
mathematics

Article

Efficient Fully Discrete Finite-Element Numerical Scheme with
Second-Order Temporal Accuracy for the Phase-Field
Crystal Model
Jun Zhang 1,* and Xiaofeng Yang 2

����������
�������

Citation: Zhang, J.; Yang, X. Efficient

Fully Discrete Finite-Element

Numerical Scheme with Second-

Order Temporal Accuracy for the

Phase-Field Crystal Model.

Mathematics 2022, 10, 155. https://

doi.org/10.3390/math10010155

Academic Editor: Maria Lucia

Sampoli

Received: 14 October 2021

Accepted: 26 November 2021

Published: 5 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Guizhou Key Laboratory of Big Data Statistical Analysis, Guizhou University of Finance and Economics,
Guiyang 550025, China

2 Department of Mathematics, University of South Carolina, Columbia, SC 29208, USA; xfyang@math.sc.edu
* Correspondence: jzhang@mail.gufe.edu.cn

Abstract: In this paper, we consider numerical approximations of the Cahn–Hilliard type phase-
field crystal model and construct a fully discrete finite element scheme for it. The scheme is the
combination of the finite element method for spatial discretization and an invariant energy quadra-
tization method for time marching. It is not only linear and second-order time-accurate, but also
unconditionally energy-stable. We prove the unconditional energy stability rigorously and further
carry out various numerical examples to demonstrate the stability and the accuracy of the developed
scheme numerically.
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1. Introduction

Crystallization is a phase change process involving mass transfer from liquid to solid.
As a powerful modeling tool, the phase-field crystal model (PFC) has been used in this
field to simulate the kinetics of atomic crystal growth in the crystallization process for more
than two decades; see Elder et al. in [1,2]. The PFC model introduces a scalar function to
represent the density of atoms. By assuming that the free energy contains a specific form of
spatial gradient, and using the principle of variation to minimize the postulated total free
energy, the governing equation can be derived naturally, and its solution is very similar to
the periodic structure of the solid crystal lattice. The total free energy of the PFC model
originally comes from the so-called Swift–Hohenberg (SH) model. The formats of the free
energy of the two models are the same, but the way to derive the model is slightly different.
The PFC model uses the so-called Cahn–Hilliard dynamics, and the latter SH model uses
the so-called Allen–Cahn dynamics.

The purpose of this paper is to establish a completely discrete finite element algorithm
for the classic PFC model. We expect that the designed scheme has the characteristics of
linearity, second-order accuracy in time, and easy implementation. For the PFC model,
many attempts have been made to achieve the numerical solution of various PFC models,
such as the convex splitting method [3–7], invariant energy quadratic (IEQ) method [8–11],
etc. Among them, the numerical schemes based on the convex splitting method have been
established quite well, including the semi-discrete scheme in time, or the fully discrete
scheme in space and time, as well as its energy stability and temporal and/or spatial
error analysis. However, the nonlinear characteristics of the convex splitting method will
cause a lot of computational cost in practical implementations. Therefore, in contrast, the
linear algorithm appears to be more capable of saving calculation costs, such as the IEQ
method. So far, however, the numerical scheme constructed by the IEQ method is only a
semi-discrete format in time, that is, it is assumed that the space is continuous.
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Therefore, this paper follows the idea of using the linearized IEQ method for time
advancement in [8–11] and combines it with the spatial finite element method to obtain
a fully discrete numerical scheme in time and space. Its main idea is to reconstruct the
original system into an equivalent form by introducing an additional auxiliary variable.
The design purpose of the new variable is to transform the nonlinear part of the energy
density function into a quadratic function. The advantage of this method is that when the
algorithm is designed, all nonlinear terms can be processed in a simple explicit–implicit
combination manner. In this way, a linear finite element scheme with second-order accuracy
in time can be easily obtained. Moreover, in the process of implementation, the auxiliary
variable can help to split the original equation into two independent linear equations with
constant coefficients, thereby greatly saving calculation costs.

The rest of the paper is organized as follows. In Section 2, we give a brief introduction
to the PFC model. In Section 3, we develop a finite element numerical scheme and prove its
unconditional stability. The detailed implementation process is also given. In Section 4, we
present accuracy tests and numerous numerical examples to demonstrate the accuracy and
efficiency of the developed scheme. Some concluding remarks are presented in Section 5.

2. Model and Its Energy Law

The PFC model was originally proposed in [12] to describe the phenomena of crystal
growth on the atomic length and diffusive time scales. Its framework is to introduce a
phase-field variable φ(x, t), where x ∈ Ω ⊂ Rd(d = 2, 3)→ R to represent the local density
field of atoms, and t is the time.

The free energy of the PFC system is defined as follows

E(φ) =
∫

Ω

(φ

2
(∆ + 1)2φ + F(φ)

)
dx, (1)

where ∆ is the Laplace operator, and F(φ) = 1
4 φ4 − ε

2 φ2 is the nonlinear fourth-order
polynomial potential. This free energy functional is the same as the Swift–Hohenburg
energy; see also [1,2,13–16].

The dynamic equations can be derived as a gradient flow of the energy functional (1)
in certain metrics. Taking the variational derivative of (1) in the negative norm gives the
conservative Cahn–Hilliard type dynamic equations

φt = M∆µ, (2)

µ = (∆ + 1)2φ + f (φ), (3)

where M is the mobility parameter, µ is the chemical potential that is derived by using
µ = δE(φ)

δφ , and f (φ) = F′(φ) = φ3 − εφ.

The initial conditions for the system (2) and (3) read as φ|t=0 = φ0. The boundary
conditions can either be assumed to be periodic for simplicity to remove all boundary
integrals, cf. [1,2,5,7,12,17], or the no-flux boundary conditions that read as

∂nφ|∂Ω = ∂nµ|∂Ω = ∂n(∆φ)|∂Ω = 0, (4)

where n is the outward normal on the boundary ∂Ω.
The system satisfies an energy dissipative law. By taking the L2 inner product of (2)

with −µ and of (3) with φt, then performing integration by parts and combining the two
obtained equalities, we find that the system satisfies an energy law as

d
dt

E(φ) = −M‖∇µ‖2 ≤ 0. (5)
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3. Numerical Schemes

We now construct a fully discrete finite element numerical scheme for solving the
PFC model (2) and (3). We focus on developing linear type schemes due to their easy-to-
implement property. To this end, the main challenge lies in how to obtain a suitable time
marching discretization approach for the nonlinear term f (φ). Different from the direct
explicit or implicit discretization applied on it directly, we quadratize the nonlinear part
of the energy density functional. We reformulate the total energy by introducing a new
variable and then obtain a new system based on it. We must emphasize that the equivalent
relationship between the final and the original system is the basic starting point.

We fix some notations here. Let δt > 0 be a time step size and set tn = nδt for
0 ≤ n ≤ N = [T/δt]. We denote by (φ, ψ) = (

∫
Ω φ(x)ψ(x)dx the L2 inner product between

functions φ(x) and ψ(x), and by ‖φ‖ =
√
(φ, φ) the L2 norm of the function φ(x).

3.1. Numerical Scheme

The free energy functional (1) is reformulated as

E(φ) =
∫

Ω

(φ

2
(∆ + 1)2φ +

S
2

φ2 + F(φ)− S
2

φ2
)

dx. (6)

Note that a zero term S
2 φ2 − S

2 φ2 is added in (6).
We define an auxiliary function U(t) as

U(t) =
√∫

Ω
(F(φ)− S

2
φ2)dx + B, (7)

where B is a positive constant. Since F(φ) is a fourth-order polynomial term and it can
always bound the quadratic term − S

2 |φ|2 for any S, the integral term in (7) is bounded
from below, and the constant B is used to ensure the radicand is further positive.

We further define another intermediate variable ψ(x, t) as

ψ = (∆ + 1)φ. (8)

Using the variables φ, U, ψ, we obtain an equivalent PDE system as follows,

φt = M∆µ, (9)

µ = (∆ + 1)ψ + Sφ + HU, (10)

ψ = (∆ + 1)φ, (11)

Ut =
1
2
(H, φt), (12)

where

H =
f (φ)− Sφ√∫

Ω(F(φ)− S
2 φ2)dx + B

.

The initial conditions read as

φ(t = 0) = φ0, U(t = 0) =

√∫
Ω
(F(φ0)−

S
2

φ2
0)dx + B. (13)

The new system (9)–(12) still follows an energy dissipative law. By taking the L2 inner
product of (9) with −µ, of (10) with φt, we derive

−(φt, µ) = M‖∇µ‖2, (14)

(µ, φt) = ((∆ + 1)ψ, φt) + S(φ, φt) + U(H, φt). (15)
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By taking the time derivative of (11), taking the L2 inner product of the obtained
equation with −ψ, and using integration by parts, we obtain

−(ψ, ψt) = −((∆ + 1)ψ, φt). (16)

By multiplying (12) with −2U, we have

−2UtU = −U(H, φt). (17)

Combining all equalities, we obtain the new energy dissipation law as follows,

d
dt

E(φ, ψ, U) = −M‖∇µ‖2 ≤ 0, (18)

where

E(φ, ψ, U) =
∫

Ω

(1
2
|ψ|2 + S

2
|φ|2)x

)
dx + |U|2 − B. (19)

Some finite dimensional discrete subspace is introduced as follows. Assuming that
the polygonal/polyhedral domain Ω is discretized by a conforming and shape regular
triangulation/tetrahedron mesh Th that is composed by open disjoint elements K such that
Ω̄ =

⋃
K∈Th

K̄, we use P` to denote the space of polynomials of total degree at most l and
define the following finite element spaces:

Yh =
{

X ∈ C0(Ω) : X|K ∈ P`(K), ∀K ∈ Th

}
. (20)

Hence,

Yh ⊂ H1(Ω). (21)

We first formulate the PDE system (9)–(11) to the semi-discrete spatial discretization
form, which reads as: find φ ∈ Yh, µ ∈ Yh, ψ ∈ Yh, U ∈ R, such that

(φt, ω) = −M(∇µ,∇ω), (22)

(µ, Θ) = −(∇ψ,∇Θ) + (ψ, Θ) + S(φ, Θ) + U(H, Θ), (23)

(ψ, ϑ) = −(∇φ,∇ϑ) + (φ, ϑ), (24)

Ut =
1
2
(H, φt), (25)

for ω ∈ Yh, Θ ∈ Yh, ϑ ∈ Yh.
Then, based on the second-order backward differentiation formula to discretize the

time, and the finite element method for space, the second-order time-accurate finite element
scheme for solving the system (22)–(25) is constructed as follows.

Assuming that (φh, µh, ψh, U)n and (φh, µh, ψh, U)n−1 are known for n ≥ 1, find φn+1
h ∈

Yh, µn+1
h ∈ Yh, ψn+1

h ∈ Yh, Un+1 ∈ R, such that(
3φn+1

h − 4φn
h + φn−1

h
2δt

, ω

)
= −M(∇µn+1

h ,∇ω), (26)

(µn+1
h , Θ) = −(∇ψn+1

h ,∇Θ) + (ψn+1
h , Θ) + S(φn+1

h , Θ) + Un+1(H∗, Θ), (27)

(ψn+1
h , ϑ) = −(∇φn+1

h ,∇ϑ) + (φn+1
h , ϑ), (28)

3Un+1 − 4Un + Un−1

2δt
=

1
2
(H∗,

3φn+1
h − 4φn

h + φn−1
h

2δt
), (29)
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for all ω ∈ Yh, Θ ∈ Yh, ϑ ∈ Yh, where

φ∗ = 2φn
h − φn−1

h , H∗ = H(φ∗) (30)

and φ∗ is the second-order extrapolation for φn+1.

Remark 1. The initialization of the second-order scheme (26)–(29) needs φ1
h, µ1

h, U1. These values
can be obtained by constructing any type of first-order scheme. Moreover, we note that parameter S
is adjustable in the definition of U in (7) from the fact that the fourth-order term φ4 in F(φ) can
always bound the negative quadratic term − S

2 φ2 from below for any constant S. This means that
the term Sφ in (27) acts as a stabilizer, which is used to balance the corresponding nonlinear term
embedded in HU.

3.2. Energy Stability

We further show the unconditional energy stability of the scheme (26)–(29) as follows.

Theorem 1. The scheme (26)–(29) satisfies the following discrete energy dissipation law,

En+1
h ≤ En

h −Mδt
∥∥∥∇µn+1

h

∥∥∥2
, (31)

where, for any integer k ≥ 0, the discrete energy Ek is defined as

Ek
h =

1
2

(‖ψk
h‖

2 + ‖2ψk
h − ψk−1

h )‖2

2

)
+

S
2

(‖φk
h‖

2 + ‖2φk
h − φk−1

h ‖2

2

)
+
|Uk|2 + |2Uk −Uk−1|2

2
− B.

(32)

Proof. By setting ω = 2δtµn+1
h in (26), we obtain

(3φn+1
h − 4φn

h + φn−1
h , µn+1

h ) = −2δtM‖∇µn+1
h ‖2. (33)

By setting Θ = −(3φn+1
h − 4φn

h + φn−1
h ) in (27), we obtain

−(µn+1
h , 3φn+1

h − 4φn
h + φn−1

h ) =(∇ψn+1
h ,∇(3φn+1

h − 4φn
h + φn−1

h ))

− (ψn+1
h , 3φn+1

h − 4φn
h + φn−1

h )

− S(φn+1
h , 3φn+1

h − 4φn
h + φn−1

h ))

−Un+1(H∗, 3φn+1
h − 4φn

h + φn−1
h ).

(34)

Applying (28) for t = tn−1, tn, tn+1, we obtain

(3ψn+1
h − 4ψn

h + ψn−1
h , ϑ) =− (∇(3φn+1

h − 4φn
h + φn−1

h ),∇ϑ)

+ (3φn+1
h − 4φn

h + φn−1
h , ϑ).

(35)

By setting ϑ = ψn+1
h in (35), we obtain

(3ψn+1
h − 4ψn

h + ψn−1
h , ψn+1

h ) =− (∇(3φn+1
h − 4φn

h + φn−1
h ),∇ψn+1

h )

+ (3φn+1
h − 4φn

h + φn−1
h , ψn+1

h ).
(36)

By multiplying (29) with 4δtUn+1, we obtain

2(3Un+1 − 4Un + Un−1, Un+1) = Un+1(H∗, 3φn+1
h − 4φn

h + φn−1
h ). (37)
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By combining (33), (34), and (36), and applying the following identity

2a(3a− 4b + c) = a2 + (2a− b)2 − b2 − (2b− c)2 + (a− 2b + c)2, (38)

we obtain

1
2

(
‖ψn+1

h ‖2 + ‖2ψn+1
h − ψn

h‖
2
)
− 1

2

(
‖ψn

h‖
2 + ‖ψn

h − ψn−1
h )‖2

)
+

S
2

(
‖φn+1

h ‖2 + ‖2φn+1
h − φn

h‖
2
)
− S

2

(
‖φn

h‖
2 + ‖2φn

h − φn−1
h ‖2

)
+
(
|Un+1|2 + |2Un+1 −Un|2

)
−
(
|Un|2 + |2Un −Un−1|2

)
+
{1

2
‖ψn+1

h − 2ψn
h + ψn−1

h ‖2 +
S
2
‖φn+1

h − 2φn
h + φn−1

h )‖2

+ |Un+1 − 2Un + Un−1|2
}
= −2δtM‖∇µn+1

h ‖2.

(39)

We can obtain the desired result after dropping all positive terms in {}.

3.3. Decoupled Implementation

The scheme (26)–(29) increases the number of the equations and forms a coupled
system between the new variable U and the original variables φ, µ. In principle, one
expects to solve the decoupled system and avoid the computations of a large coupling
system. By applying the nonlocal property of U, we can cause the system to be decoupled
by the following process. Moreover, the existence and uniqueness of the scheme (26)–(29)
is also shown in the following process.

First, we rewrite φn+1
h , µn+1

h , ψn+1
h as the following linear combination form as

φn+1
h = φn+1

h1 + Un+1φn+1
h2 , µn+1

h = µn+1
h1 + Un+1µn+1

h2 , ψn+1
h = ψn+1

h1 + Un+1ψn+1
h2 . (40)

We plug the format in (40) into (26)–(28) to obtain

(
3(φn+1

h1 + Un+1φn+1
h2 )− 4φn

h + φn−1
h

2δt
, ω

)
= −M(∇(µn+1

h1 + Un+1µn+1
h2 ),∇ω),

(µn+1
h1 + Un+1µn+1

h2 , Θ) = −(∇(ψn+1
h1 + Un+1ψn+1

h2 ),∇Θ) + (ψn+1
h1 + Un+1ψn+1

h2 , Θ)

+ S(φn+1
h1 + Un+1φn+1

h2 , Θ) + Un+1(H∗, Θ),

(ψn+1
h1 + Un+1ψn+1

h2 , ϑ) = −(∇(φn+1
h1 + Un+1φn+1

h2 ),∇ϑ) + (φn+1
h1 + Un+1φn+1

h2 , ϑ)

(41)

According to the nonlocal variable Un+1, the new system (41) can be split into two
sub-systems, which read as

(
3φn+1

h1 − 4φn
h + φn−1

h
2δt

, ω) = −M(∇µn+1
h1 ,∇ω),

(µn+1
h1 , Θ) = −(∇ψn+1

h1 ,∇Θ) + (ψn+1
h1 , Θ) + S(φn+1

h1 , Θ),

(ψn+1
h1 , ϑ) = −(∇φn+1

h1 ,∇ϑ) + (φn+1
h1 , ϑ),

(42)

and 

(
3φn+1

h2
2δt

, ω

)
= −M(∇µn+1

h2 ,∇ω),

(µn+1
h2 , Θ) = −(∇ψn+1

h2 ,∇Θ) + (ψn+1
h2 , Θ) + S(φn+1

h2 , Θ) + (H∗, Θ),

(ψn+1
h2 , ϑ) = −(∇φn+1

h2 ,∇ϑ) + (φn+1
h2 , ϑ).

(43)
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It is easy to solve the above two systems since they are linear and constant-coefficient.
Next, we solve the variable Un+1. Applying the linear form given in (40), we rewrite

(29) as

3Un+1 − 4Un + Un−1

2δt
=

1
2
(H∗,

3(φn+1
h1 + Un+1φn+1

h2 )− 4φn
h + φn−1

h
2δt

) (44)

A simple factorization for the above algebraic equation gives us

( 3
2δt
− η

)
Un+1 =

4Un −Un−1

2δt
+

1
2
(H∗,

3φn+1
h1 − 4φn

h + φn−1
h

2δt
), (45)

where

η =
1
2
(H∗,

3
2δt

φn+1
h2 ). (46)

We show the solvability of (45) as follows. By setting ω = − 2δt
3 µn+1

h2 , Θ = φn+1
h2 ,

ϑ = ψn+1
h2 , and combining the two obtained equations, we obtain

−(H∗, φn+1
h2 ) = S‖φn+1

h2 ‖
2 + ‖ψn+1

h2 ‖
2 +

2δtM
3
‖∇µn+1

h2 ‖
2 ≥ 0, (47)

which implies −η ≥ 0. Therefore, (45) is always solvable.
Finally, we update φn+1

h , ψn+1
h and µn+1

h by applying the linear splitting form (40), since
φn+1

h1 , φn+1
h2 , µn+1

h1 , µn+1
h2 are obtained from (42) and (43), and Un+1 is obtained from (45).

Therefore, we see that the extra auxiliary variable U will not cause extra computational
cost. We do not need to solve the coupled system of equations even though the developed
scheme (26)–(29) looks like a coupled system. Through this auxiliary variable, we can split
the original scheme into three linear equations with constant coefficients that can be solved
independently per time step. Therefore, the calculation cost of the entire scheme is only to
solve the two linear systems (42) and (43).

Remark 2. Concerning the existence and uniqueness of the scheme, we have shown it from the
above implementation process. Using the splitting technique (40), we obtain (42) and (43). The
existence and uniqueness of these two equations can be easily shown by using the Lax–Milgram
theorem since these two equations are linear and every term is constant-coefficient. Moreover, (45)
is also solvable since it is a simple linear algebraic equation, and η 6= 0, so Un+1 is solvable.

4. Numerical Simulations

In this section, we will carry out several numerical examples to testify the accuracy
of the proposed finite element scheme (26)–(29), which is denoted by FIEQ for short. In
all examples, we use a 2D computational domain of Ω = [0, L]2 and we adopt the FIEQ
method to discretize the space where ` = 1.

4.1. Accuracy Test

We now test the convergence rates of the FIEQ scheme. We set the 2D computational
domain as Ω = [0, 128]2 and the order parameters as M = 1, ε = 0.25, S = 10. We set the
suitable forcing functions such that the exact solution of the system (2) and (3) is given by

φ(x, y, t) = sin(
π

64
x)cos(

π

64
y)cos(t). (48)

To verify the temporal convergence order, we fix mesh size h = 1 so that the grid size
is sufficiently small and the spatial discretization errors are negligible compared with the
time discretization error. In Figure 1a, we plot the L2 errors of the phase variable φ between
the numerical solution and the exact solution at t = 1 with different time-step sizes. We
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observe that our proposed scheme presents perfect second-order convergence rates for the
time step.

We continue to verify the accuracy of spatial convergence by applying the mesh
refinement test for grid size h. In Figure 1b, we plot the L2 errors of φ for various spatial
grid size h. We choose δt sufficiently small (δt = 1× 10−6) so that the errors are only
dominated by the spatial discretization error. We use the numerical solutions obtained
with a very tiny mesh size δt = 1× 10−6 and h = 1/512 computed by the scheme FIEQ as
the exact solution approximately for computing errors. The error in the L2 norm between
the numerical solution and the exact solution at t = 1 are plotted. We can see that the
second-order convergence rates are followed by the L2-error of the phase-field variable φ,
which are in agreement with the theoretical expectation of accuracy for P1 element.

(a) Temporal convergence.

(b) Spatial convergence.

Figure 1. (a) Convergence test in time where the L2 numerical errors for the phase field variable
φ are computed by using various time step size δt, and (b) convergence test in time where the L2

numerical errors for the phase-field variable φ are computed by using various grid size h.

4.2. Phase Transition

In this example, the phase transition behavior of the PFC model is simulated. The
similar numerical example can be found in [2,4,7,12,18,19]. With the computational domain
of [0, 256]2, the initial condition is set as φ0(x, y) = 0.07 + rand(x, y), where rand(x, y) is
the random number in the range of [−0.07, 0.07]. The Legendre polynomials of degrees up
to 256 are used to discretize each direction. The order parameters are M = 1, a = 0.025,
S = 10. We use time step of δt = 0.01 to get the better accuracy. In Figure 2, we show the
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phase transition behavior of the density field φ at various times, and we can see that the
profiles of random numbers finally grow to the crystals with BCC (body-centered-cubic)
structure, which is similar to the results obtained in [2,4,7,12,18,19], qualitatively.

Figure 2. Cont.
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Figure 2. The dynamical behaviors of the phase transition example, where snapshots of the numerical
approximation of φ are taken at t = 0, 100, 250, 350, 500, 600, 750, 850, and 1000.

5. Concluding Remarks

We construct an effective fully discrete scheme for the phase-field crystal model based
on finite element Galerkin scheme for spatial discretization. The scheme is also linear
and unconditionally energy stable and has second-order accuracy in time, where the IEQ
method is used for time discretization. The scheme is provably unconditionally energy-
stable and very easy to implement. Through the implementations of several numerical
examples, we demonstrate the accuracy and effectiveness of the developed scheme numer-
ically. Moreover, the fully discrete scheme developed in this article is also applied for other
types of gradient flow models to obtain the energy-stable and linear schemes.
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