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Abstract: In intensity-modulated radiation therapy, treatment planners aim to irradiate the tumour
according to a medical prescription while sparing surrounding organs at risk as much as possible.
Although this problem is inherently a multi-objective optimisation (MO) problem, most of the models
in the literature are single-objective ones. For this reason, a large number of single-objective algorithms
have been proposed in the literature to solve such single-objective models rather than multi-objective
ones. Further, a difficulty that one has to face when solving the MO version of the problem is that the
algorithms take too long before converging to a set of (approximately) non-dominated points. In this
paper, we propose and compare three different strategies, namely random PLS (rPLS), judgement-
function-guided PLS (jPLS) and neighbour-first PLS (nPLS), to accelerate a previously proposed
Pareto local search (PLS) algorithm to solve the beam angle selection problem in IMRT. A distinctive
feature of these strategies when compared to the PLS algorithms in the literature is that they do not
evaluate their entire neighbourhood before performing the dominance analysis. The rPLS algorithm
randomly chooses the next non-dominated solution in the archive and it is used as a baseline for
the other implemented algorithms. The jPLS algorithm first chooses the non-dominated solution in
the archive that has the best objective function value. Finally, the nPLS algorithm first chooses the
solutions that are within the neighbourhood of the current solution. All these strategies prevent us
from evaluating a large set of BACs, without any major impairment in the obtained solutions’ quality.
We apply our algorithms to a prostate case and compare the obtained results to those obtained by
the PLS from the literature. The results show that algorithms proposed in this paper reach a similar
performance than PLS and require fewer function evaluations.

Keywords: multi-objective beam angle optimisation; matheuristic; intensity modulated radiation
therapy; Pareto local search

1. Introduction

Intensity-modulated radiation therapy (IMRT) is one of the most common techniques
in cancer treatment. It aims to eradicate tumour cells by irradiating the tumour region with-
out compromising surrounding normal tissue and organs at risk (OARs). Unfortunately,
because of the physics of radiation delivery, there is a trade-off between tumour control
and sparing OARs [1,2].

The IMRT planning problem is a complex problem usually split into three sub-
problems: the beam angle optimisation (BAO), the fluence map optimisation (FMO),
and multi-leaf collimator sequencing [1,2]. In the BAO problem, we look for a beam angle
configuration (BAC), that is, a set of beam angles we will irradiate from. Then, in the FMO
problem, the best possible fluence of radiation (according to some optimisation model) for
each beam angle in the BAC is computed. Finally, a sequencing problem needs to be solved
to control the movement of the multi-leaf collimator leaves during delivery of the optimised
fluence [1,3]. It is clear from the process above that selecting high-quality BAC(s) will allow
us to obtain better treatment plans during the computation of the FMO problem. In this
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study, we focus on the problem of selecting a set of beam angles to produce high-quality
treatment plans, while ignoring the MLC problem.

In radiation therapy practice, treatment planners usually define the BAC manually in a
trial-and-error procedure, mainly driven by their experience and intuition and considering
some geometrical features of the problem. Unfortunately, according to several authors from
the literature, manual selection may lead to sub-optimal fluence maps [2,4–7].

In the next paragraphs, we shall describe the mathematical model of the MO-BAO
problem. Most of the notation we use here was obtained from [1,2,8]: Let K be the set of
all possible beam angles around the patient. In this work, we consider K = {kπ/36 : k =
0, 1, 2, . . . , 72}. Let A ∈ PN(K) be a feasible BAC where PN(K) is the set of all N-element
subsets of K, with N > 0 being the a priori determined number of angles. We denote the
i-th angle of A by Ai for i = 1, . . . , N. Thus, for a fixed BAC A ∈ PN(K), the general
MO-FMO problem can be formulated as

f (A ) = min
x∈X(A )

z(x), (1)

where z(x) ∈ R|R| is a vector of |R| objective functions zr, r = 1, . . . , |R| and |R| is the
total number of regions considered in the problem. Unlike in single-objective formula-
tions, which require the determination of a single optimal fluence map, the solution to
this multi-objective problem is a set XA

E containing efficient fluence maps of MO-FMO
problem (1). We define YA

N = f (A ) as the set of associated non-dominated points given by
YA

N = {z(x) for all x ∈ XA
E }.

The MO-BAO problem we are investigating in this paper is

min
A ∈PN(K)

min
x∈X(A )

z(x), (2)

the solution of which is the set AE which contains all efficient BACs which use exactly N
angles. A BAC A is efficient if X(A ) ∩ XE 6= {}, or equivalently if there is a fluence map
x ∈ X(A ) such that there is no BAC B and fluence map x′ ∈ X(B) with z(x′) ≤ z(x).
Additionally, the MO-BAO problem in (2) asks for the generation of a set XE containing
the efficient fluence maps which belong to those efficient BACs and that lead to the set
YN = {z(x) : x ∈ XE}, the associated set of all non-dominated points. We also write
problem (2) as

min
A ∈PN(K)

f (A ), (3)

to show that solving the MO-BAO problem requires us to also solve the MO-FMO prob-
lem (1) for different BACs A ∈ PN(K).

From the formulations above, it is easy to see that from, let us say, a five-beam BAC,
we can generate 72 available beams (a typical prostate case), which is an enormous number.
Therefore, it is simply not possible to approach this problem using enumeration strategies.
Additionally, as reported in [9], state-of-the-art non-linear solvers, such as Knitro and Ipopt,
can solve the BAO problem in a clinically acceptable time, with up to 12 available beams.
Therefore, the LS algorithms proposed in this paper will only find a set ÂE ⊆ PN(K)
that approximates the actual set of efficient BACs AE. Similarly, X̂E ⊆ X will denote the
approximation to the set of all the efficient fluence maps XE. Images of solutions x ∈ X̂E
are denoted by y ∈ ŶN [2].

We also need to highlight the differences between the MO-BAO problem and the
single-objective BAO problem. The main difference between these two problems is the
number of solutions we are looking for. While for the MO-BAO problem we generate a set
of approximately efficient BACs ÂE for the treatment planners we can choose from, in the
single-objective BAO problem, we only generate one optimal BAC, which is presented as
the “best” one. This difference in the number of generated solutions is important as several
clinical considerations cannot be included in the mathematical model. Thus, offering a
set of (hopefully) diverse BACs allows treatment planners to compare different treatment
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plans considering the objective function values and also the clinical considerations that are
not explicitly included in the model.

The remainder of this paper is as follows: Section 2 presents the IMRT problem
focusing on the MO-BAO problem. We also present in this section the mathematical model
that will be used in this study. In Section 3, we present a brief literature review and then the
MO-BAO model considered in this paper is introduced. Then, in Section 4, the implemented
Pareto local search strategies are outlined. In Section 5, we describe the instances we use
in this study and discuss the results obtained for each algorithm. Finally, we draw some
conclusions in Section 6 as well as outline future research lines.

2. An Overview of IMRT Optimisation Problems

In IMRT, vector x ∈ Rn denotes a fluence map with n beamlets, where the element xi =
0 is the fluence at the i-th beamlet. Further, each organ is divided into voxels. The radiation
dose each voxel j receives at each region by fluence map x is given by Equation (4) [1].

dR
j (x) =

n

∑
i=1

AR
ji xi for all j = 1, 2, ..., mR, (4)

where R = {O1, . . . , OQ, T} is the index set of regions, T is the index of the tumour and the
organs at risk and Oq with q = 1, . . . , Q is the index of the normal tissue. Region R has a
total of mR voxels indexed by j. The elements of vector dR ∈ RmR

(dR
j ), give the total dose

delivered to voxel j in region R by the fluence map x ∈ X(A ). Here, the dose deposition
matrix AR ∈ RmR×n is a given matrix where AR

ji = 0 defines the rate at which the radiation
dose along beamlet i is deposited into voxel j in region R [1,2].

Given a BAC, several mathematical models for the FMO problem have been proposed
in the literature based on the dose distribution in Formula (4). In this paper, we extend
a single-objective formulation based on the well-known biological model called gEUD
to solve the MO-BAO problem. This gEUD-based MO-BAO model is briefly introduced
in Section 2.1.

2.1. gEUD-Based MO-BAO: Mathematical Formulation

Introduced by [10], the gEUD is the biologically equivalent dose that, if delivered
uniformly, would lead to the same response as the actual non-uniform dose distribution [10].
The gEUD penalises less (more) irradiated voxels in tumour (OAR) regions which leads
to a more homogeneous dose distribution in the tumour and the avoidance of overdosed
voxels in OARs [2,11–15].

The mathematical expression for gEUD is

gEUDR(x) = (
1

mR

mR

∑
j=1

(dR
j (x))aR

)
1/aR

, (5)

where aR is a region-dependent parameter and dR
j (x) comes from Equation (4). While for

the tumour region we will set aR < 0, for the organs at risk we make aR > 1.
As mentioned in Section 2, the gEUD-based model in Equation (6) is considered in

this paper to solve the MO-FMO problem in Equation (1). This model has been previously
used in [2,3,8,9,16].

max gEUDT(x) (6)

min gEUDOq(x) for q = 1, . . . , Q,

s.t. x ∈ X(A ),

where X(A ) is, again, the set of feasible fluence maps which is defined by x = 0 and
beamlets xi = 0 for all beamlets not belonging to beam angles in A .
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As explained in Cabrera G. et al. [17], the model in (6) can be rewritten as

min gEUDOq(x) for q = 1, . . . , Q, (7)

s.t. gEUDT(x) = TT ,

x ∈ X(A ),

where TT is equal to the prescribed gEUD of the tumour. The model in Equation (7) allows
us to reduce the dimension of the problem from p to p− 1 objective functions without
losing a single efficient solution of the original p-objectives problem. Further, an infinite
number of efficient solutions located on a finite number of rays can be generated using
this gEUD-based model, each of which corresponds to an efficient solution of the reduced
p− 1 objective problem [17]. Thus, the associated gEUD-based MO-BAO problem is the
minimisation of (7) overall A ∈ PN(K), and can be restated as follows.

min
A ∈PN(K)

fOq(A ) = min
A ∈PN(K)

min
x∈X(A ):gEUDT(x)=TT

gEUDOq(x) for q = 1, . . . , Q. (8)

It is important to note that the model in (7) is convex and, thus, using scalarisation
methods allows us to obtain the set of efficient solutions of these problems. Moreover, it
is well known that generating many points for each evaluated BAC is not possible. Thus,
in this paper, a comparison between two BACs is made by checking the dominance relation-
ship between their corresponding sample points (see [2,8] for a more detailed explanation on
sample points). Thus, we will say that a BAC A is considered better than BAC B if sample
point sA ∈ YA

N dominates sB ∈ YA
N and vice versa. If neither sample point from BAC A

dominates the sample point belonging to B nor the sample point from BAC B dominates
the one from BAC A , we say that the BACs A and B are incomparable.

As explained in [8], we expect that more useful sample points are obtained if the
single-objective function used to generate sample points has a strictly monotone objective
function. In this way, we can guarantee that an optimal solution found for the single-
objective FMO problem is also an efficient solution of the multi-objective FMO problem
in Equation (7) [18]. Then, we use the well-known weighted sum method to compute the
sample point of each evaluated BAC. Weights are set up a priori, so all sample points are
computed using the same weights. As the weighted sum of the model in Equation (7)
is strictly made up of monotone functions, we know that its optimal solutions are also
efficient ones. We need to point out that different single-objective functions may lead to
different sample points for the same BAC [2]. The considered single-objective weighted
sum model (WS) is as follows:

WS: h(A )= min
Q

∑
q=1

αqgEUDOq(x)

s.t. gEUDT(x) = eudT
0

Q

∑
q=1

αq = 1

x ∈ X(A ),

(9)

where αq is the importance factor associated with the q-th region. Using exact algorithms,
the optimal fluence map of a beam angle configuration can be found for the associated
weighted sum function. Sample points are then obtained evaluating the optimal solutions
of the weighted sum function with the corresponding MO-FMO function (7).
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3. The Multi-Objective Beam Angle Optimisation Problem
MO-BAO: Literature Review

Despite the inherent trade-off between tumour control and the sparing of OARs,
the BAO problem has been mainly tackled from a single-objective point of view. The authors
have proposed many strategies where hybrid methods combining exact algorithms and
meta-heuristics are the most common. While heuristics seek promising BACs, exact algo-
rithms can compute the optimal solution of the associated FMO problem for a specific BAC.
Within this kind of hybrid strategy, we can find genetic algorithms [19–21], particle swarm
optimisation [22], ant colony systems [23,24] and simulated annealing [5,25–28]. Local
search strategies have also been applied to the single-objective BAO problem [3,16,29–34].
Other methods such as response surface [35], surrogate-based methods [36], guided pattern
search [37] and mixed-integer programming approaches [38–40] have also been proposed.

More recently, machine learning methods have also been used for the selection of high-
quality BACs. For instance, the authors of [41] propose a fast beam orientation selection
method based on deep learning neural networks. According to the authors, their approach
is as efficient as commercial solvers based on column generation methods. Their approach
consists of a supervised DNN trained to mimic a column generation algorithm, which
iteratively chooses beam orientations one by one by calculating beam fitness values based
on Karush–Kush–Tucker optimality conditions at each iteration [41]. The DNN learns
to predict these values and, thus, can make the beam selection faster than the column
generation strategy. The same authors in [42] propose a reinforcement learning strategy
with a Monte Carlo Tree Search to find high-quality BACs in less time than commercial
solvers based on column generation. The reinforcement learning structure guides the MCTS
and explores the decision space of beam orientation selection problems. This is achieved
based on beam fitness values computed with a previously trained deep neural network.
Computed beam fitness values are used to indicate the next best beam to add to the BAC.
The authors of [43] propose an approach also based on deep learning to improve the beam
selection process. They use a convolutional neural network to identify promising candidate
beams by using the radiological features of the patients. They argue that they can predict
the influence of a candidate beam on the delivered dose individually and let this prediction
guide the selection of candidate beams [43]. The same authors extend their approach to
multiple criteria in [44].

The hybrid strategy used to solve the single-objective BAO problem has also been
extended to the MO-BAO. In [45], the authors propose a method that combines a MO
genetic algorithm, namely NSGAIIc [46] and an FMO solver that uses the well-known
Broyden-L-BFGS algorithm. In their approach, each individual’s dominance status depends
on its fitness, i.e., dominated individuals who have a poor fitness are set to a high-rank
value. In contrast, individuals who have a good fitness (non-dominated ones) are set to a
low-rank value. Lower-rank individuals are preferred to those with a high-rank value and,
thus, they are considered within the next generation with higher probability.

Genetic algorithms have also been considered by Fiege et al. [47]. The authors
proposed an algorithm called Ferret. The Ferret algorithm optimises, simultaneously, the
intensity of each beamlet and the beams that are included in a BAC. The authors note that
simultaneously solving the BAO and the FMO problems is more challenging as the solution
space is highly enlarged. Because of this, and similar to [45], the Ferret algorithm uses
simplified objective functions in order to speed up the algorithm.

In addition to this, [48] proposed a method called iCicle. Unlike the approaches
mentioned above, which can be considered as a posteriori methods, the iCicle method is
an a priori method. That is, the decision-maker preferences are defined before the start of
the optimisation, and, therefore, the algorithm ends up with the efficient solution that best
suits such preferences. A distinctive feature of the iCicle method is that it is a constructive
method, i.e., it builds up a solution by adding a beam angle at each iteration. The algorithm
stops when adding more beam angles leads to no further improvement in the obtained
fluence map. Similarly, in [49], a two-step strategy is introduced. The first step consists of
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the calculation of the dose deviation from the prescribed dose, considering the n-BAC (a
BAC considering n beam angles) only. Then, in the second step, beam angles that do not
belong to the current n-BAC are evaluated based on a score function. The best beam angle,
i.e., the one with the best score function value, is added and an (n + 1)-BAC is obtained.
One drawback of this kind of method is that the quality of the obtained BAC might depend
largely on the quality of the angles selected in early iterations of the algorithm [2]. Readers
can find a recent and comprehensive review of multi-criteria approaches for IMRT in [50].

In [2], a first attempt to solve the MO-BAO problem using a single-objective LS is
presented. The authors propose an a posteriori method called the two-phase approach to
solve the MO-BAO problem. In the first phase, a simple local search algorithm is used to
find a locally optimal BAC according to a predefined single-objective function (sample point).
The local search algorithm is performed several times starting from different initial BACs,
resulting in a set of sample points. As mentioned in previous sections, one key feature of
sample points is that they are not only optimal but also efficient. That is, for a sample point
s = z(x) and x ∈ X(A ) being the optimal fluence map to the corresponding BAC A , there
is no fluence map x′ ∈ X(A ) such that z(x′) ≤ z(x). During the second phase, the authors
of [2] generate a large set of non-dominated points using the well-known ε-constraint
method [51,52] and produce a final set of non-dominated points for the treatment planner
to choose from [2].

Then, in [8], the natural extension from a single-objective local search to MO local
search (MO-LS) is presented. Here, the authors use the two-phase framework proposed
in [2], replacing the single-objective local search algorithm with a multi-objective one.
While in [2] a BAC is preferred to another based on its single-objective function value,
in [8], BACs with a non-dominated samplepoint are kept in the archive, while those BACs
with dominated sample points are dropped. Moreover, all the BACs whose sample points
resulted in non-dominated points are passed on to the next iteration. Thus, each initial BAC
gives rise to a set of sample points in the objective space. The PLS in [8] stops once the set of
sample points found are pairwise non-dominated. This set is a set of locally efficient BACs
which is passed on to the second phase of the two-phase approach. The second phase of
the two-phase approach is the same as in [2]. The same paper [8] also proposes an adaptive
PLS, which aims to give more diversity to the final set of points. Although the adaptive PLS
obtains more and better solutions than the PLS algorithm, it takes too long to find the final
set of pairwise non-dominated points. Thus, it is not helpful in clinical practice.

In this paper, we propose three PLS-based algorithms aiming to speed up previously
proposed PLS algorithms in [8]. The main difference between the PLS in [8] and the
algorithms proposed in this paper is the way we choose the next BAC to be visited among
the BACs in the archive. In the original PLS, we enumerate all their neighbours for each
BAC in the archive and compute its corresponding sample points. After the sample points
of all BACs in the archive have been generated, the dominance analysis is performed.
Unlike this, in the algorithms proposed in this paper, we choose only one BAC from the
archive, enumerate all its neighbours, compute its corresponding sample points and then
perform a dominance analysis within the archive. The fact that, in the proposed algorithms,
not all BACs in the archive are being visited before the dominance analysis is performed
has two main effects: (i) Some BACs might have never been visited, as their sample point
might become dominated before the algorithm chooses them. This means, in general, fewer
function evaluations. (ii) The criterion and order we use to choose the next BAC to be
visited from the archive become a crucial part of the algorithm, as the path the algorithm
follows will depend on this decision.

4. Multi-Objective Local Search

In this paper, we implement MO-LS algorithms for the first phase of the two-phase
approach of Cabrera-Guerrero et al. [2] to find a set of promising BACs. Although other
MO global search methods might be used, we focus on MO-LS algorithms as they provide



Mathematics 2022, 10, 159 7 of 25

solutions that are somehow similar to the ones proposed by practitioners from a geometric
point of view, but better in terms of their objective functions values.

Three MO-LS algorithms are implemented and compared to the PLS in [8]. In Section 4.1,
the general PLS algorithm is outlined and a brief literature review on PLS is presented for
the sake of completeness. Section 4.2 shows the PLS algorithm from [8]. Sections 4.3–4.5
present the PLS variants proposed in this paper.

4.1. Pareto Local Search: General Framework

The Pareto local search (PLS) was independently introduced by Paquete et al. [53]
and Angel et al. [54]. PLS is, roughly, the multi-objective extension of the well-known
hill-climbing algorithm [55]. The PLS algorithm starts by evaluating an initial solution.
For our case, this means we compute the sample point of an initial BAC. Then, given
a neighbourhood definition N, a set of BACs within the neighbour of the initial BAC is
evaluated. Depending on the neighbourhood definition, we might want to explore the entire
neighbourhood instead of only a subset of it. One key difference between PLS algorithms
from Paquete et al. [53] and Angel et al. [54] is the way they explore neighbourhoods. We
will explain this later in this section.

In single-objective local search algorithms, a current solution is stored at each iteration,
and its neighbourhood is explored. Unlike this, in the PLS algorithm, we need to keep an
archive of locally non-dominated sample points at each iteration. In iteration one, the archive
only has the sample point of the initial BAC. Then, we need to update the archive at each
iteration, so those sample points that are not dominated by any point in the archive are then
added. Finally, those points in the archive that are dominated by those recently generated
sample points are removed. That is, at the end of each iteration, the archive contains only
non-dominated sample points. This process is repeated until no neighbour sample point is
added to the archive.

The decision on how we explore solutions in the archive will depend on the PLS
implementation. For instance, [54] proposes a deterministic PLS algorithm where all the
solutions in the archive are explored (i.e., its neighbours are evaluated) before a dominance
analysis is performed. That is, only once neighbours of all the solutions in the archive
have been evaluated is a dominance analysis performed to determine what solutions are
removed from (or added to) the archive. Thus, the order used to explore the solutions
in the archive has no impact in the final set of locally efficient solutions. Unlike the
deterministic algorithm proposed in [54], Paquete et al. [53] propose a stochastic algorithm
for which the final set of locally efficient solutions found starting from an initial BAC can
be different at each run. This is mainly because the dominance analysis performed over
the archive is every time a neighbourhood is explored. Thus, solutions in the archive
will depend on the order the archive is explored [55]. Although these original versions of
PLS are a straightforward and effective method to solve MO problems, they show a slow
convergence [55–57].

In this paper, we aim to accelerate the convergence of the PLS proposed in [53] by
implementing three different strategies to choose the next solution to be evaluated. The first
strategy is to choose the next solution to be evaluated randomly (rPLS), which is, roughly,
the same strategy used in the original algorithm proposed in [53]. The second strategy will
be to choose the solution with the best judgement function value (jPLS). The third strategy
proposed here favours those solutions that are in the neighbourhood of the last evaluated
solution. We call this strategy neighbours-first PLS (nPLS). Finally, we compare the obtained
results to those obtained by the deterministic PLS from [54]. We explain in detail each
implementation in the following sections. These variants of the PLS aim to overcome the
convergence issues mentioned before.

All the algorithms above aim to generate a set of locally efficient BACs, A∗ ⊆ ÂE,
i.e., BACs for which sample points resulted to be (locally) non-dominated. The set A∗ is the
output of all our PLS-based strategies and it is obtained performing a dominance analysis



Mathematics 2022, 10, 159 8 of 25

over the entire set of sample points computed at each iteration. After the last iteration is
performed, only non-dominated sample points remain in the set A∗.

To generate such a set, our MO-LS algorithms need a neighbourhood N to be defined.
We use the same neighbourhood for all implemented algorithms. The same neighbourhood
definition was also used in [2,8] and it is defined by a ±5◦ in one of the beam angles.
Mathematically, the neighbourhood of BAC A , N(A ), is defined as follows [8]:

N(A ) = {B ∈ PN(K) : Aj = Bj ± π/72 for some j = 1 . . . N and
Ai = Bi for all i = 1 . . . N, where i 6= j}.

Let A∗ be a set of locally efficient BACs w.r.t. the objective functions in Equation (1).
Equivalently, let X∗ be a set containing the corresponding fluence map for each BAC in
A∗. Fluence maps in X∗ are optimal w.r.t the weighted sum function used to compute
the associated sample points. Let SN = {z(x) for all x ∈ X∗}, with z being the objective
function of the MO-FMO problem in Equation (7), be the set of all non-dominated sample
points obtained by the MO-LS algorithms. If two BACs have the same sample point (i.e., the
same objective function values), then both points will be considered. Thus, all elements
of SN are pairwise non-dominated. It is important to note here that we record only one
optimal fluence map for each A ∈ A∗. Consequently, there is only one sample point in SN
for each BAC in A∗ [2].

4.2. Pareto Local Search

We first try the Pareto Local Search algorithm implemented in [8] which is similar to
Angel et al. [54]. The PLS starts with an initial BAC (initialRandomSolution() in Algorithm 1),
which can be either randomly generated or provided by the treatment planner. The initial
BAC is added to the set of locally efficient BACs, A∗

Then, the algorithm defines what BACs will be explored next. The way we choose
the next neighbour to be explored is a key step of the algorithm as it defines how the
algorithm moves through the search space [2]. For the PLS implemented in this paper,
the neighbourhood of all the unexplored BACs in A∗, denoted by A∗unexplored ⊆ A∗, are
explored, i.e., all neighbours of BACs in A∗unexplored are evaluated (∪A ∈A∗unexplored

{N(A )}
in Algorithm 1). Each time the neighbourhood of a BAC A ∈ A∗unexplored is generated,
the corresponding BAC A is marked as explored and, thus, such a BAC does not longer
belong to the set A∗unexplored. Sample points of the evaluated BACs are also computed in
this step. As explained before, sample points are calculated by solving the weighted sum
model in Equation (9).

After this, generated neighbours are added to the set A∗ and a dominance analysis is
performed (merge() in Algorithm 1). BACs for which sample points result to be pairwise
non-dominated are kept in the set of locally efficient BACs A∗. Consequently, BACs that
are no longer efficient are removed from A∗. The algorithm stops when all BACs in A∗

have been explored.
The key step in Algorithm 1 is to update A∗, that is, to decide what BACs in A∗unexplored

are considered to be explored in the current iteration. Then, changes in this step will lead
to changes in how the algorithm explores the search space. For the standard PLS, we
explore the entire neighbourhood of all unexplored BACs, i.e., we explore all BACs in
A∗unexplored. As a consequence, this algorithm suffers from slow convergence as too many
function evaluations are needed, especially if either the neighbourhood size is too large or
the set A∗unexplored has too many elements. Because we have to solve a complex non-linear
problem to evaluate a new BAC, it is essential to avoid unnecessary function evaluations
for this problem. We have experimented with three PLS variants that attempt to avoid this
inefficiency. For all the three variants, only how A∗ is updated changes. In the following
three sections, we explain how this change is implemented for each algorithm.
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Algorithm 1: Pareto Local Search.

// To generate a set of locally efficient BACs
Input: N (Number of angles in a BAC)
Output: A∗ (Set of locally efficient BACs)
begin

A∗ = {}; // initially empty
A = initialRandomSolution(PN(K)) ;
Add A to A∗;
repeat

A∗ = merge(A∗ ∪ {∪A ∈A∗ :A is not exploredN(A )});
until all BACs in A∗ have been explored;
return (A∗);

end

4.3. Random Pareto Local Search

The random PLS algorithm (rPLS) differs from the PLS in Algorithm 1 in that, at each
iteration, we choose only one BAC A ∈ A∗unexplored to be explored, i.e., we generate the
entire neighbourhood for only one previously unexplored BAC at each iteration.

Then, in the rPLS algorithm, the set A∗ is updated using the following rule:

A∗ = merge(A∗ ∪ {N(rand(A∗unexplored))}), (10)

where rand(A∗unexplored) returns a random element from the set of unexplored BACs. The rPLS
algorithm can be obtained by replacing line 6 in Algorithm 1 by the Expression (10).

One advantage of this approach is that it is faster than the PLS introduced before, as it
does not explore all the elements in A∗unexplored (as PLS does) but instead randomly selects
one BAC from the set of unexplored BACs. However, one drawback of the rPLS approach
is that it does not exploit problem features, as the decision on the next BAC to be explored
is made randomly. The following two approaches overcome this issue and exploit different
features of the problem.

4.4. Judgement-Function-Guided Pareto Local Search

Just like in the rPLS algorithm, in the judgement-function-guided PLS algorithm (jPLS)
only one unexplored BAC A ∈ A∗unexplored is selected to be explored. Rather than choosing
a random BAC to explore next, our jPLS algorithm chooses which of the unexplored BACs
A ∈ A∗unexplored to explore next by estimating their quality by using a judgement function [38]

h(A ) : PN(K) → R+
0 , where smaller values of h(A ) indicate better solutions. This gives

an update rule as follows:

A∗ = merge(A∗ ∪ {N( arg min
A ∈A∗unexplored

{h(A )})}), (11)

We assume that arg min{} will always return only one BAC. In case two, BACs have
the same judgement function value, and only one of them is explored. The jPLS algorithm
can be obtained by replacing line 6 in Algorithm 1 by Expression (11).

In our experiments, we consider the weighted sum model in Equation (9) as our
judgement function. Thus, in this algorithm, a problem-specific feature (judgement function
value) is exploited, and (as we will see in the results) the path followed by the algorithm is
greatly influenced by such a judgement function.

4.5. Neighbours-First Pareto Local Search
In the neighbours-first PLS (nPLS) algorithm, we also consider only one unexplored

BAC A ∈ A∗unexplored to be explored, just as in the jPLS and rPLS algorithms introduced
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before. However, our nPLS algorithm is different in that we need to maintain both the set
of locally optimal BACs A∗ and the last explored solution A , which we call the current
solution. Given this, the update rule for the set A∗ is as follows

A∗ =
merge(A∗ ∪ {N(rand(A ′ ∈ {N(A ) ∩A∗unexplored}))}) if N(A ) ∩A∗unexplored 6= ∅
merge(A∗ ∪ {N(rand(A ∈ A∗unexplored))}) otherwise

(12)

The nPLS algorithm can be obtained, then, by replacing line 6 in Algorithm 1 by the
expression in (12).

The nPLS algorithm’s idea is to better explore neighbourhoods by favouring those
unexplored BACs that are neighbours of the current solution.

Table 1 summarises the main features of each algorithm. In addition, we include in
this table two single-objective local search algorithms, namely the steepest descent and the
next descent [3] that we use to compare our MO-LS algorithms.

Table 1. Algorithm features.

MO
or

SO

Dominance
Analysis per

Iteration

All
Neighbours

Explored

Iteration
Consists on

Next Solution
Selection

No Neighbour
Meets the

Criterion to Be
Chosen

Termination
Criterion

PLS MO Y Y

Exploring the
entire

neighbourhood of
all solutions in

the set of
non-dominated
points (NDPs).

No choosing
criterion needed Algorithm ends

The neighbour-
hood of all the
solutions in the
set of NDPs has
already been
explored

jPLS MO Y Y

Selecting the
solution with the

best
single-objective
function value

within the set of
NDPs and

exploring its
entire

neighbourhood.

Solution with the
best

single-objective
function value in
the set of NDPs

If no neighbour
has a better

objective function
value than the

current solution,
it chooses the

solution with the
best objective
function value
from the set of

NDPs

The neighbour-
hood of all the
solutions in the
set of NDPs has
already been
explored

rPLS MO Y Y

Randomly
selecting a

solution within
the set of NDPs

and exploring its
entire

neighbourhood.

Randomly among
those solutions in
the set of NDPs

Algorithm ends

The neighbour-
hood of all the
solutions in the
set of NDPs has
already been
explored

nPLS MO Y Y

Selecting a
solution within
the set of NDPs
that dominates

the current
solution and
exploring its

entire
neighbourhood.

First neighbour
that dominates

the current
solution.

If no neighbour
dominates the

current solution,
it chooses one

solution
randomly from
the set of NDPs

The neighbour-
hood of all the
solutions in the
set of NDPs has
already been
explored



Mathematics 2022, 10, 159 11 of 25

4.6. Second Phase: Exact Optimisation of the MO-FMO Problem

The second phase of our approach is the same as in [2] which, in turn, makes use of (the
improved) strategy introduced in [9]. In this phase, detailed in Algorithm 2, the associated
MO-FMO is solved for each of the locally efficient BACs found in Phase 1. In [2], the
majority of the locally optimal BACs found by the single-objective LS algorithm are not
passed onto phase two of the two-phase approach. This is because their sample points are
dominated by sample points belonging to other locally optimal BACs. Unlike this, when
using MO-LS algorithms, we know that the sample points corresponding to the entire set of
locally efficient BACs are non-dominated and, therefore, they all are passed onto phase two.

The goal of the second phase is to find a set of BACs ÂE ⊆ A∗ that approximates the
actual set of efficient BACs AE [2].

Algorithm 2: Phase 2: Efficient Set Generation.
Input: A∗ (Set of locally efficient BACs from Phase 1)
Output: ÂE (Set of (approximately) efficient BACs)
begin

ÂE = {}; // initially empty set of BACs
X̂E = {};// initially empty set of fluence maps
foreach A ∈ A∗ do

XA
E =SolveMO-FMO(A );

X̂E = merge(X̂E, XA
E );

end
ÂE = ∪x∈X̂E

(BAC(x));
return ÂE;

end

As Algorithm 2 shows, we need, firstly, to generate a large set XA
E of efficient fluence

maps of the MO-FMO problem in (7) for each BAC A ∈ A∗[2]. To achieve this, we can use
any scalarisation method such as the ε-constraint method [52] (the one used in this paper)
or the adaptive ε-constraint method [58] (SolveMO-FMO() method in Algorithm 2). At each
iteration, we merge the set XA

E and the initially empty set of (approximately) efficient
fluence maps X̂E (merge() method in Algorithm 2) by eliminating those fluence maps that
are dominated by another one in the union of the sets to be merged. After we merge these
two sets, only efficient fluence maps remain in the resulting set X̂E. Once the MO-FMO
problem has been solved for all BACs A ∈ A∗, set ÂE is updated so only BACs that have at
least one fluence maps x ∈ X̂E will be in ÂE (line 7 in Algorithm 2, where BAC(x) returns
the BAC corresponding to the fluence map x). Thus, set ÂE approximates the actual set of
efficient BACs of the MO-BAO problem in Equation (8) [2].

5. Computational Experiments

We try our three PLS implementations on a prostate case obtained from the CERR
package [59] (see Figure 1). We run all our algorithms on an Intel i7 computer with
32 Gb RAM.

Figure 1 shows the three regions considered in this case study: the tumour (prostate),
the rectum and the bladder (OARs). The value of the gEUD parameter a for the tumour,
the rectum and the bladder is −10, 8, 2, respectively. These parameters are the same as
those used in [2,3,8,16].

In total, more than 20,000 voxels are considered in this prostate case (around 7000 vox-
els in the tumour, around 5500 in the rectum and around 9500 in the bladder). The number
of beamlets (continuous decision variables) ranges between 160 and 220, depending on
the considered beam angle. Each BAC consists of N = 5 beam angles (discrete decision
variables). We consider a set of 72 equally spaced available coplanar beam angles. The dose
deposition matrix A is given. IPOPT [60] is used as our non-linear optimisation solver.
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Three sets of initial BACs have been considered. The first set consists of 14 equispaced
BACs. The second set of BACs consists of 15 BACs where each beam angle is randomly
generated within a predefined range. This is, the first beam angle in an initial BAC, A1, is
randomly chosen, so it falls between 0 and 70. The second beam angle, A2, will fall between
75 and 145, and so on. Finally, the third set of initial BACs consists of 15 BACs for which
beam angles were chosen completely random (no predefined ranges were considered) [16].
For the second and third sets, where beam angles are randomly selected, we made sure
that, on the one hand, no beam angle appears more than once in a BAC and, on the other,
all the chosen BACs were multiples of 5 degrees. Table A1 in Appendix A lists these three
sets of initial BACs. Since N = 5, the neighbourhood of each BAC consists of 10 BACs
which has to be evaluated at each iteration.

Figure 1. Prostate case from CERR. Two OARs (bladder and rectum) are considered.

5.1. Hypevolume Quality Indicator

Since we want to compare the performances of the different implemented algorithms,
we need a tool to make this comparison. Unlike in single-objective optimisations where the
quality of the algorithm is given by its best solution, in multi-objective optimisation we
have a set of (approximately) non-dominated points provided by each algorithm. Then, we
need a measure to compare such sets of points.

Over the last two decades, several authors have proposed different quality indica-
tors [61–64] to measure the quality of a set of (approximately) non-dominated points.
In this paper, we use the hypervolume quality indicator S to measure the quality of the set
of (approximately) non-dominated points obtained by an algorithm. The hypervolume
quality indicator S gives the volume of the portion of the objectives space that is weakly
dominated by a specific set of (approximately) non-dominated points [63]. It allows the
integration of aspects that are individually measured by other metrics. Mathematically,
the hypervolume is defined as a function S : ŶN → R+

0 , where ŶN is a set of pairwise
non-dominated points in the objective space. The hypervolume is one of the most accepted
and used quality indicators in MO optimisation. Thus, we use the hypervolume value as a
measure of the performance of each of the implemented algorithms.

Figure 2a shows an example of the entire area dominated by a set of (approximately)
non-dominated points (solid circles) in a minimisation problem (both f1 and f2 must be
minimised). The solid square is our reference point which usually corresponds to some
upper bounds of the problem being solved. The hypervolume can be expressed either
directly as the value of the dominated area (in this example 1815) or as the % of the
imaginary square formed by the ideal point and the reference point. If we consider the ideal
point of our example equal to (0, 0), the total area would be 4225, and thus the hypervolume
value would be 42.95%. In Figure 2b, we add a second set of non-dominated points and
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compare them in terms of their hypervolumes. As we can see, in dark grey is the area
that is exclusively dominated by the original set of non-dominated points A (solid circles).
In the same way, the area that is only dominated by the new set of non-dominated points B
(solid triangles) is in light grey. Then, we calculate both the total area of A and the total
area of B. The obtained values for this example are 34 and 38, respectively. Then, since we
are looking for a set of (approximately) non-dominated points with larger hypervolumes,
the set B should be preferable to the set A. It is interesting to note, though, that set A has
no point dominated by any point from set B. Furthermore, there are two points in B that
are dominated by at least one point in A. Thus, the hypervolume values of two sets A and
B cannot be used to state any dominance relationship among sets and their elements.

Version December 29, 2021 submitted to Mathematics 13 of 25
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Figure 2. Examples on how the hypervolume is calculated in a bi-objective space
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Figure 2. Examples on how the hypervolume is calculated in a bi-objective space. (a) Example of the
hypervolume dominated by a set of 6 non-dominated points in the objective space. (b) Resulting
hypervolume for two sets of non-dominated points.
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5.2. Results

In this section, we present the results obtained for the experiments performed in
this paper. We first show the sample points in the objective space generated by all four
algorithms for one initial BAC used in this paper (initial BAC no. 43 in Table A1). Unfilled
circles correspond to the sample points belonging to those BACs that were not explored
(i.e., no neighbours were generated for these BACs). Solid blue squares are the sample
points belonging to explored BACs, i.e., those BACs for which at least one neighbour
was generated. Thin blue lines connect a sample point of a BAC to its neighbour BACs
sample points. Thicker blue lines connect the sample points of all the explored BACs in
the same order they were explored. We call this the path of the algorithm. Solid green
circles correspond to those non-dominated points that were not explored during the search.
No such solid circles are present in Figure 3 (PLS) as the algorithm explores all the non-
dominated points at each iteration. Finally, red triangles correspond to sample points that
formed part of the final set of locally non-dominated points. As we can see, sample points
for many BACs are generated at each iteration, which means many optimisation problems
need to be solved [8].

Figure 3. Sample points generated by PLS algorithm.

As we can see, the PLS algorithm (Figure 3) generates many more sample points than
all the other algorithms, which leads to longer run times. For this particular example,
the PLS took 57,922 s. (more than 16 h) and need 839 function evaluations. As a result,
10 locally efficient BACs were produced (red triangles in Figure 3).

Figure 4 shows the path for the nPLS algorithm. The nPLS algorithm requires less
objective function evaluations than the standard PLS from Figure 3. For this particular
example, the nPLS algorithm only performed 456 function evaluations with a run time
of 26,405 s. (app. 7 h). As a result, four locally efficient BACs were produced. Remark-
ably, sample points corresponding to the set of locally efficient BACs found by the nPLS
algorithm, A ∗nPLS, dominate the majority of the points corresponding to the set of locally
efficient BACs found by the standard PLS algorithm. Although this situation does not
occur for all the experiments performed here, we will see that, on average, the nPLS algo-
rithm performs better than all the other algorithms considered in this paper in terms of its
hypervolume value.
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Figure 5 shows the path followed by the jPLS algorithm presented in this paper.
Because the search is driven by the judgement function h value, we can see that the
algorithm converges much faster than both the nPLS and the PLS presented before. For
this example, the jPLS algorithm only performed 255 function evaluations with a run
time of 16,488 s (4.5 h). As a result, six locally efficient BACs were produced. We need
to highlight that, although the locally efficient BACs found by the jPLS algorithm are
not as good as the ones found by the nPLS algorithm, they are relatively close to the set
of locally efficient BACs found by the PLS algorithm in terms of its hypervolume value.
The above is important as the jPLS algorithm takes, on average, a third part of the time
that the standard PLS algorithm needs to converge to a set of locally efficient BACs. Note
that, for one particular iteration, we have a set of BACs that need to be generated. Some of
these BACs are not necessarily neighbours of the current solution and neighbours of the
current solution are not necessarily the ones with the best judgement function. Unlike the
nPLS algorithm, which always chooses the neighbours of the current solution, the jPLS
algorithm chooses the BAC in the archive with the best judgement function value. As a
consequence, the path both algorithms follow is (usually) very different.

As mentioned before, the rPLS algorithm is considered a baseline algorithm as it does
not exploit any problem-specific feature. As we expected, the rPLS algorithm consistently
converges to sets of locally efficient BACs that have smaller hypervolume values than all
the other MO-LS algorithms (See sample points in Figure 6). Further, the rPLS algorithm is
not the fastest algorithm implemented here, as it consistently takes longer than the jPLS
algorithm. For the example, the rPLS algorithm took 22,201 s. (more than 6 h) and needed
356 objective function evaluations.
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Figure 5 shows the path followed by the jPLS algorithm presented in this paper.524
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Figure 7. Sample points and the path generated by the Steepest Descent algorithm in objective
space
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Figure 6. Sample points generated by rPLS algorithm.

Finally, we show the path followed by both the single-objective local search algorithms
implemented here: steepest descent and next descent (Figures 7 and 8, respectively).
As expected, single-objective local search algorithms converge faster (fewer objective
function evaluations are needed) at the cost of less locally optimal BACs (only 1 is found for
each initial BAC) and smaller hypervolume values. Moreover, although the steepest descent
algorithm is, on average, slightly better than the next descent algorithm in terms of both
hypervolume and judgement function value, the next descent algorithm is consistently
faster than the steepest descent. This makes the next descent algorithm an interesting
alternative if one wants to quickly improve the quality of the initial BAC and then perform
an MO-LS algorithm such as the standard PLS starting from the locally optimal BAC
provided by the next descent algorithm.
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Figure 7. Sample points and the path generated by the Steepest Descent algorithm in objective
space

smaller hypervolume values. Moreover, although the steepest descent algorithm is, on551

average, slightly better than the next descent algorithm in terms of both hypervolume552

and judgement function value, the next descent algorithm is consistently faster than553

the steepest descent. This makes the next descent algorithm an interesting alternative if554

Figure 7. Sample points and the path generated by the steepest descent algorithm in objective space.
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Figure 8. Sample points and paths generated by the Next Descent algorithm in objective space

one wants to quickly improve the quality of the initial BAC and then perform a MO-LS555

algorithm such as the standard PLS starting from the locally optimal BAC provided by556

the next descent algorithm.557

In Table 2, a summary of the obtained results per each initial BAC is shown. Column558

# corresponds to the initial BAC identifier according to Table 3. As we mentioned before,559

44 initial BACs for each algorithm are considered in our experiments. Column S show560

the hypervolume value of the obtained set of locally efficient solutions. Column X̂A
E561

shows the number of locally efficient solutions obtained starting from the corresponding562

initial BAC. Column NpA q shows the number of explored BACs. Finally, column f evals563

is the number of objective function evaluations the algorithm performs before finding564

the final set of non-dominated points for each initial BAC. That is, the number of sample565

points that are calculated by the algorithm.566
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Figure 8. Sample points and paths generated by the next descent algorithm in objective space.

In Table 2, a summary of the obtained results per each initial BAC is shown. Column #
corresponds to the initial BAC identifier according to Table A1. As we mentioned before,
44 initial BACs for each algorithm are considered in our experiments. Column S show the
hypervolume value of the obtained set of locally efficient solutions. Column X̂A

E shows
the number of locally efficient solutions obtained starting from the corresponding initial
BAC. Column N(A ) shows the number of explored BACs. Finally, column f evals is the
number of objective function evaluations the algorithm performs before finding the final
set of non-dominated points for each initial BAC—that is, the number of sample points that
are calculated by the algorithm.
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Table 2. Results for MO-LS algorithms for all instances.

PLS rPLS jPLS nPLS
# S X̂A

E N f Eval S X̂A
E N f Eval S X̂A

E N f Eval S X̂A
E N f Eval

Eq
ua

lly
di

st
an

tB
A

C
s

1 83.560 4 33 250 83.560 4 24 197 83.560 4 26 206 83.560 4 20 168
2 83.560 4 55 379 83.560 4 27 221 83.560 4 25 202 83.560 4 21 177
3 83.560 4 82 576 83.560 4 27 223 83.560 4 29 246 83.560 4 37 299
4 83.076 8 35 260 83.076 8 21 171 83.056 8 22 178 83.074 8 22 178
5 83.076 8 27 207 83.076 8 20 159 83.056 8 21 171 83.074 8 20 164
6 83.076 9 54 358 83.076 8 18 147 83.056 8 18 148 83.074 8 16 130
7 83.076 9 63 400 83.076 8 20 161 83.056 8 21 170 83.076 9 20 156
8 83.076 9 58 383 83.076 8 27 206 83.056 8 22 178 83.074 8 21 167
9 83.076 9 57 393 83.076 8 24 191 83.056 8 23 187 83.074 8 23 183
10 83.560 4 75 529 83.560 4 31 251 83.056 8 39 313 83.560 4 24 200
11 83.560 4 46 333 83.560 4 22 182 83.560 4 17 144 83.560 4 19 157
12 83.560 4 43 297 83.560 4 19 155 83.560 4 15 125 83.560 4 15 126
13 83.560 4 40 272 83.560 4 13 110 83.560 4 14 118 83.560 4 14 117
14 83.560 4 28 208 83.560 4 14 115 83.560 4 13 112 83.560 4 13 110

Se
m

i-
R

an
do

m
BA

C
s

15 83.076 9 68 476 83.076 8 34 269 83.076 8 29 240 83.076 9 43 335
16 83.560 4 112 794 83.560 4 32 268 83.560 4 39 326 83.560 4 38 320
17 83.560 4 72 461 83.560 4 30 234 83.560 4 23 190 83.560 4 23 190
18 83.560 4 198 1257 82.722 10 55 428 82.575 4 41 343 83.560 4 32 262
19 83.681 8 50 338 83.681 8 23 185 83.681 8 21 175 83.681 8 30 240
20 83.392 10 67 505 82.849 4 16 130 82.849 6 19 157 83.377 6 28 232
21 83.076 9 103 710 82.385 9 33 256 82.490 4 26 219 83.076 8 30 247
22 83.328 6 21 170 83.377 6 19 157 83.377 6 19 162 83.377 6 17 142
23 83.681 8 102 694 83.566 8 74 566 83.067 5 41 339 82.777 4 35 288
24 83.560 4 77 509 83.560 4 28 237 83.560 4 26 217 83.337 6 46 371
25 83.681 8 55 336 82.849 8 21 167 83.681 8 18 150 83.681 8 24 190
26 83.681 8 69 459 82.849 8 38 284 83.681 8 29 239 83.681 8 30 242
27 83.337 6 145 1051 83.560 4 33 271 83.560 4 25 214 83.560 4 31 254
28 83.681 8 97 646 82.849 8 42 336 83.681 8 38 313 83.501 4 32 265
29 83.076 9 52 355 83.076 8 22 175 83.076 8 23 189 83.076 8 21 170

C
om

pl
et

el
y

R
an

do
m

BA
C

s

30 81.758 6 67 473 81.758 6 37 301 81.758 6 32 265 81.758 6 29 237
31 83.940 7 30 206 83.940 7 18 146 83.940 7 17 138 83.940 7 18 144
32 83.377 6 138 936 83.377 6 43 352 83.377 6 44 361 83.377 6 39 325
33 83.560 4 95 642 83.560 4 41 331 83.560 4 36 289 83.560 4 37 299
34 83.076 8 92 639 83.076 8 32 262 83.076 8 32 266 83.076 8 30 249
35 83.667 12 89 591 82.050 12 37 291 82.050 12 35 289 82.050 12 31 252
36 83.914 10 35 253 83.914 10 21 164 83.914 10 20 164 83.914 10 22 173
37 83.685 9 54 351 83.076 9 18 143 83.076 8 17 138 83.076 8 18 146
38 83.918 5 65 445 83.805 5 32 258 83.805 5 31 252 83.805 5 33 265
39 83.278 14 43 318 83.278 14 30 232 83.688 4 43 355 83.278 14 30 222
40 82.224 14 92 613 81.785 14 38 296 81.785 14 30 243 81.785 14 39 304
41 81.758 6 55 425 81.758 6 46 366 81.758 6 32 269 81.758 6 40 327
42 83.918 5 81 543 83.805 5 29 240 83.805 5 25 213 83.805 5 26 221
43 83.914 10 122 839 82.849 4 45 356 83.337 6 30 255 83.972 4 56 456
44 82.455 5 98 670 82.455 5 48 389 82.455 5 45 374 82.455 5 41 348

From Table 2, we have that, on average, the PLS algorithm obtains the best hypervol-
ume value (83.348%), followed by the nPLS algorithm with 83.259%, the jPLS algorithm with
83.208% and the rPLS algorithm with 83.158%. Moreover, the PLS algorithm is the one that
more function evaluations perform with an average of 490, which corresponds to 71 BACs
being explored. The nPLS algorithm performs, on average, 228 function evaluations which
correspond to 28 BACs being explored. The jPLS algorithm is the fastest algorithm, with
224 function evaluations on average and 27 explored BACs. Finally, the rPLS performs
240 function evaluations and explores 30 BACs on average, being the slower algorithm
among the PLS-based algorithms proposed in this paper. Although the number of function
evaluations varies from one algorithm to the other, the number of locally efficient BACs that
each algorithm found for each initial BAC is, on average, very similar: The PLS algorithm
found 7 locally efficient BACs per initial BAC. The same occurs for the nPLS and the rPLS
algorithms, while for the jPLS, 6 locally efficient BACs were found on average for each
initial BAC.

Analysing Table 2, we have that, for the set of equispaced BACs, all four algorithms
converge to the same set of locally efficient BACs for several initial BACs. In addition, we
can note that different initial BACs converge to the same set of locally optimal BACs.

Figure 9 shows the path followed by the jPLS algorithm in the objective space for
several initial BACs from the set of equispaced BACs. Unlike in Figures 3–6, where the
generated sample points are shown, Figure 9 only shows the sample points of those BACs
for which its neighbourhood was explored. Here, we can see how when the jPLS algorithm
starts from initial BACs 0, 1, 2, 10, 11, 12, 13 from Table 2, it converges to the same set of
locally efficient BACs. This is because of the similarity of this set of initial BACs in terms
of their beam angles values. Although the jPLS algorithm follows different paths in the
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objective space for each initial BAC, i.e., it explores different BACs and always converges
to the same set of locally efficient BACs. A similar situation occurs for the remaining
equispaced initial BACs (numbered from 3 to 9), where the jPLS algorithm also converges
to the same set of locally efficient BACs. This set is different from the one showed in
Figure 9, though. This situation also occurs for the other algorithms, which converge to
similar sets of locally efficient BACs. As long as more variety is included in the initial BACs,
the situation described in Figure 9 tends to disappear. For instance, for the 15 initial BACs
in the set of completely random initial BACs (numbered from 30 to 44 in Table 2), we obtain
14 different sets of locally efficient BACs. There are only two initial BACs (34 and 37 in
Table 2) that converge to the same set. When we look at these two initial BACs, we can
see that they are very similar in that they have the same beam angle A1 = 20◦ and the
difference in the other beam angles is relatively small (20◦ for A2, 20◦ for A2, 30◦ for A3,
25◦ for A4 and 15◦ for A5). Thus, because we want to produce as many locally efficient
BACs as possible to provide more alternatives for the decision maker to choose from, we
should avoid initial BACs that are too similar in terms of the beam angles that are part of it,
as they are likely to converge to the same or too similar locally efficient BACs.
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Figure 9. jPLS paths in objective space for the initial BACs 0-2 and 10-13 in Table 3. All the initial
BACs end up in the same set A ˚ of locally efficient BACs.
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Figure 9. jPLS paths in objective space for the initial BACs 0–2 and 10–13 in Table A1. All the initial
BACs end up in the same set A ∗ of locally efficient BACs.

Figure 10a,c,e show the hypervolumes obtained for all algorithms for the equispaced,
semi-random and completely random initial BACs, respectively. Although both the steepest
descent and next descent algorithms can obtain better hypervolume values than the MO-
LS algorithms for some few initial BACs, this is not the general case. In fact, for most
experiments, results obtained by the single-objective local search algorithms are even below
the ones obtained by the rPLS algorithm. We expected this as a single-objective local search
algorithm performs fewer function evaluations and, thus, does not explore the search space
as MO-LS algorithms do.
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Figure 10. Hypervolume per algorithm. (a) Hypervolume for all algorithms for equispaced initial
BACs (0–13). (b) Cumulative hypervolume for all algorithms for equispaced initial BACs (0–13).
(c) Hypervolume for all algorithms for semi-random initial BACs (14–29). (d) Cumulative hypervol-
ume for all algorithms for semi-random initial BACs (14–29). (e) Hypervolume for all algorithms for
random initial BACs (30–44). (f) Cumulative hypervolume for all algorithms for random initial BACs
(30–44).

Moreover, we calculate the cumulative hypervolume, i.e., the hypervolume that is ob-
tained after merging the obtained set of locally efficient BACs of each initial BAC. We do
this for each algorithm and keep the same order as in Table 2. We calculate an independent
cumulative hypervolume for each set of initial BACs (the equispaced, semi-random and
completely random initial BACs). Figure 10b,d,f show the cumulative hypervolume value
for each algorithm. Unlike in Figure 10a,c,e, where the x axis identifies the number of the
initial BACs, the x axis in Figure 10b,d,f corresponds to the cumulative number of objective
function evaluations that are needed to obtain the corresponding cumulative hypervolume
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value. As we can see, single-objective local search algorithms increase their cumulative
hypervolume value rapidly. However, their final cumulative hypervolume value is always
far below the values obtained by the MO-LS algorithms. Although the order in which the
initial BACs are considered might affect how the cumulative hypervolume increases, it
is clear that MO-LS obtains better hypervolume values than single-objective local search
algorithms. It is interesting to note that for the completely random set of initial BACs,
the PLS algorithm not only is the one that takes longer to obtain its final set of locally
efficient solutions but also it does not obtain the best cumulative hypervolume value, as the
nPLS algorithm obtains a slightly better value almost half of the time.

6. Conclusions and Future Work

In this paper, the MO-BAO problem is solved using three MO-LS algorithms derived
from the well-known Pareto Local Search algorithm. These MO-LS algorithms are used
within the two-phase framework we proposed in [2]. We demonstrate that when replac-
ing the single-objective local search in phase one of the two-phase approach by MO-LS
algorithms, the obtained set of locally efficient BACs improves in terms of the obtained
hypervolume value, although MO-LS algorithms require more function evaluations. More-
over, exploiting problem features such as the judgement function value of BACs (jPLS
algorithm) or the neighbouring relationships among BACs (nPLS algorithm) is very ef-
fective in finding promising BACs. However, one drawback of using MO-LS algorithms
during the first phase of the two-phase approach is that many objective function evalua-
tions are needed. This is especially true for the standard Pareto local search implemented
here. As expected, the three variations proposed in this paper are much faster than the
PLS algorithm, as they require fewer function evaluations. However, the time they need to
converge is still prohibitive in clinical practice. To overcome this issue, as future work, we
propose combining single- and multi-objective local searches such that a single-objective
local search can provide good starting points to the MO-LS algorithms. Moreover, perturb-
ing a local search to avoid being trapped in locally optimal sets is also an exciting research
line to be explored in future work too.
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Appendix A

In this appendix, Table A1 shows the three sets of instances considered in this paper.
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Table A1. Sets of instances used in this paper.

A1 A2 A3 A4 A5

Eq
ua

lly
di

st
an

tB
A

C
s

1 0 70 140 210 280
2 5 75 145 215 285
3 10 80 150 220 290
4 15 85 155 225 295
5 20 90 160 230 300
6 25 95 165 235 305
7 30 100 170 240 310
8 35 105 175 245 315
9 40 110 180 250 320

10 45 115 185 255 325
11 50 120 190 260 330
12 55 125 195 265 335
13 60 130 200 270 340
14 65 135 205 275 345

Se
m

i-
R

an
do

m
BA

C
s

15 55 95 205 250 305
16 50 135 175 240 335
17 60 80 200 255 335
18 40 115 190 230 355
19 35 135 165 250 305
20 70 120 150 240 350
21 70 100 155 290 310
22 60 100 150 220 335
23 20 140 190 240 305
24 60 80 185 250 330
25 25 125 155 255 300
26 35 130 175 275 300
27 60 115 175 245 345
28 35 145 170 280 320
29 35 105 165 235 320

C
om

pl
et

el
y

R
an
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m

BA
C

s

30 5 40 230 275 340
31 95 210 245 270 340
32 30 120 130 170 345
33 80 155 265 270 335
34 20 125 185 220 305
35 10 45 125 155 305
36 80 140 205 245 330
37 20 105 155 245 290
38 155 210 275 315 325
39 135 175 210 275 355
40 80 115 130 320 345
41 0 30 225 245 330
42 215 230 245 285 310
43 55 105 185 225 350
44 0 15 40 215 275
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