p∨

µ=1

α
(

yµ
i , xµ

j

)
(14)

According to (14), in the operation α : A× A −→ B, we observed that vij ∈ B, ∀i ∈
{1, 2, . . . , m}, ∀j ∈ {1, 2, . . . , n}.
The recall phase consists of performing the Veβxω, where xω, with ω ∈ {1, 2, . . . , p},

is the input pattern to be recalled and V is the matrix obtained in (14). As a result, a column
vector of dimension m is generated, whose ith-component can be obtained according to
expression (15). (

Veβxω
)

i =
n∧

j=1

β


 p∨

µ=1

α
(

yµ
i , xµ

j

), xω
j


(
Veβxω

)
i =

n∧
j=1

β
(

vij, xω
j

)
(15)

Likewise, the learning phase for αβ
∧

memories consists of two stages:

1. In each of the p associations (xµ, yµ), Table 1 is applied to build memory yµ eα

(xµ)t of dimension m× n, where the transpose of the input pattern xµ is defined as
(xµ)t = (xµ

1 , xµ
2 , . . . , xµ

n) and the eα operator refers to the order relationship of the
alpha operator. This expression develops as shown below:

yµ eα (xµ)t =


yµ

1
yµ

2
...

yµ
m

 eα

(
xµ

1 , xµ
2 , . . . , xµ

n

)

yµ eα xt =


α(y1, x1) α(y1, x2) · · · α(y1, xn)
α(y2, x1) α(y2, x2) · · · α(y2, xn)

...
...

...
α(ym, x1) α(ym, x2) · · · α(ym, xn)

 (16)

2. The
∧

operator applies to the p matrices obtained from the expression (16) so as to
create the memory Λ.

Λ =
p∧

µ=1

[
yµ eα (xµ)t

]
with the ij-th component of λ being:

λij =
p∧

µ=1

α
(

yµ
i , xµ

j

)
(17)

The recall phase consists of performing the Vdβxω , where xω , having ω ∈ {1, 2, . . . , p},
is the input pattern to be recalled and V is the matrix obtained in (17). As a result, a column
vector of dimension m is generated, and its ith-component can be obtained according to
expression (18). (

Vdβxω
)

i =
n∨

j=1

β


 p∧

µ=1

α
(

yµ
i , xµ

j

), xω
j


(
Vdβxω

)
i =

n∨
j=1

β
(

vij, xω
j

)
(18)



Mathematics 2022, 10, 148 7 of 35

1.3. Noise

Noise has played a crucial role in the statistical analysis of data and associative
memories have been no exception [16,17,19,34,35,45]. For instance, in the case of image
processing; image quality depends upon various factors, such as noise, temperature, and
light. Given that noise is always present in images, it is necessary to reduce or eliminate it
so as to insure reliable analysis [51]. Noise usually arises from the image acquisition and
transmission processes [52] and its removal has always been a field of interest in image
processing. There are recent and very important advances in filtering different types of
noise for digital image processing [22,51–55], and these have been modeled in order to
meticulously study them and thus control their effects [56].

Noise is typically modeled as a Gaussian distribution because the image acquisition
and transmission–which are the dominant sources of noise–are continuous processes that
involve physical phenomena like thermal agitation and the discrete nature of light which
are responsible for the random nature of noise; and according to the famous Central Limit
Theorem, the sum of a large number of random variables of any type, essentially noise, will
always tend toward a Gaussian distribution [51,52,54]. As we mentioned earlier, noise is
an element that alters information and makes it difficult to process, hence the importance
of knowing its behavior. Regardless of its type, noise can be classified as either additive,
subtractive, or mixed (salt and pepper). To exemplify this fact, Figure 2 intuitively shows
these types of noise.

Figure 2. Additive noise, subtractive noise, and mixed noise, respectively.

In the case of associative memories based on minmax algebra, noise behavior is such
an important factor. For example, min memories are inoperative with additive noise while
max memories are inoperative with subtractive noise, nevertheless, both memories do
not operate with mixed noise. Therefore, noise is such an interesting topic for minmax
algebra-based memories. The objective of these memories is to address the behavior of the
mixed noise because through this information one may accordingly build a kernel model
that recovers the original pattern [16,17,21].The kernel model consists of finding out, in
some way, a Z kernel that complies with Z ⊆ X, where X is the input pattern and as a
condition, Z must not contain any kind of noise. For the above reason, the authors of the
morphological memories affirm that the choice of Kernel is an open problem [16,21]. Note
that, the kernel model is functional for associative αβ memories as well.

Now, the learning and recall phases of the kernel model for associative memories in
min and max algebra will be presented.

1. Learning phase: The diagram in Figure 3 shows the learning phase of the kernel model.
As seen in the figure, the input pattern X enters a process that obtains Z ⊆ X, then, Z
is autoassociatively learned with memory M; furthermore, Z is heteroassociatively
learned with output pattern Y but this time with memory W.

2. Recall phase: Figure 4 shows the process followed when applying the recall phase in
the kernel model. Given X̃ as the mixed noise-distorted version of the learned pattern
X, X̃ is presented to memory MZZ and Z is recalled, immediately afterwards, Z is
presented to Memory WZY and as a result the output pattern Y is recalled.
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X // Obtain kernel // Z //

��

MZZ

Y // WZY

Figure 3. kernel model learning phase.

X̃ // MZZ // Z // WZY // Y

Figure 4. kernel model recall phase.

1.4. Fast Distance Transform (FDT)

A Distance Transform (DT) measures the distance in pixels from a pixel to the edge of
the region of interest regardless the considered direction [57–63]. The DT allows finding
useful geometric information within images; having this information, regions of interest
can be found for many applications, including medicine etc. [57,60]. A widely used metric
for the DT is the Euclidean distance for the extraction of geometric information [59,61,62],
in fact, the algorithm of the Euclidean distance transform has been parallelized so that
it may be processed even faster [59]. As one can see, TD is a very useful tool in image
processing for data extraction. Another transform that is even faster than DT is the Fast
Distance Transform (FDT) and it indeed generates interesting results [63]. Now, let us turn
our attention to the FDT because it will be used for noise modeling.

The FDT algorithm consists of 2 steps [63], namely:

1. Read each pixel in the binary image from top to bottom and from left to right, then,
each pixel c ∈ R, where R is the region of interest, is assigned as presented in
Equation (19). Algorithm 1 illustrates the pseudocode of this same Equation (19).

δ(c) = 1 + min(δ(pj) : pj ∈ E) (19)

E is one of the following sets shown in Figure 5. Only the points assigned in E are
used in the first part of the transformation.

Figure 5. d4 and d8 metrics for the first step.

2. Read the binary image from bottom to top and from right to left, then, each pixel c ∈ R,
where R is the region of interest, is assigned as shown in Equation (20). Algorithm 2
illustrates the pseudocode of this same Equation (20).

δ(c) = min{δ(c), 1 + min{δ(pi) : pi ∈ D}} (20)

D is one of the sets shown in Figure 6. Note that, only the points assigned in D are
used in the first part of the transformation.
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Figure 6. d4 and d8 metrics for the second step.

Figure 7 illustrates the result of the two steps of the FDT.

Figure 7. Result of the two steps of the FDT.

Algorithm 1 FDT algorithm first step with the d8 metrics.

1 for y = 1 to binaryImage.height −1 do
2 for x = 1 to binaryImage.width −1 do
3 a = binaryImage.getPixel(x,y);
4 if a = 1 then
5 b = binaryImage.getPixel(x,y−1);
6 c = binaryImage.getPixel(x−1,y);
7 d = binaryImage.getPixel(x−1,y−1);
8 e = binaryImage.getPixel(x−1,y−1);
9 if b < a then

10 a = b;
11 end
12 if c < a then
13 a = c;
14 end
15 if d < a then
16 a = d;
17 end
18 if e < a then
19 a = e;
20 end
21 a = a + 1;
22 binaryImage.setPixel(x,y,a);
23 end
24 end
25 end
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Algorithm 2 FDT algorithm second step with the d8 metrics.

1 for y = binaryImage.height −1 to 1 do
2 for x = binaryImage.width −1 to 1 do
3 a = binaryImage.getPixel(x,y);
4 if a = 1 then
5 b = binaryImage.getPixel(x+1,y);
6 c = binaryImage.getPixel(x,y+1);
7 d = binaryImage.getPixel(x+1,y+1);
8 e = binaryImage.getPixel(x−1,y+1);
9 if b < a then

10 a = b;
11 end
12 if c < a then
13 a = c;
14 end
15 if d < a then
16 a = d;
17 end
18 if e < a then
19 a = e;
20 end
21 a = a + 1;
22 if binaryImage.getPixel(x,y) < a then
23 a = binaryImage.getPixel(x,y);
24 end
25 binaryImage.setPixel(x,y,a);
26 end
27 end
28 end
29 δ = binaryImage;

2. Materials and Methods

This section details the procedure followed to generate a kernel suitable for hetero-
associative memories based on minmax algebra which are on their turn used to recall
patterns altered by mixed noise. Furthermore, it presents the modeling of noise by means
of the FDT.

2.1. Noise

When working with pattern recognition from an image perspective, it is assumed
that the noise is distributed in the function domain,however, when working from a signal
perspective, it is assumed that the noise is distributed in the range of the function and this
is evidenced by the signal-to-noise ratio [51,55]; in fact, it makes more sense to talk about
the signal-to-noise ratio than about the noise distribution in the domain, because where
there is noise there must be a signal that carries it. In this work we assume that noise exists
and is distributed both in the range and in the domain of the function, thus, the following
hypothesis is presented: The noise is concentrated where the information exists and its
distribution is proportional to the signal amplitude.

Since the noise is distributed where there is signal, the proposed model is based on
signals distribution along the equipotential lines to the signal in their domain, that is, based
on the distance transform.

It is assumed that each data acquisition device has its own probability distribution;
consequently, a kernel based on the Fast Distance Transform can be created to minimize
the effect of the data acquisition process.
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To determine the noise distribution generated by acquisition devices in binary images,
the following process was performed:

1. Print the binary image on paper.
2. Scan the image obtained from step 1, generating a new digital image.
3. Compare the new digital image with the original one and store the percentage difference.
4. Print the new digital image obtained in step 2.
5. Repeat steps 2 to 4, 15 times with 80 different images (40 binary images and 40 gray

-scale images).

The characteristics of the binary images used to determine the noise distribution in
the acquisition devices are as follow:

• 420× 420 with 64 dpi resolution.
• 600× 800 with 180 dpi resolution
• 542× 700 with 96 dpi resolution.

To determine the percentage of variation between the scanned images and their
originals, a pixel-by-pixel comparison was carried out. In case the pixels of both images
had a different value in the coordinate (x, y), that implied the existence of a variation and
this had to be taken into account; then, using a rule of three, the percentage of variation in
the scanned image is calculated and corresponds to the acquired noise.

Figure 8 shows four among seven scanned images of a circle and highlights the
similarity between images, however, there are very marked variations in the edges of the
images; note how the frame is affected and also the contour of the circles; this is clearly
seen in Figure 8d. This same image is compared to both the original image and to the
scanned image number 7. The differences between images are green-colored. This result
is significant because it allows us to conclude that: the noise that affects a binary image
obtained from an electronic acquisition device is distributed at the edges; that is, the
acquisition noise in a binary image arises, grows and distributes in a structured manner
where there are significant gradient changes, besides being a mixed noise.

The images in Figure 8 reveal that, when performing the scanning process, the images
obtained are subject to slight changes in scale (due to the configuration of the points per
pixel -ppp- in the scanner) and in rotation (due to the placement of the printed image
in the scanner bed); however, despite these technical drawbacks, when performing the
aforementioned process, it can be guaranteed that: the further away the pixel is from the
edge, the less likely it will be affected,and the higher the probability of being affect would
be otherwise.

(a) Original image. (b) Scanned image 3.

(c) Scanned image 7. (d) Image difference.

Figure 8. Appearance of the 7-scan process images.

Now, we will describe the algorithms that allow the simulation of the acquisition noise
distribution. Knowing the noise distribution allows us to determine the probability that it
affects a certain pattern in specific parts, because this permits us to determine which parts
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of the binary image that may serve as kernel. Algorithm 3 shows the process to obtain the
acquisition noise probability distribution to binary images.

Algorithm 3 Noise probability distribution algorithm for binary images.

1 Obtain δ1(BinaryImage) and δ2(ScannedBinaryImage)
2

3 for x ← 0 to BinaryImage.width do
4 for y← 0 to BinaryImage.height do
5 a← BinaryImage(x, y)
6 b← ScannedBinaryImage(x, y)
7 if a 6= b then
8 c← δ1(x, y)
9 his1[c] + +

10

11 for x ← 0 to BinaryImageNegative.width do
12 for y← 0 to BinaryImageNegative.height do
13 a← BinaryImageNegative(x, y)
14 b← ScannedBinaryImageNegative(x, y)
15 if a 6= b then
16 c← δ2(x, y)
17 his2[c] + +

18

19 //Noise probability is generated
20 s1← s2← 0
21 for i← 0 to his1.length do
22 s1← s1 + his1[i]
23 s2← s2 + his2[i]

24 s3← s1 + s2
25

26 for i← 0 to his1.length do
27 h1[i]← his1[i]/s3
28 h2[i]← his2[i]/s3

δ1 represents the positive distances while δ2 represents the negative distances and
there is no 0 distance. In the plots that will be shortly presented in the following sections, δ1
and δ2 depict both the x and y-axis along with their corresponding histogram frequencies
of δ1 and δ2. Note that noise is distributed at the edges.

Since the noise distribution–as a function of the FDT has already been obtained–it is
possible to simulate the noise by applying Algorithm 4.

Now we will proceed to detail the obtainment of the acquisition noise in gray-scale
images as well as its simulation. The process to obtain the distribution of mixed noise in
gray-scale images is described in Algorithm 5.

Since the distribution of the acquisition noise in gray-scale images has already been
obtained, it is now possible to simulate it and Algorithm 6 shows how this is carried out.

So far the probability distribution of the acquisition noise has been obtained by means
of the proposed image scanning process. Now, we will proceed to formally define noise.

Definition 3. Let f be a function from P to A, that is, f : P → A, the function affected by the
noise is expressed by:

f ∗ = f + r = π(t) + ψ(τ( f )) + κ(P) (21)

where:
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• π(t) is a time-dependent random function of t and independent from f .
• ψ(τ( f )) is a random function depending on a measure τ taken from the obtained data.
• κ(P) is a p-dependent random function of p ∈ f , P-domain of the noisy information.

π(t) represents the transmission noise and is independent from the transmitted infor-
mation. ψ(τ( f )) is the acquisition noise that is based on a measure τ. κ(P) is known as
geometric noise.

Noise can be depicted as shown in Figure 9. Since π(t) has been extensively treated
in pattern recognition, which includes associative memories in minmax algebra, it will
be left out of this paper. Moreover, κ(P), which is the geometric noise introduced by the
acquisition devices, will not be considered either. It is assumed that both π(t) and κ(p) are
0; therefore, the noise to be considered is phi ψ(τ( f )).

f (p) // R // f (p) + r(P, τ( f ), t)

Figure 9. Noise scheme.

Algorithm 4 Mixed noise simulation algorithm for binary images.

1 Obtain δ1(BinaryImage) and δ2(BinaryImageNegative)
2 hh1← histogram(δ1)
3 hh2← histogram(δ2)
4 noisyImage← BinaryImage
5

6 /* Last noisy distance is assigned*/
7 dd← lastDistance
8 for d← 0 to dd do
9 /* h1 represents vector of the noise probability by distance of region interest*/

10 pr ← h1[d]× hh1[d] /* The pixel number to modify is obtained*/
11 c← 0
12 while c ≤ pr do
13 x ← random(0, BinaryImage.width)
14 y← random(0, BinaryImage.height)
15 a = δ1(x, y)
16 if a = d then
17 noisyImage(x, y)← 0
18 c← c + 1

19 for d← 0 to dd do
20 // h2 represents vector of the noise probability by distance of complement
21 pr ← h2[d]× hh2[d] /* The pixel number to modify is obtained*/
22 c← 0
23 while c ≤ pr do
24 x ← random(0, BinaryImage.width)
25 y← random(0, BinaryImage.height)
26 a = δ2(x, y)
27 if a = d then
28 noisyImage(x, y)← 1
29 c← c + 1
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Algorithm 5 Algorithm that obtains the probability distribution of the acquisi-
tion noise.
1

Input: grayScaleImage, scannedNoiseImage
Output: mixed noise distribution vectors. p1, p2

2

3 for x ← 0 to grayScaleImage.width-1 do
4 for y← 0 to grayScaleImage.height-1 do
5 a← grayScaleImage(x, y)
6 b← scannedNoiseImage(x, y)
7 a← a− b
8 if a > 0 then
9 h1[a]← h1[a] + 1

10 else if a < 0 then
11 h2[abs(a)]← h2[abs(a)] + 1

12

13 s3←
n−1

∑
i=0

h1i +
n−1

∑
i=0

h2i

14

15 for i← n− 1 to 0 do
16 p2[i] = h2[i]/s3

17

18 for i← 0 to n− 1 do
19 p1[i] = h1[i]/s3

20

21 return p1, p2

Algorithm 6 image with simulated mixed noise.
Input: A finite set p1 of additive noise probability distribution
Input: A finite set p2 of subtractive noise probability distribution
Output: noiseImage

1

2 f 1← concatenate p1 with p2
3 d← p1.length + p2.length
4 s← 0, j← 0, i← 0;
5

6 while i < d and j < d do
7 if s < i then
8 s← s + f 1[j ++]× d

9 else
10 D[i ++]← j− 256

11

12 for x ← 0 to x < Original Image.width do
13 for y← 0 to x < Original Image.height do
14 r ← random(0, d)
15 a← Original Image.getPixel(x, y)
16 a← a + D[r]
17 noiseImage.setPixel(x, y)← a

18

19 return noiseImage
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Definition 4. The probability that a point p ∈ P is affected by noise r since its distance measure
τ(p) = i is expressed as:

Pr(p|τ(p) = i) (22)

where τ(p) represents a particular distance taken from the FDT affected by noise and obtained from
ψ(τ( f )).

Lemma 1. Let Pr[(p|τ(p) = d1) ∩ (p|τ(p) = d2)] = 0 if d1 6= d2

Proof. By contradiction; suppose that, Pr[(p|τ(p) = d1) ∩ (p|τ(p) = d2)] 6= 0, then, there
is a noise event in p with τ(p) = d1 and τ(p) = d2, but τ is a measure, therefore it is a
mapping and does not have different values.

Corollary 1. Pr(p|τ(p)) = d1 and Pr(p|τ(p)) = d2 are independent events.

Proof. Direct consequence of the Lemma 1. Since τ is a distance measure, the probability
that an event in p will affect the noise at this distance is unique. However, the only
way to affect a different distance is through another noise probability event; therefore,
Pr(p|τ(p)) = d1 is independent from Pr(p|τ(p)) = d2.

Corollary 2. Pr[(p|τ(p) = d1) ∪ (p|τ(p) = d2)] = Pr[(p|τ(p) = d1) + (p|τ(p) = d2)].

Proof. Corollary 1 showed that (p|τ(p) = d1) is an independent event from (p|τ(p) = d2);
that is, the probabilities that a noise event in p will affect two different distances at different
times are different; this indicates that the union of the two probabilities is the sum of both
probabilities; therefore,

Pr[(p|τ(p) = d1) ∪ (p|τ(p) = d2)] = Pr[(p|τ(p) = d1) + (p|τ(p) = d2)]

Lemma 2. pr
(⋃d2

d=d1
(p|τ(p) = d)

)
= ∑d2

d=d1
Pr(p|τ(p) = d).

Proof. By Lemma 1 and Corollary 2 we have:
pr
(⋃d2

d=d1
(p|τ(p) = d)

)
= ∑d2

d=d1
Pr(p|τ(p) = d).

Theorem 1. Pr(p|d1 ≤ τ(p) ≤ d2) = ∑d2
d=d1

Pr(p|τ(p) = d).

Proof.

Pr(p|d1 ≤ τ(p) ≤ d2) = Pr(
d2⋃

d=d1

(p|τ(p) = d).

Then by Lemma 2 we have:
Pr(p|d1 ≤ τ(p) ≤ d2) = ∑d2

d=d1
Pr(p|τ(p) = d) =

⋃d2
d=d1

(p|τ(p) = d).

Corollary 3. Pr(p| − d1 ≤ τ(p) ≤ d1) = ∑d2
d=d1

Pr(p|τ(p) = d)

Proof. Direct consequence of Theorem 1 with d1 = −d1 and d2 = d1.

Corollary 4. P−r (p|d1 ≤ τ(p) ≤ d2) = 1− ∑d2
d=d1

Pr(p|τ(p) = d), where P−r refers to the
complementary probability to Pr.
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Proof.

1 =
∞

∑
d=−∞

Pr(p|τ(p) = d)

=
d1−1

∑
d=−∞

Pr(p|τ(p) = d) +
d2

∑
d=d1

Pr(p|τ(p) = d) +
∞

∑
d=d2+1

Pr(p|τ(p) = d)

1 = Pr(p|τ(p) < d1 ∨ τ(p) > d2) + Pr(p|d1 ≤ τ(p) ≤ d2)

therefore:
P−r (p|d1 ≤ τ(p) ≤ d2) = 1−∑d2

d=d1
Pr(p|τ(p) = d).

Lemma 3. Pr(p|r is additive) = ∑−∞
d=−1(p|τ(p) = d)

Proof. By definition, additive noise exists in the complement of the region; therefore
τ(p) < 0 and

Pr(p|r is additive) = Pr(
⋃−∞

d=−1(p|τ(p) = d)) = ∑−∞
d=−1(p|τ(p) = d).

Lemma 4. Pr(p|r is subtractive) = ∑∞
d=1(p|τ(p) = d).

Proof. By definition, subtractive noise exists in the region; therefore τ(p) > 0 and
Pr(p|r is subtractive) = Pr(

⋃∞
d=1(p|τ(p) = d)) = ∑∞

d=1(p|τ(p) = d).

2.2. Optimal Kernel Based on FDT

Given a function ψ(τ) that represents the acquisition noise distribution, let us assume
the noise is distributed from the edges to their surroundings, Theorem 1 and Corollary 3
show that it is possible to find a range of distances from d1 to d2 of that distribution where
the probability of having the noise affect this region is high. The kernel is constructed from
the hypothesis that noise is distributed along the edges and it is enough to make erosions
in order to eliminate the range between the distances d1 and d2 obtained from Theorem 1
and still preserve the remaining distances. When performing the erosions, the probable
remaining noise can be seen as additive noise (if the kernel is built with the distances of
the complement of the region) and for this type of noise, the max memories are robust;
and if the kernel distances left over by erosion are those of the complement, then the noise
is subtractive, and for this type of noise, min memories are the ones that are robust. It is
assumed that when dealing with the complement of the region that will make up the kernel,
singular features are preserved so they may be distinguishable from other patterns, thus
reducing the risk that one or more patterns may be memorized by becoming a subset or
superset of others.

Remark 1. The erosion term used in this paper does not refer specifically to the morphological
operation of erosion that is defined in the mathematical morphology, it does also refer to the arithmetic
operation of subtraction performed between two gray levels of an image.

Definition 5. Given a function ψ(τ) and the distances d1 (the distance that is likely to be affected
by noise in the region complement) and d2 (the distance that is likely to be affected by noise in
the region) that satisfy Pr(p|d1 ≤ τ(p) ≤ d2) we will proceed to build the optimal binary kernel
as follows:

1. Erode up to distance d2 of δ1.
2. Binarize the eroded δ1.
3. Obtain the complement of the eroded image from step 2.
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Definition 6. Given a function ψ(τ) and the distances d1 and d2 that were chosen to satisfy
Pr(p|d1 ≤ τ(p) ≤ d2), we will proceed to build the grayscale optimal kernel as follows:

1. Erode the image.
2. Obtain the complement of the eroded image.

Based on Theorem 1, Corollaries 1–4 and Lemmas 1–4 along with the acquisition noise
distribution function ψ(τ), it is possible to propose a generic model of heteroasociative
memories in minmax algebra that is robust to mixed noise.

Remark 2. Since morphological and αβ memories use minimum and maximum operators in the
learning and recalling phases, morphological memories will be taken as a basis to make the necessary
demonstrations for the creation of the generic model of min heteroasociative memory that is robust to
mixed noise.

The new generic model is defined as follows:
Let A be a matrix

[
aij
]

m×r and B a matrix
[
bij
]

r×n whose terms are integers.

Definition 7. The maximum product of A and B, denoted by C = A ∨ B, is a matrix
[
cij
]

m×n
whose ij-th component cij is defined as:

cij =
r∨

k=1

(
aik + bkj

)
2.2.1. Learning Phase

The heteroassociative memory in min algebra meant for the learning phase is con-
structed as follows:

W=
p∧

$=1

[
y$ ∨ (−x$)t

]
=
[
wij
]

m×n (23)

wij =
p∧

$=1

(
y$

i − x$
j

)
(24)

2.2.2. Recall Phase

The recall phase consists of applying the Definition 7 between min memory and the
input pattern xϑ, where ϑ ∈ {1, 2, . . . , p} in order to get a column vector of m dimension:

y = W ∨ xϑ (25)

where the i-th component of the vector y is:

yi =
n∨

j=1

(
wij + xϑ

j

)
(26)

Remark 3. Typically, min memories are robust to subtractive noise while max memories are
robust to additive noise, but both are inoperative when it comes to mixed noise; for this reason the
kernel model arises in an effort to solve the mixed noise problem. The demonstration of the above
argument will be omitted in this paper since it is well detailed in [16,45]. We will only focus on
demonstrating that through the generation of a kernel based on the noise distribution, one can create
a min heteroasociative memory that is robust to mixed noise, which is the original contribution of
this paper.
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Theorem 2. Let x̃ϑ ∀ϑ = 1, . . . , k be the distorted version of the pattern xϑ. W ∨ x̃ϑ = yϑ will be
true if and only if

x̃ϑ
j ≤ xϑ

j ∀j = 1, . . . , n (27)

for each index row i ∈ {1, . . . , m} an index column exists ji ∈ {1, . . . , n} such that:

x̃ϑ
ji = xϑ

ji ∨ (
∨

$ 6=ϑ

[yϑ
i − y$

i + x$
ji
]) (28)

Proof. Suppose x̃ϑ denotes the distorted version of xϑ and ∀ϑ = 1, . . . , k, W ∨ x̃ϑ = yϑ,
then:

yϑ
i = (W ∨ x̃ϑ)i =

n∨
l=1

(wil + x̃ϑ
l ) ≥ wij + x̃ϑ

j ∀i = 1, . . . , m and ∀j = 1, . . . , n (29)

thus,

x̃ϑ
j ≤ yϑ

i − wij ∀i = 1, . . . , m y ∀j = 1, . . . , n (30)

⇔ x̃ ≤
m∧

i=1

(yϑ
i − wij) ∀j = 1, . . . , n

⇔ x̃ϑ
j ≤

m∧
i=1

[yϑ
i −

k∧
$=1

(y$
i − x$

j )] ∀j = 1, . . . , n

⇔ x̃ϑ
j ≤

m∧
i=1

[yϑ
i +

k∨
$=1

(x$
j − y$

i )] ∀j = 1, . . . , n

⇔ x̃ϑ
j ≤

m∧
i=1

[yϑ
i +

∨
$ 6=ϑ

(x$
j − y$

i ) ∨ (xϑ
j − yϑ

i )] ∀j = 1, . . . , n

⇔ x̃ϑ
j ≤

m∧
i=1

[
∨

$ 6=ϑ

(yϑ
i − y$

i + x$
j ) ∨ xϑ

j ] ∀j = 1, . . . , n

⇔ x̃ϑ
j ≤ xϑ

j ∨
m∧

i=1

[
∨

$ 6=ϑ

(yϑ
i − y$

i + x$
j )] ≥ xϑ

j ∀j = 1, . . . , n

⇐ x̃ϑ
j ≤ xϑ

j

This shows that the inequality obtained in (27) is sufficient for x̃ϑ
j to be recovered. then,

x̃ϑ
j ≤ xϑ

j ∨ [
∨

$ 6=ϑ

(yϑ
i − y$

i + x$
j )] ∀j = 1, . . . , n and ∀i = 1, . . . , m. (31)

Now, suppose the set obtained in (31) does not contain the equivalence for i = 1, . . . , m,
i.e., it is assumed that there are indices of row i ∈ {1, . . . , m} such that:

x̃µ
j < xϑ

j ∨

∨
$ 6=ϑ

(yϑ
i − y$

i + x$
j )

 ∀j = 1, . . . , n (32)
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then

(W ∨ x̃ϑ)i =
n∨

j=1

(wij + x̃ϑ
j ) (33)

<
n∨

j=1

wij + xϑ
j ∨

( ∨
$ 6=1

[yϑ
i − y$

i + x$
j ]
)

=
n∨

j=1

wij +
( k∨

$=1

[yϑ
i − y$

i + x$
j ]
)

=
n∨

j=1

[wij + yϑ
i −

k∧
$=1

(y$
i − x$

j )]

=
n∨

j=1

[wij + yϑ
i − wij]

= yϑ
i .

Thus, (W ∨ x̃ϑ)i < yϑ
i which contradicts the hypothesis that W ∨ x̃ϑ = yϑ. This

indicates that for each row index there must be a column index of ji that satisfies (28).
The opposite will now be proofed. Suppose that

x̃ϑ
j ≤ xϑ

j ∨
m∧

i=1

( ∨
$ 6=ϑ

[yϑ
i − y$

i + x$
j ]
)
∀j = 1, . . . , n (34)

for the first part of the proof, the inequality is true if and only if

x̃ϑ
j ≤ yϑ

i − wij ∀i = 1, . . . , m y ∀j = 1, . . . , n (35)

or, equivalently, if and only if

wij + x̃ϑ
j ≤ yϑ

i ∀j = 1, . . . , m y ∀i = 1, . . . , n

⇔
n∨

j=1

(wij + x̃ϑ
j ) ≤ yϑ

i ∀i = 1, . . . , m (36)

⇔ (WXY ∨ X̃)i ≤ yϑ
i ∀i = 1, . . . , m

this implies that WXY ∨ x̃ϑ ≤ yϑ ∀ϑ = 1, . . . , k therefore, if it is proven that WXY ∨ x̃ϑ ≥
yϑ ∀ϑ = 1, . . . , k, then as a result WXY ∨ x̃ϑ = yϑ ∀ϑ. Now, let ϑ ∈ {1, . . . , k} and i ∈
{1, . . . , m} be arbitrarily chosen, then
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(WXY ∨ x̃ϑ)i =
n∨

j=1

(wij + x̃ϑ
j ) (37)

≥ wiji + x̃ϑ
ji

= wiji +
(

xϑ
ji ∨

∨
$ 6=1

[yϑ
i − y$

i + x$
ji
]
)

= wiji +
k∨

$=1

[yϑ
i − y$

i + x$
ji
]

= wiji + yϑ
i −

k∧
$=1

(y$
i − x$

ji
)

= wiji + yϑ
i − wiji

= yϑ
i

This shows that WXY ∨ x̃ϑ ≥ yϑ.

Remark 4. Expression (27) shows that the new min heteroasociative memory model is robust to
mixed noise and is directly related to acquisition noise.

Theorem 3. The new min heteroasociative memory model is robust to mixed noise in a parameter-
ized way by d within ψ(τ) and it is true that E(d) ≥ 1−∑∞

d Pr(p|τ(p) = i) f or d > d1 where
E(d) is the probability of success in the complete recall of altered patterns with mixed noise.

Proof. Lemma 4 shows that subtractive noise is located on the positive side of the ψ(τ)
curve which is expressed as Pr(p|r being subtractive) = ∑∞

d=1(p|τ(p) = d). It has been
determined that the noise is distributed across the edges. However, by performing pattern
erosion and obtaining the complement, the model gets robust to mixed noise from a
distance d1 where d1 < 0. Thus, the probability of success in the recall of those patterns
affected by mixed noise in this new model of associative memories W is expressed as
1− ∑∞

i=d1
Pr(p|τ(p) = i where d1 < 0. On the other hand, Theorem 2 showed that it is

a sufficient condition for the patterns recovery if the following condition is fulfilled, i.e.,
x̃ϑ

j ≤ xϑ
j ∀j = 1, . . . , n and expression (28) guarantees that for each row index i there

must be a column index of ji so that a complete recall may occur; this implies that the W
heteroassociative memory model, as such, is robust to high percentages of mixed noise;
therefore, it can be demonstrated that:

E(d) ≥ 1−
∞

∑
d

Pr(p|τ(p) = i) f or d > d1 (38)

Corollary 5. The probability of full recall of the new heteroassociative memory W is 0, if and only
if, when parameterizing by d, ∑−d

−∞ Pr(p|τ(p) = i) holds.

Proof. Direct consequence of Theorem 3: Given that E(d) ≥ 1−∑∞
d Pr(p|τ(p) = i) and

d is negative, the same expression can be presented as E(d) ≥ 1− ∑∞
−d Pr(p|τ(p) = i).

However, the complement of E(d) is expressed as ∑−d
−∞ Pr(p|τ(p) = i), which indicates

that if the above is true, then, there is a 100% probability that the memory will fail.
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Corollary 6. The new heteroassociative memory model W with mixed noise, may fail in full pattern
recall if the noise is sufficient enough to turn Xϑ pattern into a subset of another pattern Xγ where
ϑ 6= γ.

Proof. Direct consequence of not complying with expression (28).

The Corollary 6 is of utmost importance, since it is sufficient to have row index i in
memory W that does not contain a column index j of X for the recall to be incomplete. This
implies that in case ỹ$ ⊂ Xϑ ∪ Xγ, where ϑ 6= γ, is not fulfilled, the pattern shall contain
subtractive noise.

2.2.3. New Generic Model of Min Heteroassociative Memories Robust to Mixed Noise

Given an acquisition noise distribution function ψ(τ), where it is highlighted that
the noise is distributed over distances close to distance 0, i.e., by the edges; and taking
Theorem 3 as a reference, then, we will proceed to propose another novel model of min
heteroassociative memory that is robust to mixed noise.

Learning phase.

1. Obtain Z ⊂ X by ψ(τ) and Theorem 3.
2. Obtain the Z complement (Zc).
3. Obtain the Y complement (Yc).
4. Perform the learning process with WZcYc .

Figure 10 shows the learning process of the new model of min heteroasociative memory.

X // ψ(τ), E(d) ≥ 1−∑∞
−d Pr(p|τ(p) = i) // Z // Complement

��
WZcYc Learnoo Zcoo

Yc

OO

Figure 10. Learning process of the new model of min heteroassociative memories.

Recall phase.

1. Obtain the X̃ complement.
2. Perform the recall process with memory WZcYc .
3. Obtain the Yc complement.

Figure 11 graphically shows the recall process of the new min heteroassociative mem-
ories model that is robust to mixed noise

X̃ // Complement // X̃c // WZcYc

��
Y Complementoo Ycoo

Figure 11. Recall process of the new model of min heteroassociative memories.

3. Results

In this section we will show the results of the acquisition noise distribution along with
the acquisition noise simulation algorithms in binary and grayscale images, and finally the
behavior of the new min heteroassociative memory model for morphological memories
and αβ.
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3.1. Acquisition Noise Distribution
3.1.1. Acquisition Noise Distribution in Binary Images

The final acquisition noise distribution function is obtained by averaging the 40
noise distributions obtained from the process described in Section 2.1. Table 3 shows the
distribution of acquisition noise in binary images.

Negative distances shown in Figure 12 represent the subtractive noise while the
positive distances make up the additive noise. This indicates that additive noise occurs with
greater intensity than subtractive noise encountered in acquisition devices. Furthermore, it
can be observed that the noise occurs at the edges and the greater the distance, the lower
the noise effect. Also, the highest noise concentration is found at distances 1 and −1, and
approximately 50% of noise is concentrated at the edges.

Table 3 shows 3 columns. The Distances column indicates that the noise distribution is
from distance −20 to distance 20. The Absolute frequency column indicates the number of
pixels that are affected at each distance in the range of −20 to 20. The Relative frequency
column indicates the probability that noise will affect that distance. The sum of the Relative
frequency column is 1 which indicates 100% of the noise affects the binary image.

According to Table 3 and Figure 12 one can observe that the acquisition noise is
presented and distributed along the edge and, on top of this, it grows in a structured way
as it moves away from the edge.

Figure 12. Absolute and relative frequency distributions of noise acquisition in binary images.



Mathematics 2022, 10, 148 23 of 35

Table 3. Acquisition noise distribution table in binary images.

Distance Frequency Probability Distance Frequency Probability

−20 0 0.0 1 9292 0.2084483
−19 0 0.0 2 3826 0.08582901
−18 0 0.0 3 2301 0.051618546
−17 3 0.00000729928 4 1649 0.03699217
−16 10 0.000022433093 5 830 0.018619467
−15 18 0.000040379568 6 619 0.013886085
−14 42 0.000094218994 7 535 0.012001705
−13 79 0.0017722144 8 445 0.009982727
−12 123 0.0027592704 9 391 0.008771339
−11 162 0.003634161 10 382 0.008569442
−10 194 0.00435202 11 338 0.0075823856
−9 238 0.0053390763 12 288 0.006460731
−8 397 0.008905938 13 275 0.0061691008
−7 512 0.011485743 14 270 0.006056935
−6 595 0.013347691 15 266 0.0059672026
−5 823 0.018462436 16 197 0.0044193193
−4 1172 0.026291585 17 95 0.0021311438
−3 1712 0.038405456 18 56 0.0012562532
−2 3212 0.072055094 18 56 0.0012562532
−1 13,204 0.29620656 19 24 0.000053839426
0 0 0 20 2 0.0000044866185

Table 3 shows the percentages of noise probability by distance. It is possible to simulate
the acquisition noise in binary images and the result is shown in Figure 13. One can see
that the noise is distributed at the edge.

Figure 13. Binary image with simulated acquisition noise.

Acquisition noise grows and is distributed proportionally according to the size of the
image, for example, in scaled images, noise is presented and distributed in the same way,
but at different scales, keeping a relationship of growth against distribution. To confirm
this, we experimented with images of size 120 × 120 that are scales of the images used in
the present article, with the same noise distribution, but affecting less distance.

3.1.2. Acquisition Noise Distribution in Grayscale Images

By applying the Algorithm 5, the acquisition noise distribution in grayscale images was
generated. This distribution is presented numerically in Tables A1 and A2 and graphically
in Figure 14. Tables A1 and A2 show 3 columns, namely, the Distances column which
represents the distances affected by the acquisition noise; the Frequency column which
represents the number of pixels per distance affected by the noise; and the Probability
column that represents the probability that noise will occur at the corresponding distance,
whose sum is 1, that is, 100% noise should affect the grayscale image.

The final noise distribution in grayscale images is the result of averaging the 40 noise
distributions generated by the process described in Section 2.1. One can see that the noise
is distributed from distance −199 to distance 199 and there is no distance 0.
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Remark 5. Additive noise for binary and grayscale images is located in negative distances of graphs
and tables while subtractive noise is located in positive distances.

Figure 14. Process generating the noise distribution function.

Tables A1 and A2 define the distribution function of acquisition noise in grayscale
images and by using these two tables in Algorithm 6, one can simulate this type of noise.

Figure 15 compares the noise distribution of the scanned image against that of the
image with simulated noise. One can see that the distributions are very similar. The
difference between these two images is that the image with simulated noise was generated
having the same distribution as the one proposed in this article while the scanned image
is just an image that was scanned once. Another difference is that the scanned image has
geometric noise, that is, the noise in the form of a texture that was added by the acquisition
device during the image scanning. It should be noted that each acquisition device has
its own geometric noise which is different from other acquisition devices. However, the
simulated acquisition noise distribution allows us to ensure that the acquisition noise is
very close to the original.

Figure 15. Scanned image vs simulated image noise distributions.
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Having the results shown in the acquisition noise simulation, the images that will be
used as patterns with the new min heteroassociative memory model will be altered by the
acquisition noise simulation algorithms proposed in this article.

3.2. New Model of Min Heteroassociative Memory

This section presents the results of experiments conducted in order to show the
effectiveness of the new min heteroassociative memory model. The experiments were
carried out on a Dell XPS 8700 with Intel Core i7 processor and 16 Gigabytes of RAM. The
images used for memory learning and retrieval were both binary and grayscale. The size of
the images was 50× 50, 80× 80 and 120× 120.

The process of learning and recalling patterns consisted of first learning the whole
fundamental set with a kernel formed from distance i, then once this was learned, one
pattern was chosen at a time, in order to be recalled 1000 times, thus resulting in the
percentage of effectiveness in the complete patterns recall.

The construction of a kernel with sufficient conditions for pattern recall is based on
the probability that noise is distributed around the edges, that is, the more we move away
from distance 0, be it towards the left or right, the better the kernel. As mentioned earlier
in Section 3.1.1, the acquisition noise grows and distributes proportionally according to the
size of the image; and in scaled images, noise is generally presented and distributed in the
same way, but at different scales, keeping the relationship of growth against distribution.

The main feature of the original kernel model is that the kernel must be free from
noise so as to have a full recall. For this reason, our kernel construction was based upon
the acquisition noise distribution proposed in this article.

Acquisition noise grows or decreases depending on the size of the image; to corrobo-
rate this, binary images were scaled from 420× 420 to 50× 50, that is, a reduction of 88%.
When performing the process described in Section 2.1, it was observed that the distances
affected by noise in the 50× 50 images, on average were up to distance 2. Based on the
above, to calculate the distances affected by the noise that was simulated in images used in
this experiment, the operation d f = t2

t1
× dmax was defined, where d f is the final distance

that could be affected by noise. t1 represents the size of the original image, t2 being the
size of the scaled image and dmax, the maximum distance in the noise distribution table;
note that for binary images it corresponds to the maximum distance of Table 4, while
for grayscale images, it is the maximum distance of Table A2. To illustrate this, we take
d f = 50

420 = 0.12× 20 = 2.4; therefore, one can conclude that, in this very image, noise
will have no effect starting from distance 3. Taking d f as a reference, images used in this
experiment will probably no longer be affected by acquisition noise starting from distances
that were shown in Table 4.

Table 4. Probable distances where the acquisition noise does not affect.

Binary Image Grayscale Image

Original Size New Size d f Original Size New Size d f

420× 240 50× 50 3 420× 240 50× 50 24
420× 240 80× 80 4 420× 240 80× 80 38
420× 240 120× 120 6 420× 240 120× 120 56

Experiment characteristics:

• 6 fundamental sets, 3 with binary images and 3 with grayscale images. Figure 16
shows the fundamental sets appearance.

• The images of fundamental set 1 and 2 are of size 50× 50, those of set 3 and 4 are
80× 80, while those of set 5 and 6 are 120× 120.

• Table 4 shows how far away the kernel will be created.
• 1000 recall process per fundamental set.
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Figure 16. Fundamental sets.

The processes of building the kernels are shown in Figures 17 and 18. The morpholog-
ical erosion used in the kernel construction is shown in Figure 18.

Figure 17. Operations to build binary kernels.

Figure 18. Operations to build grayscale kernels.

Applying the new model of min heteroasociative memory described in Section 2.2.3
along with the 6 fundamental sets illustrated above yields the results shown in Tables 5–10.

Table 5 shows the performance of fundamental set 1 of Figure 16. Fundamental set 1 is
composed of binary images of size 50× 50. It is noted that, if the patterns do not contain
noise, both the original kernel model and the proposed new model have a 100% recall, that
is, the two models are efficient for noiseless patterns. The original kernel model is efficient
from distance 3 and this makes sense because by removing the first distances from the FDT,
the kernel ends up being built outside the region that affects the acquisition noise, and for
this same reason the new model proves to be efficient as well. However, the proposed new



Mathematics 2022, 10, 148 27 of 35

model has full recalls from distance 1 even though the kernel may be affected by acquisition
noise. The question is why, given the fact that the kernel is supposed to be noiseless. The
answer is as follows:

Since it was determined that the distances affected by noise in 50× 50 binary images
are 1 and 2, it is noted in Table 3 that the sum of the probabilities of noise affecting these
two distances is 37%, the new model proposes that the min heteroasociative memory is able
to recover those patterns affected by mixed noise based on a noise distribution function;
therefore, the new model indicates that, for a 50× 50 image patterns, at least one should
expect a 63% effectiveness in full pattern recall. The percentages in Table 4 represent how
many times each pattern was fully recalled after 1000 attempts. For the new model on
distance 1, recovery percentage per pattern is greater than 63%, so one can ensure that the
new model could recall patterns where the original model could not. In the case of distance
2, as distance 1 was eliminated in kernel building, and according to Table 3, the probability
of acquisition noise affecting distance 2 is 7%, hence the new model expects memory shall
recall patterns by at least 93%, and Table 5 proves that to be true.

Table 5. Performance of the proposed model vs. original model in 50× 50 binary images.

Original Model Morphological αβ

Pattern d = 3 d = 1 d = 2 d = 1 d = 2
A 100% 77.00% 100% 76.90% 100%
B 100% 70.10% 100% 70.60% 100%
C 100% 93.00% 100% 93.00% 100%
D 100% 74.20% 100% 74.30% 100%
E 100% 78.00% 100% 77.90% 100%
F 100% 79.10% 100% 79.00% 100%
Q 100% 71.70% 100% 71.90% 100%
T 100% 79.00% 100% 79.00% 100%
W 100% 71.20% 100% 71.20% 100%
X 100% 70.00% 100% 70.20% 100%
Y 100% 70.10% 100% 70.00% 100%
Z 100% 69.80% 100% 69.50% 100%

Table 6 shows the performance of fundamental set 2 of Figure 16. Fundamental set
2 is composed of grayscale images of size 50× 50. According to Table A2, the sum of
probabilities that the noise will affect up to distance 20 is about 14%, thus, the probability
that noise will have no effect is about 86%. These probability percentages are significant,
because they corroborate that the proposed new model works as expected and this is proven
in Table 6. The proposed model performance in pattern recall is greater than 86% from
distance 18 and is 100% from distance 22. Original kernel model recalls from distance 24.
The above proves that the proposed new model has better efficiency than original model.

Table 7 shows the performance of fundamental set 3 of Figure 16. Fundamental set 3
is composed of binary images of size 80× 80. One can see that in Table 7 original kernel
model has a performance of 100% from distance 4, and the performance is 0% before this
distance. The proposed model has a higher performance of 69.90% in pattern recall from
distance 1 and a 100% recall from distance 3. These results show that the new model is
consistent, that is, it still shows better efficiency than original model.

Table 8 shows the performance of fundamental set 4 of Figure 16. Fundamental set 4 is
composed of grayscale images of size 80× 80. The images of fundamental set 4 are bigger
than those of fundamental set 2, so the noise is higher and it affects more distances. For
this reason, the original model has 100% performance from distance 38 onward. Obviously,
if the kernel is noiseless, both models have 100% efficiency. The new model has complete
recall percentages greater than 75% from distance 10, and from distance 30, its complete
recall is 100%.



Mathematics 2022, 10, 148 28 of 35

Table 6. Performance of the proposed model vs. original model in 50× 50 grayscale images.

Original Model Kernel New Model

Pattern No noise d = 24 No noise d = 18 d = 22
A 100% 100% 100% 86.10 100%
B 100% 100% 100% 87.00 100%
C 100% 100% 100% 92.20 100%
D 100% 100% 100% 90.10 100%
E 100% 100% 100% 86.30 100%
F 100% 100% 100% 87.20 100%
Q 100% 100% 100% 86.50 100%
T 100% 100% 100% 88.10 100%
W 100% 100% 100% 86.20 100%
X 100% 100% 100% 89.50 100%
Y 100% 100% 100% 91.30 100%
Z 100% 100% 100% 86.00 100%

Table 7. Performance of the proposed model vs. original model in 80× 80 binary images.

Original Model Morphological αβ

Pattern d = 4 d = 1 d = 2 d = 3 d = 1 d = 2 d = 3
1 100% 78.10% 97.10% 100% 78.00% 97.00 100%
2 100% 75.20% 95.60% 100% 75.10% 95.60 100%
3 100% 77.10% 97.10% 100% 77.20% 97.20 100%
4 100% 78.40% 97.30% 100% 78.40% 97.20 100%
5 100% 69.90% 98.20% 100% 70.00% 98.40 100%
6 100% 80.00% 99.00% 100% 80.00% 99.00 100%

Table 8. Performance of the proposed model vs. original model in 80× 80 grayscale images.

Original Model Kernel New Model

Pattern No noise d = 38 No noise d = 10 d = 20 d = 30
1 100% 100% 100% 77.60 89.00 100%
2 100% 100% 100% 79.10 89.20 100%
3 100% 100% 100% 75.20 87.10 100%
4 100% 100% 100% 80.00 91.00 100%
5 100% 100% 100% 78.10 90.10 100%
6 100% 100% 100% 82.90 92.20 100%

Table 9 shows the performance of fundamental set 5 of Figure 16. Fundamental set 5 is
composed of binary images of size 120× 120. Table 9 shows the same behavior in patterns
formed with binary images, and the bigger the size of the images, the greater the noise.
As for the original model, it can recall 100% of the pattern if the kernel has no noise and
this happens from distance 6. The new model has a performance greater than 77% from
distance 1, and it can fully recall all learned patterns starting from distance 3.

Table 9. Performance of the proposed model vs. original model in 120× 120 binary images.

Original
Model Morphological αβ

Pattern d = 6 d = 1 d = 2 d = 3 d = 1 d = 2 d = 3
1 100% 80.00% 96.70% 100% 80.10% 96.60 100%
2 100% 77.80% 96.50% 100% 77.80% 95.80 100%
3 100% 81.70% 98.90% 100% 82.90% 98.20 100%

Table 10 shows the performance of fundamental set 6 of Figure 16. Fundamental set 6
is composed of grayscale images of size 120× 120. Table 10 confirms what was commented
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on the results of Table 10, but in this case for the fundamental set 6 which is made up of
grayscale images. The original model completely recalls from distance 56 while the new
model recalls from distance 10 with a performance greater than 77%. Again, it is proven
that the new model has a better performance when compared to the original model.

Table 10. Performance of the proposed model vs original model in 120× 120 grayscale images.

Original Model Kernel New Model

Pattern No noise d = 56 No noise d = 10 d = 30 d = 35
1 100% 100% 100% 78.10 95.90 100%
2 100% 100% 100% 77.20 96.10 100%
3 100% 100% 100% 78.30 91.10 100%

We must provide high certainty that the proposed kernel is a subset of one and only
one set for the recall phase to be complete. If the proposed kernel is made up of few
elements, then the probability that the kernel is a subset of other sets is high, and as a
result, the associative memory will fail. The more patterns the associative memory learns,
the greater the probability that the kernel is a subset of another pattern. That is why the
proposed new model is so important. The proposed model uses elements from those
patterns that are certainly affected by noise, and it does not delete them as the original
model does, however, there are chances of failing some pattern recoveries. The results show
that the new model preserves distances deleted by the original model, with an efficiency
greater than 70% in those distances where the original model is totally inoperative.

4. Discussion

For an associative memory to work as designed it must ensure that noise does not
affect its operation. Knowing how acquisition noise presents itself will make associative
memories know how to treat it. Associative memories in minmax algebra guarantee that
if they meet the conditions of their design, they then have an infinite capacity to learn
and recall.

This article showed that the acquisition noise has a Gaussian distribution where the
maximum point is near distance 0, and these distances were obtained through a distance
transform. Moreover, the probability that noise can affect these distances was obtained.
These results allowed kernels to be generated with sufficient conditions for the original and
new model to completely recall patterns affected by mixed noise.

A new model of min heteroassociative memory that is robust to mixed noise was also
proposed. We affirm that the proposed new model is better than the original kernel model
for two reasons: first, as shown in Figures 3 and 4, the original kernel model involves min
memory and max memory for the learning and recall phases and it doesn’t show how
to get the Z kernel. Figure 10 shows that the new min heteroassociative memory model
consists of only one memory, i.e., min memory, associated with a function that determines
the distance from where Z will be formed, thus ensuring that there will be full pattern
recalls. One can conclude that, the proposed new model is faster in its execution and
proposes conditions that also satisfies the original model. Second reason, the original kernel
model is deterministic, hence it sets where it will fail and where it will be efficient. The
proposed new model is probabilistic, which gives it the advantage of recalling completely
patterns where the original model cannot; and in those cases where the original model
recalls completely, the new model guarantees a 100% complete recalls as well. As one can
see, the new model surpasses the original model.

5. Conclusions

In this paper, it was proven that where there is information, there is acquisition noise,
and this noise grows and distributes in a structured way. It was possible to associate the
distribution of the acquisition noise to a distance transform so as to form kernels that satisfy
sufficient and necessary conditions for the associative memories in minmax algebra to fully
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recall the learned patterns. Taking the above as a reference, bases were laid for a new model
of min associative memory that is robust to mixed noise, i.e., robust to acquisition noise,
and this model proved to surpasses the original model.
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Appendix A. Acquisition Noise Distribution Table in Grayscale Images

Table A1. Acquisition noise distribution table in grayscale images.

Distance Frequency Probability Distance Frequency Probability

−189 3 0.00000173 −94 231 0.001332764
−188 3 0.00000173 −93 242 0.001396229
−187 2 0.00000115 −92 257 0.001482772
−186 3 0.00000173 −91 263 0.001517389
−185 4 0.00000231 −90 276 0.001592393
−184 5 0.00000288 −89 305 0.00175971
−183 6 0.00000346 −88 314 0.001811636
−182 12 0.00000692 −87 353 0.002036648
−181 6 0.00000346 −86 397 0.002290508
−180 16 0.00000923 −85 383 0.002209734
−179 9 0.00000519 −84 442 0.002550137
−178 21 0.00012116 −83 500 0.002884771
−177 18 0.000103852 −82 480 0.00276938
−176 20 0.000115391 −81 449 0.002590524
−175 30 0.000173086 −80 524 0.00302324
−174 20 0.000115391 −79 505 0.002913618
−173 23 0.000132699 −78 581 0.003352104
−172 23 0.000132699 −77 568 0.0032771
−171 25 0.000144239 −76 661 0.003813667
−170 18 0.000103852 −75 654 0.00377328
−169 17 0.00000981 −74 627 0.003617502
−168 22 0.00012693 −73 752 0.004338695
−167 15 0.00000865 −72 711 0.004102144
−166 14 0.00000808 −71 767 0.004425238
−165 19 0.000109621 −70 788 0.004546399
−164 18 0.000103852 −69 880 0.005077196
−163 19 0.000109621 −68 878 0.005065657
−162 17 0.00000981 −67 898 0.005181048
−161 21 0.00012116 −66 918 0.005296439
−160 13 0.00000750 −65 998 0.005758002
−159 10 0.00000577 −64 999 0.005763772
−158 13 0.00000750 −63 1060 0.006115714
−157 8 0.00000462 −62 1071 0.006179179
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Table A1. Cont.

Distance Frequency Probability Distance Frequency Probability

−156 12 0.00000692 −61 1091 0.00629457
−155 15 0.00000865 −60 1130 0.006519582
−154 18 0.000103852 −59 1198 0.006911911
−153 11 0.00000635 −58 1230 0.007096536
−152 19 0.000109621 −57 1284 0.007408091
−151 18 0.000103852 −56 1265 0.00729847
−150 10 0.00000577 −55 1278 0.007373474
−149 7 0.00000404 −54 1228 0.007084997
−148 22 0.00012693 −53 1393 0.008036971
−147 16 0.00000923 −52 1353 0.00780619
−146 20 0.000115391 −51 1334 0.007696568
−145 17 0.00000981 −50 1381 0.007967737
−144 16 0.00000923 −49 1389 0.008013893
−143 24 0.000138469 −48 1404 0.008100436
−142 16 0.00000923 −47 1463 0.008440839
−141 19 0.000109621 −46 1446 0.008342757
−140 23 0.000132699 −45 1483 0.00855623
−139 22 0.00012693 −44 1527 0.00881009
−138 13 0.00000750 −43 1540 0.008885094
−137 28 0.000161547 −42 1540 0.008885094
−136 20 0.000115391 −41 1544 0.008908172
−135 39 0.000225012 −40 1534 0.008850477
−134 36 0.000207703 −39 1596 0.009208188
−133 42 0.000242321 −38 1583 0.009133184
−132 39 0.000225012 −37 1518 0.008758164
−131 43 0.00024809 −36 1511 0.008717777
−130 39 0.000225012 −35 1548 0.00893125
−129 54 0.000311555 −34 1634 0.009427431
−128 40 0.000230782 −33 1554 0.008965867
−127 49 0.000282708 −32 1612 0.009300501
−126 48 0.000276938 −31 1585 0.009144723
−125 54 0.000311555 −30 1671 0.009640904
−124 59 0.000340403 −29 1673 0.009652443
−123 45 0.000259629 −28 1719 0.009917842
−122 54 0.000311555 −27 1632 0.009415892
−121 47 0.000271168 −26 1608 0.009277423
−120 69 0.000398098 −25 1644 0.009485126
−119 51 0.000294247 −24 1647 0.009502435
−118 64 0.000369251 −23 1655 0.009548591
−117 53 0.000305786 −22 1555 0.008971637
−116 59 0.000340403 −21 1659 0.009571669
−115 39 0.000225012 −20 1600 0.009231266
−114 51 0.000294247 −19 1635 0.0094332
−113 60 0.000346172 −18 1586 0.009150493
−112 54 0.000311555 −17 1560 0.009000485
−111 73 0.000421177 −16 1603 0.009248575
−110 85 0.000490411 −15 1552 0.008954328
−109 75 0.000432716 −14 1511 0.008717777
−108 82 0.000473102 −13 1429 0.008244675
−107 90 0.000519259 −12 1578 0.009104336
−106 101 0.000582724 −11 1505 0.00868316
−105 91 0.000525028 −10 1479 0.008533152
−104 125 0.000721193 −9 1504 0.00867739
−103 108 0.00062311 −8 1472 0.008492765
−102 117 0.000675036 −7 1502 0.008665851
−101 133 0.000767349 −6 1366 0.007881194
−100 150 0.000865431 −5 1349 0.007783111
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Table A1. Cont.

Distance frequency Probability Distance frequency Probability

−99 151 0.000871201 −4 1374 0.00792735
−98 155 0.000894279 −3 1409 0.008129284
−97 184 0.001061596 −2 1232 0.007108075
−96 183 0.001055826 −1 1408 0.008123514
−95 228 0.001315455 0 0 0

Table A2. Acquisition noise distribution table in grayscale images.

Distance Frequency Probability Distance Frequency Probability

1 1245 0.007183079 95 135 0.000778888
2 1256 0.007246544 96 120 0.000692345
3 1274 0.007350396 97 137 0.000790427
4 1239 0.007148462 98 113 0.000651958
5 1285 0.007413861 99 96 0.000553876
6 1197 0.006906141 100 137 0.000790427
7 1200 0.00692345 101 102 0.000588493
8 1209 0.006975376 102 107 0.000617341
9 1198 0.006911911 103 116 0.000669267
10 1166 0.006727285 104 94 0.000542337
11 1139 0.006571508 105 82 0.000473102
12 1103 0.006363804 106 104 0.000600032
13 1126 0.006496504 107 104 0.000600032
14 1064 0.006138792 108 83 0.000478872
15 1086 0.006265722 109 81 0.000467333
16 1016 0.005861854 110 87 0.00050195
17 1023 0.005902241 111 81 0.000467333
18 979 0.005648381 112 67 0.000386559
19 1005 0.005798389 113 82 0.000473102
20 1003 0.00578685 114 69 0.000398098
21 911 0.005256052 115 64 0.000369251
22 933 0.005382982 116 62 0.000357712
23 914 0.005273361 117 73 0.000421177
24 912 0.005261822 118 69 0.000398098
25 897 0.005175279 119 61 0.000351942
26 933 0.005382982 120 64 0.000369251
27 867 0.005002192 121 56 0.000323094
28 807 0.00465602 122 53 0.000305786
29 821 0.004736794 123 60 0.000346172
30 822 0.004742563 124 52 0.000300016
31 797 0.004598325 125 59 0.000340403
32 734 0.004234843 126 48 0.000276938
33 727 0.004194457 127 38 0.000219243
34 737 0.004252152 128 35 0.000201934
35 710 0.004096374 129 29 0.000167317
36 689 0.003975214 130 39 0.000225012
37 679 0.003917519 131 36 0.000207703
38 626 0.003611733 132 43 0.00024809
39 625 0.003605963 133 29 0.000167317
40 667 0.003848284 134 35 0.000201934
41 596 0.003438647 135 26 0.000150008
42 608 0.003507881 136 27 0.000155778
43 542 0.003127091 137 20 0.000115391
44 591 0.003409799 138 29 0.000167317
45 552 0.003184787 139 20 0.000115391
46 532 0.003069396 140 23 0.000132699
47 486 0.002803997 141 19 0.000109621



Mathematics 2022, 10, 148 33 of 35

Table A2. Cont.

Distance Frequency Probability Distance Frequency Probability

48 526 0.003034779 142 18 0.000103852
49 474 0.002734763 143 18 0.000103852
50 459 0.00264822 144 30 0.000173086
51 470 0.002711684 145 26 0.000150008
52 449 0.002590524 146 22 0.00012693
53 403 0.002325125 147 18 0.000103852
54 413 0.002382821 148 16 0.00000923
55 415 0.00239436 149 6 0.00000346
56 388 0.002238582 150 12 0.00000692
57 414 0.00238859 151 10 0.00000577
58 397 0.002290508 152 13 0.00000750
59 360 0.002077035 153 10 0.00000577
60 346 0.001996261 154 8 0.00000462
61 341 0.001967414 155 13 0.00000750
62 346 0.001996261 156 6 0.00000346
63 347 0.002002031 157 9 0.00000519
64 327 0.00188664 158 8 0.00000462
65 320 0.001846253 159 4 0.00000231
66 271 0.001563546 160 7 0.00000404
67 292 0.001684706 161 6 0.00000346
68 310 0.001788558 162 3 0.00000173
69 266 0.001534698 163 4 0.00000231
70 279 0.001609702 164 5 0.00000288
71 263 0.001517389 165 2 0.00000115
72 290 0.001673167 166 2 0.00000115
73 240 0.00138469 167 5 0.00000288
74 246 0.001419307 168 5 0.00000288
75 223 0.001286608 169 1 0.00000577
76 215 0.001240451 170 2 0.00000115
77 211 0.001217373 171 1 0.000000577
78 215 0.001240451 172 3 0.00000173
79 181 0.001044287 173 2 0.00000115
80 179 0.001032748 174 1 0.000000577
81 222 0.001280838 175 2 0.00000115
82 161 0.000928896 176 0 0
83 167 0.000963513 177 0 0
84 183 0.001055826 178 2 0.00000115
85 164 0.000946205 179 2 0.00000115
86 154 0.000888509 180 0 0
87 161 0.000928896 181 1 0.000000577
88 168 0.000969283 182 0 0
89 166 0.000957744 183 1 0.000000577
90 147 0.000848123 184 0 0
91 127 0.000732732 185 0 0
92 153 0.00088274 186 0 0
93 149 0.000859662 187 1 0.000000577
94 144 0.000830814
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