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Abstract: The optimization of an integrated coal gangue system of mining, dressing, and backfilling
in deep underground mining is a multi-objective and complex decision-making process, and the
factors such as spatial layout, node location, and transportation equipment need to be considered
comprehensively. In order to realize the intellectualized location of the nodes for the logistics and
transportation system of underground mining and dressing coal and gangue, this paper establishes
the model of the logistics and transportation system of underground mining and dressing coal gangue,
and analyzes the key factors of the intellectualized location for the logistics and transportation system
of coal and gangue, and the objective function of the node transportation model is deduced. The PSO–
QNMs algorithm is proposed for the solution of the objective function, which improves the accuracy
and stability of the location selection and effectively avoids the shortcomings of the PSO algorithm
with its poor local detailed search ability and the quasi-Newton algorithm with its sensitivity to the
initial value. Comparison of the particle swarm and PSO–QNMs algorithm outputs for the specific
conditions of the New Julong coal mine, as an example, shows that the PSO–QNMs algorithm reduces
the complexity of the calculation, increases the calculation efficiency by eight times, saves 42.8%
of the cost value, and improves the efficiency of the node selection of mining–dressing–backfilling
systems in a complex underground mining environment. The results confirm that the method has
high convergence speed and solution accuracy, and provides a fundamental basis for optimizing
the underground coal mine logistics system. Based on the research results, a node siting system for
an integrated underground mining, dressing, and backfilling system in coal mines (referred to as
MSBPS) was developed.

Keywords: integration of mining–dressing–backfilling; coal gangue logistics system; node intelligent
location; PSO–QNMs algorithm

1. Introduction
1.1. Study on the Integrated Technologies of Mining–Dressing–Backfilling Systems

In recent years, with the continuous increase in energy consumption and mining
intensity, China’s coal mining depth to an average of 10~25 m has sped to the deep extension.
Furthermore, deep coal mines need to excavate a large number of rock alleys to meet the
needs of the mine production system, surrounding rock stability control, and safe pressure
relief mining, which produces a large amount of gangue, which will not only aggravate the
contradiction of insufficient lifting capacity of deep shafts, but will also bring infill mining
as a sustainable mining technology, which prevents or minimizes the adverse effects of
mining coal resources on the environment and other resources from the perspective of
mining, with the goal of achieving the best economic, environmental, and social benefits. In
recent years, many achievements have been made in backfilling equipment, theories, and
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technologies, in order to further realize that gangue not ascend the shaft and reduce gangue
lifting costs, etc. Relevant scholars [1] also put forward the integration technologies of
the mining–dressing–backfilling system, which is to establish coal–gangue separation and
selection centers, backfilling preparation centers, and gangue pockets in the underground;
the coal and gangue products extracted from the underground working face are not lifted
to the shaft, but sorted by the underground dressing system, and the sorted gangue is
filled in place by the underground backfilling preparation system to realize the gangue
backfilling in the extraction area. This technology can achieve safe and efficient recovery of
coal resources that cannot be extracted by traditional coal mining methods and improves
the resource recovery rate, while improving the effective lifting efficiency of the main shaft
and relieving the load of the surface coal washing plant. Moreover, gangue technology can
reduce the discharge of gangue on the ground and consequently make full use of gangue
to effectively slow ground subsidence, and finally achieve the purpose of protecting the
environment and land resources. This is why China strongly advocates these green mining
and scientific mining methods.

Experts engaged in this area of research have conducted much research on process op-
timization and equipment improvement of integrated technologies of the mining–dressing–
backfilling system, and on the theory of rock movement patterns caused by this green
mining method, mainly from the perspective of traditional mine pressure and formation
control and mining technology optimization. Wang Jiachen et al. analyzed the relationship
between supports in backfilling mining and surrounding rocks and the movement char-
acteristics of overlying rocks, established the roof load estimation method, used similar
simulation and numerical calculation to simulate the process of workface retrieval and
gangue backfilling, and verified by backfilling mining examples [2,3]. Zhang Jixiong et al.
further proposed the sustainable mining system of “mining–dressing–backfilling + X” in
coal mines, revealed the law of mineral pressure manifestation and rock movement control
mechanism of solid filling mining, and performed much research on the theory and technol-
ogy of mining–dressing–backfilling green mining of deep coal resources [4–8]. Tu Shihao
developed a theoretical concept of the selective mining technology for the integration
technologies of mining–dressing–backfilling systems, and analyzed the critical aspects of
“mining–dressing–backfilling + controlling”, “mining–dressing–backfilling + extraction”,
“mining–dressing–backfilling + prevention”,“ mining–dressing–backfilling + protection”,
and examined other key mining scientific issues from the perspectives of control back-
filling rock movement, stress concentration, fracture field development, and stability of
the entry [9]. The results of these studies are relatively mature and have been extensively
disseminated in many mines in China.

However, since integrated technologies of the mining–dressing–backfilling system are
proposed, it is destined to be a coordinated process of multiple systems in engineering appli-
cation. On the basis of the existing research to clarify the system composition and structure
function of the “mining–dressing–backfilling” system, it is of great significance for the fu-
ture development of this technology to systematically analyze the operating characteristics
of deep underground gangue logistics and the interfeeding linkage relationship. The study
of this problem necessarily involves the efficient layout of the “mining–dressing–backfilling”
system; first, we must choose the location of the crucial underground “logistics” node,
which is the basis to ensure the efficient and coordinated transportation of coal and gangue
logistics. The current research results on this issue are relatively few. Wang Jinfeng et al.
combined the complex characteristics of a coal mine production logistics system and studied
the safety resource allocation, safety evaluation, and production logistics efficiency; further
systematic research was conducted on optimization methods to maximize the efficiency
of coal mine production logistics systems and rationalize safety resources [10–13]. Based
on exploring the key factors affecting the efficiency of the logistics system, Xia Dan et al.
used a system dynamics approach to dynamically analyze and predict the efficiency of a
complex production logistics system for the integrated technologies of mining–dressing–
backfilling systems and calculated the true impact rate of different production steps on
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the production level [14]. Although these studies have dealt with the efficiency of the
integrated production and logistics of “mining–dressing–backfilling” systems, they are all
from the perspective of macromanagers and have not really achieved substantial research
on the logistics node location selection and optimization of the system layout.

1.2. Study on the Logistics Node Location Selection

Although there is not much research in the field of coal mining, the location and
positioning of key system nodes is very important for the supply chain and logistics
transportation system, which need to consider the distance between nodes, cost, and the
influence of multiple factors from the perspective of logistics systems, with the continuous
development of applied mathematics, increasingly more factors are taken into account,
and various siting methods are introduced into logistics node siting in order to select the
best location.

The logistics location problem in the supply chain varies in the factors to be focused
on in different fields and systems, but multiobjective decision-making oriented to consider
multiple factors is an important research topic [15]. Zhang Guofang et al. proposed that
the main influencing factors for evaluating the location of logistics nodes are infrastructure
platform conditions, basic information platform conditions, and economic and sustainable
development conditions of logistics nodes, and in this way subdivided into 28 specific
indicators [16]. A multiobjective genetic algorithm (MOGA) was applied in supply chain
decision-making for agricultural systems to find the best combination of agricultural inputs
that minimize greenhouse gas emissions and maximizes output energy and benefit–cost
ratio [17]. The importance of supply and demand on the location of distribution centers
is argued [18]. Various factors such as politics, economy, environment, and the enterprise
itself are also important for the location of logistics nodes [19]. Considering four criteria in
supply chain planning—cost, quality, delivery, and supplier relationship management—
a decision method considering quantity discounts and supplier capacity constraints is
proposed, and TPSO, PSO, and GA are used for comparative numerical experiments [20].
As research expands, factors such as customer satisfaction, delivery time, service quality,
and sustainability are also taken into account [21,22]. Under various operational constraints,
cost minimization and profit maximization are the ultimate goals in most supply-chain
planning [23,24].

The method of logistics node location selection is evolving as a result of the increas-
ing number of factors to be considered, from the early center-of-gravity method [25–27],
it has evolved to multiobjective site selection alternatives including fuzzy integrated
analysis [16,28], analytic hierarchy process (AHP) [29–31], and data envelopment anal-
ysis (DEA) [32], which can consider more factors and are friendly to some hard-to-quantify
factors. While it is computationally difficult to solve larger site planning problems, various
heuristic and intelligent algorithms supported by big data and computers are applied to
solve the logistics node site selection problem. The alternative location algorithm (ALA)
and intelligent algorithms use parallel search techniques to solve the site selection problem,
which overcome the difficulty of traditional solution methods and can select the global
optimal solution efficiently and accurately. Commonly used algorithms include the ant
colony algorithm (ACA) [33,34], genetic algorithm (GA) [35–37], tabu search algorithm
(TS) [38], particle swarm optimization algorithm (PSO) [38–40], among others. The common
methods and characteristics of logistics node site selection are shown in Table 1.

Recognizing the importance of spatial node layout planning for an integrated coal
gangue system of “mining–dressing–backfilling” in the underground, it is necessary to
reference logistics node location selection methods that have matured in the field of sup-
ply chain and apply them to the integrated technologies of mining–dressing–backfilling
systems, and carry out intelligent site selection for the nodes of coal gangue logistics and
transportation systems. The integrated production system model of mining, dressing, and
backfilling was proposed in the literature [41], and the scientific siting of the nodes of the
underground integration technologies of mining–dressing–backfilling systems was studied.
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Due to the complex underground environment of the mine, a three-dimensional logistics
space node siting model was developed for the logistics and transportation system under
the premise of making appropriate scientific assumptions, and the objective function of
multiobjective decision-making was established mainly from the perspective of production
efficiency and economy. Furthermore, the PSO algorithm was proposed in solving the
objective function. In this paper, the crucial factors of the complicated underground mining
and coal gangue transportation system are elaborated from the perspective of logistics
rationalization. The coal gangue logistics system location nodes model is further estab-
lished, and the objective function is defined to identify the vital nodes based on “the highest
efficiency and the lowest cost”. The traditional evolutionary algorithms, such as the particle
swarm algorithm, fully discuss solving this problem, but lack local area search capability,
and the results are unstable because of stagnation at the later stage of calculation. The
particle swarm and quasi-Newton algorithm (PSO–QNMs) is introduced to design a hybrid
algorithm for solving the location of coal gangue logistics nodes by fully taking advantage
of the global search capability of the PSO algorithm and the localized and detailed search
capability of the quasi-Newton algorithm. The improved algorithm is applied to analyze
the issue of coal gangue logistics node siting in a real case: New Julong coal mine.

Table 1. Common methods and characteristics of logistics node location selection.

Logistics Node Location
Selection Methods Key Features

Classical solution methods

Center-of-gravity method

The distribution of the nodes of the logistics
node system is placed on a plane, and the

demand and resources of each node are seen as
the weight of the point, and the best point for the

location of logistics facilities is the center of
gravity of the logistics system

Integer programming method

Setting the objective function, parameters and
variables, making assumptions and constraints
simplify, establish a relatively idealized model,

and solve it by an appropriate algorithm

Multiobjective solving methods

Analytic Hierarchy Process (AHP)

A discrete method for evaluating and analyzing
alternatives to arrive at the optimal site by

establishing an index evaluation system, usually
used in conjunction with the fuzzy

evaluation method

Data Envelopment Analysis
(DEA)

A system analysis method evolved on the basis
of evaluating relative efficiency, adjusting the

weight indicators of the evaluation model
dynamically according to the inputs and outputs,
evaluating the alternatives from the perspective
of the decision unit, independent of the metric

and subjective factors of the indicators, and
applicable to the site selection decision of

multiple input and output problems

Fuzzy Integrated Evaluation

It can determine the weight of indicators and
quantitative representation of indicators,

combine qualitative and quantitative, make a
comprehensive evaluation of a variety of factors,
suitable for nondeterministic problem solving,

cannot solve the problem of correlation between
factors, and the transformation of indicators has

a certain degree of subjectivity.
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Table 1. Cont.

Logistics Node Location
Selection Methods Key Features

Heuristic and intelligent algorithms

Ant Colony Algorithm (ACA)

With fewer setup parameters and good
convergence performance, it can generate

solutions in a very short time, and is suitable for
solving complex logistics node siting problems

with great flexibility.

Genetic Algorithm (GA) Fast computation and easy combinations with
other algorithms.

Tabu Search Algorithm (TS)

Easy to understand and implement, strong
generality, strong local development ability, fast
convergence; based on single solution, and weak

group development ability.

Particle Swarm Optimization
(PSO)

Simple operation, fast convergence, does not
depend on the strict mathematical properties of

the optimization problem itself, can achieve
global optimality, and easy to combine with

other algorithms.

. . . . . . . . . . . .

2. Coal Gangue Logistics and Transportation Systems in the Integration of
Mining–Dressing–Backfilling

In order to realize the deep underground sorting and in situ filling technology model,
an efficient, reliable, intelligent, and economical “coal mining–dressing–backfilling” inte-
grated logistics production system for underground coal mines was established. To study
the problem of optimal selection of nodes in the integrated coal gangue logistics production
system of “mining–dressing–backfilling” in underground coal mining, the precondition is
that the underground mining, sorting, filling, and transportation system links are analyzed
separately from the perspective of logistics rationalization. The first and most important is
the optimization and rationalization of the logistics system as a whole during the process
of completing the underground cycle of mining, sorting, and backfilling from the working
face. An underground mining and coal gangue transport system is relatively complex. The
core of the two major systems for the coal gangue sorting system consists of the gangue
and other waste filling system and the underground mining and coal gangue logistics
production, which is to separate coal and gangue in the underground. Gangue is used as
the main raw material for underground filling; due to the limited capacity of filling, the
flow of gangue produced at the working face and the space relative position of mining
and charging will determine the coordinated treatment capacity of mining and filling of
the gangue transportation system. Insufficient gangue production will lead to obstruc-
tion of the underground filling work, and the surplus of gangue production will cause
the excess gangue to be stacked randomly [42]. Therefore, it is necessary to reasonably
design the spatial location relationship of key nodes for underground mining, selection,
and filling coal gangue logistics systems to ensure efficient and coordinated transportation
of mining, selection, and filling. In order to optimize the coal mine production logistics
system, the coal production and operation process are transformed into a logistics and
transportation process. The integrated coal gangue logistics system of mining, selection,
and filling includes two parts: gangue production supply logistics and gangue production
logistics. In the transportation part of coal gangue logistics, the normal output of coal
gangue is the most fundamental and essential logistical component of the transportation
link. In an underground coal mine, the coal and gangue produced from the working face
are transported through the complex and extensive transport routes. As there are more
logistics nodes in transportation, there will be a certain suspension in the sorting center, the
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filling preparatory center, and the underground gangue silo, based on the efficiency of the
whole system, which can be improved by setting a reasonable key node.

3. Coal Gangue Logistics System Location Nodes Model

The intelligent selection of nodes in the underground integration of the mining–
dressing–backfilling system is an optimum solution selected among many solutions to
meet the actual engineering background. The establishment and solution of the nonlinear
equation system occupies an important position in the optimization problem, especially in
the field of industrial engineering, etc. For practical cases, a mathematical model needs to
be built and transformed into a system of equations for the problem to be solved. Among
many solution methods—particle swarm algorithm, genetic algorithm, ant colony algo-
rithm, Newton’s method—search better from the consideration of solution accuracy and
convergence, but there are still some defects in the solution process for specific application
cases [43–45]. The problem of intelligent output of key nodes in underground integration
of mining–dressing–backfilling can actually be regarded mathematically as the problem of
large flow, high efficiency, and minimum cost of gangue transportation, by modifying the
relevant parameters and changing different constraints, the sum of costs such as construc-
tion and transportation is minimized, and the flow rate in the logistics system is maximized.
The ultimate goal is to improve the operational efficiency of the coal gangue logistics
system. The gangue that is used for filling the working face is partly from the gangue
on the surface, and partly from the gangue produced during underground working-face
mining and roadway excavation. This is especially important for the large number of rock
roadways excavated in deep mining, which gangue is used to enhance the stability of the
surrounding rock of the roadway. In the solution of the model, assuming that the surface
gangue is transported to the underground gangue silo through the vertical feeding hole, the
location of the key nodes of the system is sited from the perspective of maximum logistics
and optimal cost, without considering the loss of coal gangue in the transportation process.
As shown in Figure 1, the key transportation nodes include six positions, where I is the
underground coal–gangue separation and selection center, J is the underground backfilling
preparation center, K is the underground gangue pocket, T is the input port, E is the gangue
mountain, and D is the shaft coal pocket.

Figure 1. Node transportation model of the coal gangue backfilling system.

From the perspective of economy and logistics, the objective function is established
based on the principle of “highest efficiency and lowest cost”, i.e., the sum of transportation
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costs between the links is minimized. The objective function is established in Equation (1)
and the constraints are given in Equations (2)–(4).

minZ = ∑
i∈M

DMi ,ICMi ,I XMi ,I + ∑
i∈N

DNi ,JCNi ,J XNi ,J + DE,TCE,TXE,T+

DT,KCT,KXT,K + DD,ICD,I XD,I
(1)

∑
i∈M

XMi ,I + ∑
i∈N

XNi ,J = XI,J + XI,D (2)

XI,J + XK,J = ∑
i∈M

XJ,A (3)

XE,T = XT,K = XK,J (4)

where DMi ,I indicates position i and j; CMi ,I indicates transportation cost for each unit of
coal between position i and j; XMi ,I is the transportation flow rate between position i and j;
Mi is the i-th coal mining/excavation working face, where (Mi = A, B, C, D, E · ··); and Ni
denote the key logistics nodes in integration of the mining–dressing–backfilling system.

4. Intelligent Algorithmic Optimization
4.1. Particle Swarm Algorithm

The particle swarm algorithm [22] is a swarm-based random optimization intelligence
algorithm that originated from the study of bird feeding behavior, where the simplest and
most finite strategy to find food is to search around the bird that is currently closest to
the food. The algorithm is an abstraction of solving the objective decision function as the
process of searching for the optimal in the decision space in a continuous iteration, which
is one of the methods to solve the optimal solution of the multidimensional function. The
mathematical description of the algorithm follows. Assuming that the position of particle I
in N-dimensional space is represented as a vector: Xi = (X1, X2, X3, . . . . . . , XN), and the
velocity of the particle motion is represented as a vector: Vi = (V1, V2, V3, . . . . . . , VN), then
each particle has an adaptation value determined by the objective function and knows the
best position experienced by the individual called the individual historical best position,
defined as pbest and by its present position; each particle also knows the best position
found by all particles in the whole population thus far, which is defined as gbest.

After initializing a group of random particles, the optimal solution is found by iteration.
In each iteration, the particles update themselves mainly by tracking pbest and gbest, and
the particles will iterate to update their velocity and position according to Equation (5):

Vid(k + 1) = ωVid(k) + c1r1(Pid(k)− Xid(k)) + c2r2(Pid(k)− Xid(k));
Xid(k + 1) = Vid(k) + Vid(k)

(5)

where ω is the inertia weight factor; c1 and c2 are non-negative constants called the learning
factor; and r1 and r2 are random numbers in [0, 1] with independent uniform distribution.

The core code formulas for continuously updating the velocity New_vid and position
New_xid of the particle for each particle motion are Equations (6) and (7), respectively:

New_vid = w ∗ vid + c1 ∗ rand() ∗ (pid − xid) + c2 ∗ rand(pgd − xid) (6)

New_xid = xid + New_vid (7)

where pid is the individual known optimal solution; pgd is the global known optimal solu-
tion; vid, xid denote the velocity and position of the particle updated by the last operation
in the population, respectively; w is the inertia weight factor; c1 = c2 is one of the particle
learning factors, which usually is valued between 0 and 2; and rand() is a random number
within (0, 1). To reduce the possibility of particles leaving the search space during the
search process, V is usually limited to a certain range.
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The PSO is an efficient parallel search algorithm that retains a population-based global
search strategy with a relatively simple operational model that preserves the individual
historical extremes of each particle, which has been applied to the output of the key node
location in the coal gangue logistics and transportation system of integrated underground
mining, dressing, and backfilling The author references particle swarm algorithm in the
literature to solve the node siting for the integrated logistics of the mining–dressing–
backfilling system, and some of the core codes have also been reflected in the literature,
the algorithm initially realized the automatic output of coal gangue logistics node siting
under the role of complex factors. However, it was found in subsequent application
that the algorithm lacks the ability of fine search in a local area, and the phenomenon of
convergence stagnation that often occurs in the later stage of the search is not very sensitive
to the population size and cannot obtain an unique and accurate solution.

4.2. Quasi-Newton Methods Algorithm

The quasi-Newton methods (QNMs) [46–50] were first described by the American
physicist Davidson in the mid-1950s, and shortly thereafter it was proved by the operational
scientists Fletcher and Powell to be both faster and more stable than the algorithms available
at that time. In recent years, the QNMs have become an important research area for
algorithms to solve both constrained and unconstrained optimization problems. The QNMs
do not need to calculate the Hesse array of the objective function in the computational
process as does the Newton method, yet it can have the same efficacy in some sense as when
using the Hesse array, and has a second-order convergence speed. This not only simplifies
the computational process, but also ensures algorithm convergence speed. Therefore, in
recent decades, the QNMs are one of the most important methods for solving nonlinear
systems of equations and optimization problems. The QNMs program code is shown in
Equation (8):

f unction [k, x, val] = b f gs( f un, g f un, x0, varargin) (8)

where k is the number of iterations; x, val is the approximate optimal site and the optimal
value, respectively; f un, g f un is the objective function and its gradient, respectively; x0 is
the initial site; and varargin is the input variable parameter.

The main characteristics of the QNMs are simple internal update rules, high accuracy,
strong numerical stability, and fast convergence. However, the selection of the initial value
of the method is challenging; if a random value is used for the solution, then in actual
engineering background application it extremely difficult attain convergence. Therefore,
the convergence depends on the selection of the initial value; thus, it is very important to
provide an optimal initial value for QNMs.

4.3. Particle Swarm and Quasi-Newton Algorithm

In view of the poor local search ability of the PSO algorithm and the sensitivity of
the QNMs algorithm to the initial value, in order to improve the localization accuracy
and convergence, combining the characteristics of the two algorithms, a particle swarm
optimization algorithm based on quasi-Newton algorithm (PSO–QNMs algorithm), is
designed to precisely optimize the nodes of the coal and gangue system to achieve the
effect of making full use of the advantages of the two algorithms. The process of the
PSO–QNMs algorithm is shown in Figure 2. Firstly, the PSO algorithm is used to search
the problem in a wide range within the feasible solution area to find the optimal algorithm
to a certain extent, and to provide a good initial point for the QNMs algorithm, which is
used as the initial value of the QNMs algorithm for continuous iteration, then the QNMs
algorithm was used to search precisely until a more precise root of the equation is found.
The program code is shown in Equation (9):

f unction y = f unadd(n, x, f ixedpoint, cos t, tra f f ic f low)
f unction y = f unadd Gra(x)

(9)
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Figure 2. Flow chart of the PSO–QNMs hybrid algorithm.

The PSO–QNMs [25] runs the particle swarm optimization algorithm M generation
at the initial stage (population size is m), reaches the termination condition, outputs the
current global optimal individual (defined in the PSO algorithm as ”zbest”) and gives this
value to the initial value of Newton method, as indicated in Equation (10):

x0= zbest (10)

where x0 ∈ Rn, termination of the error 0 ≤ ε ≤ 1. The initial positive definite matrix
H0 ∈ Rn×n, k := 0; if ‖gk‖ ≤ ε, then the operation is stopped and the output xk is taken
as an approximate minimum point; the direction of calculation and search dk = −Hkgk,
and αk is solved by linear search along direction dk;xk+1 : is expressed as xk+1 := xk + αkdk.
Calibration Hk produces Hk+1, and k = k + 1 iterations are performed. Part of the core
program code of the PSO–QNMs algorithm is shown in Equation (11):

fminunc_options = optimoptions
(
@fminunc,′Algorithm′,′ quasi− newton′,′MaxFunEvals′, 100000,
′PlotFcns′, @optimplotfval

)
;

[Gra_best, fval_Gra, exitflag_Gra, output_Gra] = fminunc(@funadd_Gra, x0, fminunc_options)
(11)

5. Case Analysis
5.1. Background

This algorithm comparison uses the Xinjulong coal mine of Shandong Energy Group
as the basic background for engineering application to simulate the intellectualized location
of coal gangue logistics nodes of integrated system for “mining–dressing–backfilling” in
the underground. The working face of the Xinjulong coal mine, which is mainly a fully
mechanized coal caving and backfilling face, and the production of the double mining
district is mainly at the same gallery level. The coal seam thickness of the 1302N-2#
backfilling face is 2.2–3.63 m, the average coal thickness is 2.73 m, the mining coefficient is
1, and the coal seam variation coefficient is 11.9%, which belongs to a medium thick coal
seam with simple structure and stable thickness within the mining range of the working
face. The 1302N-2# backfilling face is located north of the 1# direct track rise at the –810
level, east is the 1302N-1# gob, west is the unprepared 1303N-1# backfilling face, south is
the village protective coal pillar, and north is the 1302N#gob protective coal pillar.
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The gangue for backfilling in the working face comes from the fully mechanized
caving face, the fully mechanized backfilling panel, and the excavated panel produced at
the same time. In the simulation, three coal mining faces and two tunneling faces are set.
The gangue produced from the 1302N-2# backfilling face goes through the sieving and
smashing system; the excavated gangue is directly transported to the gangue pocket. The
raw coal mixed with coal and gangue is transferred to the coal–gangue separation system,
and the cleaned coal after separation is moved to the transportation roadway through the
loading station of the transportation roadway, and finally is lifted to the ground through
the main shaft. The gangue is transported to the gangue pocket of the first mining wing
for storage along the gangue transport roadway, and transported to the backfilling face
for gob through the 1302N-2#tailentry and the return-air rise. The coal gangue logistics
and transportation system in the integrated mining–dressing–backfilling system at the
Xinjulong coal mine is shown in Figure 3.

Figure 3. Schematic diagram of coal gangue logistics and transportation system in the Xinjulong
coal mine.

The PSO algorithm and the PSO–QNMs algorithm are used to carry out the case study.
In this calculation, the gangue selection rate is 95%; the fixed coordinates of transportation
links for each logistics system and the flow parameters of working face are given in Table 2.
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Furthermore, based on the project background, the input of ground gangue is also taken
into account in this analysis.

Table 2. Input parameters.

Parameter Coal Face 1# Coal Face 2# Coal Face 3#
Excavated

Panel
1#

Excavated
Panel

2#

Shaft Coal
Pocket

Gangue
Mountain

fixed
coordinates (1000,3000,−800) (3000,1000,−900) (2000,2000,−850) (1000,1500,−800) (1500,1000,−950) (1500,2000,−750) (1000,2000,−0)

flow/(t/h) 230 220 240 200 210 — —
gangue

percentage 0.32 0.3 0.3 0.35 0.33 — —

5.2. Results

In this paper, three groups of experiments are designed. The PSO algorithm and
the PSO–QNMs algorithm are set in each group, and the values of the output results are
analyzed, based on the two solution algorithms. In the solution process, the same initial
value is given to the two intelligent optimization algorithms. In the process of the PSO
algorithm, after several iterative solutions, the fitness value of the node particles after
each operation was compared with the population optimal solution in the particle swarm.
The resulting optimal value was used to replace the population optimal value, and the
particle with the most adaptive value was obtained; that is, the objective result of the
optimal function was obtained and the calculation was then terminated. In the process
of the PSO–QNMs algorithm, the preliminary calculation steps are the same as the PSO
algorithm, except that the termination condition of the algorithm is when the calculated
gradient value gk meets the termination error ε of the algorithm. The two algorithms were
programmed and solved by using MATLAB. The data of the three groups of experimental
results are shown in Table 3. After the program operation, the iterative graphs of the two
intelligent optimization algorithms are output, as shown in Figure 4. The spatial location
relationship diagrams of logistics nodes of the three groups of intelligent optimization
algorithms are output, as shown in Figures 5–7.

Table 3. Simulation experiment results.

Experiments Algorithm

Separation
and

Selection
Centers

Backfilling
and Prepa-

ration
Centers

Gangue
Pockets

Optimal
Values
/×108

Maximum
Number of
Iterations

Operation
Time

/s

Group 1

PSO XYZ
1675.449 865.714 −114.715

3.293 2670 8.8401676.430 1676.819 639.201
−676.581 −331.045 −232.421

PSO–
QNMs XYZ

1499.999 1460.048 1460.047
1.846 53 1.1482000.000 2037.973 2037.973

−750.000 −717.835 −717.835

Group 2

PSO XYZ
1133.104 678.695 888.8732

3.359 2420 9.6331765.071 697.2961 661.397
−816.158 −866.207 −768.231

PSO–
QNMs XYZ

1500.000 1454.982 1454.979
1.846 52 1.0982000.000 2040.568 2040.568

−750.000 −715.002 −714.999

Group 3

PSO XYZ
1592.962 298.096 270.873

3.019 2870 8.6811894.860 1090.314 1231.951
−753.395 −225.351 −376.964

PSO–
QNMs XYZ

1500.000 1456.274 1456.273
1.846 60 1.2692000.000 2039.312 2039.312

−749.999 −715.927 −715.927
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Figure 4. Intelligent optimization method iteration curve: (a) group 1, (b) group 2, (c) group 3.
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5.3. Analysis

(1) Combined with the simulation results (Table 2) and the intelligent optimization algo-
rithm iterative graph (Figure 4), it can be concluded that the PSO–QNMs algorithm,
compared with the PSO algorithm, has stronger ability to converge to the global
optimal solution, and its convergence speed is significantly higher than that of PSO.
The solution time of the whole system operation is about one-eighth of that of the
latter. Therefore, the PSO–QNMs algorithm reduces the computational complexity
and ensures the global convergence of the algorithm when solving the coal gangue
logistics nodes in the underground integration technologies of the mining–dressing–
backfilling system. At the same time, when the number of iterations of PSO algorithm
is larger, the accuracy of the optimal solution is relatively higher, and then the initial
value assigned to the QNMs is better, and the PSO–QNMs algorithm can give full
play to its global fine search performance, and the search effect of the optimal solution
is better.

(2) According to the optimal function value output from the simulation experiment
results in Table 2, it can be concluded that the PSO–QNMs reduces the cost value by
about 42.8% compared with the PSO algorithm, indicating that the former has a good
approximation effect on the extreme value of the objective function of the coal gangue
logistics nodes model, and its accuracy can be improved by 100%.

(3) Comparing the three groups of the intelligent optimization algorithm logistics node
location diagram (Figures 5–7), it can be concluded that the PSO selects nonunique
coal gangue logistics system location nodes, and the output is not stable. How-
ever, the PSO–QNMs algorithm is able to select basically similar but extremely sta-
ble results. Therefore, the PSO–QNMs algorithm is more accurate and stable than
the PSO, which also demonstrates the superiority of the PSO in solving the nodes
in the coal and gangue transportation system of mining and separation within a
complex environment.

6. Node Location Decision System for Integration Technologies of the
Mining–Dressing–Backfilling System

Based on the research results, a node siting system for an integrated underground
mining–dressing–backfilling system in coal mines, referred to as MSBPS, was developed
as shown in Figure 8. This is a logistics system node siting output system that is closely
related to the research content of integrated deep underground mining, dressing, and
backfilling. It only needs to input the spatial location coordinates of specific known nodes
and the unit cost between each link, and calculates the solution independently to output the
requested optimal node location information, i.e., it can output the spatial coordinates of
node locations with one key. At the same time, it can obtain the three-dimensional spatial
location relationship between the requested node location and specific known nodes, with a
data export function and Chinese and English interface operation, which greatly simplifies
the complexity of outputting node locations. It provides a fast, convenient, and accurate
image and data export platform for locating nodes deep underground in an integrated
mining, dressing, and backfilling logistics system, and is an effective three-dimensional
dynamic system platform design tool for conducting further research on deep mining,
dressing, and backfilling.
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Figure 8. Main Interfaces of the node location decision system.

7. Conclusions

Based on the site selection of coal and gangue logistics nodes in the integration of
mining, separation, and filling, this paper provides an in-depth study and proposes an
improvement in the precise intelligent optimization algorithm of nodes in underground
integration technologies of a mining–dressing–backfilling system. Based on the poor local
search ability of the PSO algorithm and the instability of node output results, the PSO–
QNMs algorithm was proposed. This algorithm realized a fast and fine search of nodes
in the integrated logistics system of coal mining–dressing–backfilling under the action of
complex factors. The following main conclusions were obtained:

(1) Based on the complex coal mine environment in China, the relative positions of coal–
gangue separation and selection center, backfilling preparation center, and gangue
pocket are provided by combining the following components: practical engineering
background; mining–dressing–backfilling underground transportation system anal-
ysis; construction of coal gangue system node location model; and “high efficiency,
lowest cost” as the principal function of a variety of intelligent optimization algo-
rithms. It has practical guiding value in future use of the optimization algorithm of
node intelligence for complex underground systems.

(2) Based on the poor global convergence of the PSO algorithm, the PSO-QNMs algorithm
is proposed. The results of several groups of simulation experiments have shown
that the PSO-QNMs algorithm has stronger convergence than the PSO algorithm
in solving the node position of the mining-dressing-backfilling system in complex
environment, and the whole operation time is only 1/8 of that of the PSO.

(3) Based on the poor global convergence of the PSO algorithm, the PSO–QNMs algo-
rithm is proposed. The results of several groups of simulation experiments have
shown that the PSO–QNMs algorithm has stronger convergence than the PSO algo-
rithm in solving the node position of the mining–dressing–backfilling system in a
complex environment, and the whole operation time is only one-eighth that of the
PSO algorithm.

(4) In terms of objective function value, the PSO–QNMs algorithm reduces the cost value
by about 42.8% compared with the PSO, which optimizes the objective function value,
and improves the node optimization efficiency of the mining–dressing–backfilling
system within a complex underground environment.
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(5) By comparing the performance of the PSO and PSO–QNMs algorithms in the spatial
position coordinates and optimal solution of objective function of logistics nodes, it is
further confirmed that the PSO–QNMs algorithm is of high precision and provides
stable experimental output results. The superiority of the PSO–QNMs algorithm
to solve the intellectualized location of coal gangue logistics nodes under complex
environment is proven.

(6) Based on the research results, a node siting system for integrated underground mining,
processing, and charging systems in coal mines (referred to as MSBPS) was developed,
which is an effective tool for further research on three-dimensional dynamic platform
design for an integrated deep mining, processing, and charging system.
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