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Abstract: The widespread of composite structures demands efficient numerical methods for the
simulation dynamic behaviour of elastic laminates with interface delaminations with interacting
faces. An advanced boundary integral equation method employing the Hankel transform of Green’s
matrices is proposed for modelling wave scattering and analysis of the eigenfrequencies of interface
circular partially closed delaminations between dissimilar media. A more general case of partially
closed circular delamination is introduced using the spring boundary conditions with non-uniform
spring stiffness distribution. The unknown crack opening displacement is expanded as Fourier
series with respect to the angular coordinate and in terms of associated Legendre polynomials of
the first kind via the radial coordinate. The problem is decomposed into a system of boundary
integral equations and solved using the Bubnov-Galerkin method. The boundary integral equation
method is compared with the meshless method and the published works for a homogeneous space
with a circular open crack. The results of the numerical analysis showing the efficiency and the
convergence of the method are demonstrated. The proposed method might be useful for damage
identification employing the information on the eigenfrequencies estimated experimentally. Also, it
can be extended for multi-layered composites with imperfect contact between sub-layers and multiple
circular delaminations.

Keywords: elastic waves; boundary integral equation method; spring boundary conditions; laminate;
delamination; eigenfrequency; diffraction; damage; resonance.

1. Introduction

Widespread occurrence of composite structures in aerospace, aircraft, geophysics,
building construction as well as in high-performance products led to the growth of the
studies of the dynamics of various inhomogeneities or defects. Thus, crack analysis became
a natural task for engineering applications due to the importance of the detection of defects
and flaws known as delaminations. A special focus is on the interface delaminations,
which detection is more cumbersome due to the additional reflections from the interface
itself. If the faces of delaminations are partially closed, their identification becomes even
more labour-consuming. In particular, the determination of the wave resonances and
the eigenfrequencies or the natural frequencies has wide applications such as acoustic
spectroscopy, prediction of possible structural failure and non-destructive testing. Indeed,
wave propagation at the resonance frequencies exhibits itself in the larger resulting wave
amplitudes and wave localization, which can be employed for determining the shape and
properties of inhomogeneities using electromagnetic and acoustic waves [1]. Recently, local
defect resonances were employed in the matters of non-destructive testing. For instance,
inverse problems of the crack identification based on natural frequencies were studied
theoretically and experimentally for rods [2,3] and plates [4,5].
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From the mathematical point of view, wave resonances are related to the eigenfre-
quencies, the eigenvalues or the spectral points of the corresponding boundary-value
problem, which naturally causes the wave energy capturing and localization or resonance
blocking [6–11]. For the problems of analyzing wave resonances and scattering in an
unbounded domain with inhomogeneities, the boundary integral equations method (BIEM)
is among the most suitable, since the BIEM allows to employ Green’s matrices constructed
for unbounded media. Thus, analytical and semi-analytical methods, such as wave func-
tion expansion techniques [12], the ray theory and its modifications [13], the method of
bi-characteristics [14] and various other methods, are restricted to the specific geometry
or wavelengths. The purely numerical methods, e.g., the finite element method and the
finite difference method, are not so efficient for modelling an unbounded media. This
fact led to the development of novel hybrid methods, and a reasonable number of hybrid
approaches are based on the BIEM [15]. Two valuable reviews on the BIEM with relevant
references regarding numerical methods for determining the eigenvalues of elastodynamics
problems based on the BIEM can be found in [15,16]. It should be also noted that the BIEM
can also be efficiently applied for bounded domains: for example, Alves and Antunes [17]
applied the method of fundamental solutions for calculating the elastic resonance frequen-
cies and estimating the eigenmodes for the disk of some non-trivial shapes. Interface
delaminations are often modelled as infinitesimally thin cuts with zero stresses on the
crack faces, which corresponds to the open crack case. However, it might be significant
to take into consideration that the crack faces are not fully open, and they are in contact
without friction near the tips [18,19]. The interface delamination, in which the crack faces
adjacent to the crack tips can interact, are also called bridged cracks [20]. The crack surfaces
interaction can be modelled using the distributed spring model, which was introduced by
Rice and Levy [21] and Baik and Thompson [22] for static and dynamic cases respectively,
and it was experimentally validated recently in [23].

The BIEM is efficient for the solution of the scattering problem for strip-like [24–26],
penny-shaped [24,27–35], elliptic [36], rectangular [37,38] arbitrary shaped [39] cracks.
In the 1990s, location of the resonance poles or eigenfrequencies in the complex frequency
plane for an elastic space was investigated for circular crack [40], elliptical crack [41] as well
as rectangular and L-shaped cracks [38]. Boundary integral equations derived for a crack
in a homogeneous space can be uncoupled into two equations, which is not possible for
interface cracks between two dissimilar media. Apparently, for this reason, the properties
of interface cracks have not been studied so extensively. As far as the authors know,
the spectral properties of interface delaminations between dissimilar media and in the
case of partial contact between the faces of a delamination has not been investigated in a
three-dimensional case and the BIEM has not been yet extended to solve theses problems.

This work aims to develop an efficient method for modelling a wide class of delami-
nations, which can be further used in hybrid methods (an example can be found in [42])
for structural health monitoring and nondestructive evaluation. The study presents the
advanced BIEM based on the Fourier series expansion and the Hankel transform of Green’s
matrices suitable for the modelling wave scattering and the analysis of the eigenfrequen-
cies of an partially closed circular interface delamination. The advanced BIEM extends
previous BIEM implementations for circular cracks [28,29,40], where only an open crack
and a uniform partially closed delamination [40] in a homogeneous space were consid-
ered. In this study, more general formulations based on the spring boundary conditions
(SBCs) are employed, which allows for simulating partially closed delaminations with
non-uniform partial contact between faces. Another novelty of the presented BIEM is in
the consideration of interface delamination between two dissimilar media. The presented
BIEM is compared with Krenk and Schmidt [28], Kundu and Boström [29] for a homoge-
neous space with circular delamination and the meshless method based on the BIEM [39]
for dissimilar media. The results of the numerical analysis showing the efficiency of the
method are demonstrated.
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2. The Boundary Integral Equation Method
2.1. Formulation of the Problem

Let us consider steady-state harmonic motion of two dissimilar elastic isotropic half-
spaces with an interface single delamination. The values related to the lower and upper
half-spaces (z ≶ 0) are denoted by indices 1 and 2 respectively. The harmonic multiplier
e−iωt with angular frequency ω is conventionally omitted below. Material properties of
each of the half-spaces Vj are defined by the mass density ρj, Poisson’s ratio νj and Young’s
modulus Ej. The longitudinal and transverse wave velocities, respectively, take the form

cLj =

√
Ej(νj − 1)

(2νj − 1)(νj + 1)ρj
, cTj =

√
Ej

2(νj + 1)ρj
. (1)

Hereinafter, the index j indicating a half-space is omitted whenever possible.
In this study, a circular delamination Ω of radius a is addressed. Therefore, it is

convenient to introduce a cylindrical coordinate system x(r, θ, z) as shown in Figure 1.
The displacement vector u = {ur, uθ , uz} is expressed in terms of the potential functions
ψ1, ψ2 and ψ3 in the form

ur =
∂ψ3

∂r
+

∂2ψ2

∂r∂z
+

1
r

∂ψ1

∂θ
,

uθ =
1
r

∂ψ3

∂θ
+

1
r

∂2ψ2

∂θ∂z
− ∂ψ1

∂r
,

uz =
∂ψ3

∂z
−
(
∇2 − ∂2

∂z2

)
ψ2,

where

∇2 =
1
r

∂

∂r
+

∂2

∂r2 +
1
r2

∂2

∂θ2 +
∂2

∂z2 .

r

r = a

z

(r, θ, z)

θ

V
2

V
1

Ω

Figure 1. Statement of the problem.

The tangential and normal components (traction vector) of stress-tensor
τ = {σrz, σθz, σzz} are expressed in term of the components of the displacement vector u as
follows

σrz =
E

2(ν+1)

(
∂uz

∂r
+

∂ur

∂z

)
, σθz =

E
2(ν+1)

(
1
r

∂uz

∂θ
+

∂uθ

∂z

)
,

σzz =
E

(2ν−1)(ν+1)

(
(ν− 1)

∂uz

∂z
+ ν

(
∂ur

∂r
+

1
r

ur +
1
r

∂uθ

∂θ

))
.
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In a cylindrical coordinate system, three governing equations of motion are three
Helmholtz equations:

∇2ψ3 + k2
Lψ3 = 0, ∇2ψi + k2

Tψi = 0, i = 1, 2. (2)

written in terms of the wavenumbers of the longitudinal and trasnverse waves
kp = ω/cp, p = T, L for each half-space. The continuity of the displacement and the traction
vectors is assumed at the interface between two half-spaces except the delaminated zone Ω:

[τ](x) = [u](x) = 0, z = 0 \Ω. (3)

Here square brackets [ f ] denote an operator a jump of function f at the interface:

[ f ](x) = lim
δ→0

( f (r, θ, z + δ)− f (r, θ, z− δ)).

Since the considered interface damage Ω can be of various types (an open crack,
a bridged crack or a partially closed crack), the SBCs are stated in the delaminated
domain Ω:

τ1(x) = τ2(x) = κ(r) · ∆u(x), x ∈ Ω. (4)

Here 4u(x) = u1(x)− u2(x) is the crack opening displacement (COD) vector, κ is
three-by-three stiffness matrix, which is a function of the radial coordinate r.

Total wave-field in the media can be represented as a sum of an incident wave-
field uin(x) and the wave-field usc(x) scattered by the delamination Ω. In this paper,
the solution method for an arbitrary incident wave-field is presented, but the numerical
examples are demonstrated for the scattering of the incident plane waves incoming from
the lower half-space.

2.2. Solution of an Auxiliary Problem for Each Half-Space

To construct the scattered wave-field, an auxiliary problem for an elastic half-space
with a given surface load q is considered, i.e.,

τ|z=0 = q(r, θ) = {q1, q2, q3}.

The wave-fields excited by the surface load q has an integral representation via the
Green’s matrix k(x, ω) and surface load [28,43], which are derived below using the Hankel
transform and Fourier series expansion.

An integral representation of the wave-field can be constructed using expansion of the
solution in the form of the Fourier series over the angular coordinate θ:

ψ1(r, θ, z) =
∞

∑
m=0

(
ψ1m

1 (r, z) sin(mθ)− ψ2m
1 (r, z) cos(mθ)

)
,

ψ2(r, θ, z) =
∞

∑
m=0

(
ψ1m

2 (r, z) cos(mθ) + ψ2m
2 (r, z) sin(mθ)

)
,

ψ3(r, θ, z) =
∞

∑
m=0

(
ψ1m

3 (r, z) cos(mθ) + ψ2m
3 (r, z) sin(mθ)

) (5)

Since we deal with half-space, the limiting absorption principle is chosen for the
uniqueness [44]. The substitution of (5) into (2) and the application the Hankel trans-
form with respect to the radial coordinate r gives the following expansion coefficients
for half-space
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ψnm
1 (r, z) =

∞∫
0

Ψnm
1 (α)e−γ2|z| Jm(αr)α dα,

ψnm
2 (r, z) =

∞∫
0

Ψnm
2 (α)e−γ2|z| Jm(αr)α dα,

ψnm
3 (r, z) =

∞∫
0

Ψnm
3 (α)e−γ1|z| Jm(αr)α dα,

(6)

where conditions Im γn ≥ 0, Re γn ≤ 0 must be satisfied for γ1 =
√

α2 − k2
L, γ2 =√

α2 − k2
T and functions Ψnm

i are determined from the boundary conditions on the
surface z = 0.

Following [28,45], the displacement and the traction vectors can also be expanded into
Fourier series:

u(r, θ, z) =
2
∑

n=1

∞
∑

m=0
Υnm(θ)unm(r, z),

τ(r, θ, z) =
2
∑

n=1

∞
∑

m=0
Υnm(θ)τnm(r, z),

(7)

written in terms of diagonal matrices:

Υ1m(θ) = diag{cos(mθ), sin(mθ), cos(mθ)},
Υ2m(θ) = diag{sin(mθ),− cos(mθ), sin(mθ)},

and the expansion coefficients:

unm
r (r, z) =

∂ψnm
3 (r, z)

∂r
+

∂2ψnm
2 (r, z)
∂r∂z

+
m
r

ψnm
1 (r, z),

unm
θ (r, z) = −m

r

(
ψnm

3 (r, z) +
∂ψnm

2 (r, z)
∂z

)
−

∂ψnm
1 (r, z)

∂r
,

which are expressed via functions (6). Using recurrent formulae for the Bessel functions:(
∂

∂r
+

m
r

)
Jm(αr) = αJm−1(αr),

(
∂

∂r
− m

r

)
Jm(αr) = −αJm+1(αr),

the following integral representations for all the potentials can be obtained

(
∂

∂r
+

m
r

)
ψnm

i (r, z) =
∞∫

0

Ψnm
i (α)e−γ|z|αJm−1(αr)α dα,

(
∂

∂r
− m

r

)
ψnm

i (r, z) = −
∞∫

0

Ψnm
i (α)e−γ|z|αJm+1(αr)α dα.

For the Fourier series expansion coefficients in (7) one can obtain the following relations

(unm
r + unm

θ )(r, z) =
(

∂

∂r
− m

r

)(
ψnm

3 (r, z) +
∂ψnm

2 (r, z)
∂z

− ψnm
1 (r, z)

)
,

(unm
r − unm

θ )(r, z) =
(

∂

∂r
+

m
r

)(
ψnm

3 (r, z) +
∂ψnm

2 (r, z)
∂z

+ ψnm
1 (r, z)

)
,

(τnm
rz + τnm

θz )(r, z) =
E

2(ν + 1)

(
∂unm

z
∂r

+
1
r

∂unm
z

∂θ
+

∂unm
r

∂z
+

∂unm
θ

∂z

)
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(τnm
rz − τnm

θz )(r, z) =
E

2(ν + 1)

(
∂unm

z
∂r
− 1

r
∂unm

z
∂θ

+
∂unm

r
∂z
−

∂unm
θ

∂z

)
.

Accordingly, it makes sense to introduce the following vectors

ûnm(r, z) = {unm
r + unm

θ , unm
r − unm

θ , unm
z },

τ̂nm(r, z) = {τnm
rz + τnm

θz , τnm
rz − τnm

θz , τnm
zz }.

(8)

Further, it is natural to represent also the traction vector q(r, θ) in the form of a Fourier
series expansion as

q(r, θ) =
∞

∑
m=0

2

∑
n=1

Υnm(θ) · qnm(r),

and construct

q̂nm(r) = {qnm
1 (r) + qnm

2 (r), qnm
1 (r)− qnm

2 (r), qnm
3 (r)}

from the expansion coefficients.
Finally, the integral representation of the wave-fields in each half-space excited by an

arbitrary surface load is written

ûsc, nm
j (r, z) =

∫
Γ

Jm(αr) ·Kj(α, z) · Q̂nm
(α)α dα, (9)

where the matrix Jm(αr) = diag{Jm+1(αr), Jm−1(αr), Jm(αr)} is the diagonal matrix of
Bessel functions and the Hankel transform Q̂nm of the expansion coefficients for the surface
load q̂nm also has an integral representation:

Q̂nm
(α) =

∞∫
0

Jm(αr) · q̂nm(r)r dr.

The Hankel transform of Green’s matrix K̂j(α, z) for the rearranged traction vector
q̂ is constructed in the same manner as in [46], but in cylindrical coordinates, see [35] for
more details.

2.3. Solution of the Boundary Integral Equation

Next, the solutions for two auxiliary problems for each half-space are employed to
formulate the boundary integral equation for the delamination occupying domain Ω. Thus,
the Hankel transforms of the components of the traction vector at the common interface
between two half-spaces can be expressed in terms of the Hankel transform of an unknown
displacement jump ∆ûnm:

Q̂nm
(α) =

[
K̂1(α, 0)− K̂2(α, 0)

]−1∆Ûnm
(α) = L̂(α) · ∆Ûnm

(α).

In the case of delamination, the latter is the crack opening displacement (COD).
Substitution of the integral representations of the scattered wave-fields (9) into the

boundary conditions (3) and (4) leads to the boundary integral equation:

∞∫
0

Jm(αr) · L̂(α) · 4Ûnm
(α)dα−κ(r) · 4ûnm(r) = −τ̂in,nm(r), r ≤ a. (10)

Following [28,29,45], the COD is expanded in terms of associated Legendre polynomi-
als of the first kind Pm

k

4ûnm(r) =
∞

∑
k=0

φm
k (r)c

nm
k .
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Here diagonal matrices

φm
k (r) = diag{φm

1k(r), φm
2k(r), φm

3k(r)},

φm
1k(r) =

Pm+1
m+2k+2(

√
1− r2/a2)

Pm+2
m+2k+2(0)

, φm
2k(r) =

Pm−1
m+2k(

√
1− r2/a2)

Pm
m+2k(0)

,

φm
3k(r) =

Pm
m+2k+1(

√
1− r2/a2)

Pm+1
m+2k+1(0)

are introduced for brevity. It should be mentioned that due to the properties of associated
Legendre polynomials, an amendment in the indices is required for m = 0:

φ0
1k(r) =

P1
2k+2(

√
1− r2/a2)

P2
2k+2(0)

, φ0
2k(r) = φ0

1k(r),

φ0
3k(r) =

P0
2k+1(

√
1− (r/a)2)

P1
2k+1(0)

.

The Hankel transforms Φm
1k(αa) of the basis functions φm

1k(r) are expressed in terms of
Bessel functions Jm. Taking into account the equality J−1 = −J1, the following relations can
be obtained for m = 0

Φ0
1k(αa) =

a∫
0

φ0
1k(r)J1(αr)rdr = (−1)k

√
πa
2

J2k+5/2(αa)
α3/2 ,

Φ0
2k(αa) =

a∫
0

φ0
1k(r)J−1(αr)rdr = −Φ0

1k(αa),

Φ0
3k(αa) =

a∫
0

φm
3k(r)J0(αr)rdr = (−1)k

√
πa
2

J2k+3/2(αa)
α3/2 ,

and for m ≥ 1

Φm
1k(αa) =

a∫
0

φm
1k(r)Jm+1(αr)rdr = (−1)k

√
πa
2

Jm+2k+5/2(αa)
α3/2 ,

Φm
2k(αa) =

a∫
0

φm
2k(r)Jm−1(αr)rdr = (−1)k

√
πa
2

Jm+2k+1/2(αa)
α3/2 ,

Φm
3k(αa) =

a∫
0

φm
3k(r)Jm(αr)rdr = (−1)k

√
πa
2

Jm+2k+3/2(αa)
α3/2 .

The employment of the Bubnov-Galerkin scheme allows discretizing the system of
boundary integral Equation (10):

∞

∑
k=0

(
Am,L

kk′ + Am,κ
kk′

)
· cnm

k = gnm
k′ , m = 0, 1, 2, . . . (11)

Am,L
kk′ =

∞∫
0

Φm
k′ (α) · L̂(α) ·Φ

m
k (α)αdα,

Am,κ
kk′ = −

a∫
0

φm
k′ (r) ·κ(r) ·φ

m
k (r)rdr,

gnm
k′ = −

a∫
0

φm
k′ (r) · τ

in,nm(r)rdr.



Mathematics 2022, 10, 38 8 of 20

Here Φm
k (α) is the Hankel transform of the matrix φm

k = {φm
1k, φm

2k, φm
3k}, the first term

in the right-hand side Am,L
kk′ describe the behaviour of an open crack, whereas the second

term Am,κ
kk′ takes into account the interaction of the faces of the delamination modelled

employing the distributed spring with stiffness κ(r).
Using discretized form (11) of boundary integral Equation (10), one can write that the

eigenfrequencies ω̂ satisfy one of the following equations:

det
[
Am,L

kk′ (ω̂) + Am,κ
kk′ (ω̂)

]
= 0, m = 0, 1, 2, . . . .

Therefore, the eigenfrequencies of circular interface delaminations can be separated
into different classes in accordance with the order m of the trigonometric functions in
series (5). Accordingly, the eigenfrequencies ω̂m

n are enumerated using two indices. For sim-
plicity, the normalized eigenfrequencies k̂m

n = ω̂m
n a/cT1 are employed further.

2.4. Far-Field Asymptotic

The direct calculation of the scattered wave-field ûsc, nm
j (r, z) in the form of (9) gives

significant oscillation due to to the behaviour of the integrand. Besides, it is also necessary to
take into account the integral contours. On the other hand, asymptotic representations of the
scattered wave-fields in the far-field zone can be determined considering the contribution
of stationary points into the values of the oscillating integrals [39]. An introduction of
spherical coordinates is preferable for constructing the far-field asymptotics:

r = R sin ϑ, θ = θ, z = R cos ϑ,

where 0 ≤ ϑ ≤ π
2 corresponds to the upper half-space, and −π

2 ≤ ϑ ≤ 0 corresponds
to the lower half-space. The oscillation of the integrand in (10) grows with R increases,
which greatly complicates the calculation of integrals. The dominating integral function
of the form eiωRC can be explicitly distinguished by the asymptotic method. For this,
it is required to determine the contribution of critical points into the asymptotic of the
oscillating integrals, which includes stationary points of the exponents (phase function),
poles and branching points.

The displacement vector for the circular crack in the spherical coordinates is rewritten
as follows:

u(R, θ, ϑ) =
2

∑
n=1

∞

∑
m=0

Υnm(θ) · C−1 · ûnm(R, ϑ), (12)

where

C =

 1 1 0
1 −1 0
0 0 1


is the transfer matrix for the rearranged displacement vector in (8). If the decomposition of
the Hankel transform of Green’s matrices K̂j for the media z ≷ 0 in the form

K̂j(α, z) =
2

∑
p=1

K̂pj(α)e
−γp j |z|,

is substituted into (9), the following expression for (12) can be deduced:

u(R, θ, ϑ) =
2

∑
j=1

uj(R, θ, ϑ) =
2

∑
j=1

2

∑
n=1

∞

∑
m=0

Υnm(θ) · C−1 · ûnm
j (R, ϑ). (13)
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Here, uj(R, θ, ϑ) describes scattered longitudinal (j = 1) and transverse (j = 2) waves
in terms of integral representations

ûnm
j (R, ϑ) =

2

∑
p=1

∫
Γ

Jm(αR sin ϑ) · K̂pj(α) · L̂(α) · ∆Ûnm
(α)e−γp jR| cos ϑ|αdα. (14)

In integral representation (14), the explicit dependence on α has the form

e−γp j |R cos ϑ| = e
(−1)(j+1)iR cos ϑ

√
k2

p j−α
.

The integration contour Γ+ can be split up into two parts for each term in (14):
Dp j = {|α| < kp j} ∩ Γ+ and Γ+/Dp j. In Dp j, the exponential e−γp j |R cos ϑ| becomes purely
imaginary, whereas it is purely real outside Dp j. Since the contribution of limiting points in
the values of the integrals (14) decay faster than O(R−1), it is enough to apply the method
of stationary phase [47]. Thus, the phase functions

s1(α) = α sin ϑ− (−1)j cos ϑ
√

k2
p − α2,

s2(α) = −α sin ϑ− (−1)j cos ϑ
√

k2
p − α2

have stationary points αp j = kp j sin ϑ. Using the relation between Bessel function and
Hankel functions of the first and the second kind (H1

k and H2
k ) and their asymptotic repre-

sentations at R→ ∞ [48]:

Jk(R) =
1
2

(
H1

k (R) + H2
k (R)

)
≈ 1√

2πR

(
ei(R− kπ

2 −
π
4 ) + e−i(R− kπ

2 −
π
4 )
)

,

the contribution of nondegenerate stationary points αp j into the asymptotics of the integrals
as R→ ∞ can be determined. According to the stationary phase method [47], the dominant
term of the asymptotics of ûnm given by (12) in the far-field zone (R >> 1) has the form

ûnm
j (R, ϑ) ≈

2

∑
p=1

bnm
p j (θ, ϑ) eiRkp j /R,

where
bnm

p j (θ, ϑ) = | cos ϑ| kp j Ĵm · ˆ̂Kj(αp j) · L̂(αp j) · ∆Û(αp j),

Ĵm = diag
{

e−i π(m+1)/2, e−i π(m+1)/2, e−i πm/2
}

.

3. Convergence and Comparison

The advanced BIEM code has been implemented in Fortran 90 and numerically vali-
dated (see Sections 3.1 and 3.2). Properties of the materials used further for the numerics
are given in Table 1. In the case of a homogeneous space, glass is chosen to compare
with [28,29,40]. If two dissimilar half-spaces are considered, then the lower half-space has
material properties of aluminium and the upper half-space has properties of polycarbonate.

Table 1. Material properties.

Material Young’s Modulus E,
GPa Poisson’s Ratio, ν Density, ρ, kg/m3

Glass 69.15 0.25 2770
Aluminium 70 0.33 2700

Polycarbonate 2.38 0.36 1200

Components of the diagonal spring stiffness matrix κ used in the SBCs can be chosen
differently, e.g., following [31,49,50], where the ratios between normal and tangential
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stiffnesses were estimated. However, since the study focuses on the numerical aspects
of the BIEM for partially delaminated zones, the equality of the three components of the
stiffness matrix has been assumed for the numerics below:

κ(r) = κ(r)I3.

The proposed BIEM allows to simulate arbitrarily distributed spring stiffness, for the
numerical analysis spring stiffness defined via the following representation has been chosen

κ(r) =



κ0 r < a− 2∆ a

κ0 +
κtip − κ0

2
·
(

r− a + 2∆a
∆a

)2
a− 2∆a < r < a− ∆ a

κtip +
κ0 − κtip

2
·
(

a− r
∆a

)2
a− ∆a < r < a

The latter allows to investigate four kinds of delaminations, which are assumed as the
most natural [51]: an open crack, a bridged crack, a uniformly partially closed delamination
and a bridged delamination. In a generalized case of a bridged delamination (∆a 6= 0 and
κ0 6= κtip), while for three other types some conditions are assumed. The typical plots for
the all four cases are shown in Figure 2 and the conditions for the considered type of cracks
are listed in Table 2.

S
ti

ff
n

es
s,

 κ

0 aa - 2∆a a - ∆a 

r

κ0

0

κtip

(κ0 + κtip)/2
κtip/2

Bridged delamination

Open crack

Uniformly partially closed delamination
Bridged crack

Figure 2. Stiffness variation for four kinds of delamination under consideration.

Table 2. The characteristics of four kinds of delaminations considered in the study.

Open Crack Bridged Crack Uniformly Partially Bridged Delamination

Closed Delamination (the Most General
Case)

κ0 = κtip = 0 κ0 = 0, κtip 6= 0 κ0 = κtip 6= 0 κ0 6= κtip

∆a = 0 ∆a 6= 0 ∆a = 0 ∆a 6= 0

3.1. Crack Opening Displacement and Wave-Fields

First, the presented BIEM has been compared with the results obtained by Kundu and
Boström [29] and Krenk and Schmidt [28]. Figure 3 depicts the amplitudes of the COD
vector |∆u| for an open circular crack in a homogeneous glass space induced by for the
normally incident longitudinal wave at kT2a = 10. This figure illustrates a good agreement
of the presented BIEM with the meshless method [39] and the results of [29], which are
also shown in Figure 3. The far-field asymptotic can also be validated via the comparison
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with [28], where a homogeneous space was considered. Figure 4 exhibits the amplitudes
|uj(103, θ = π/2±π/2, ϑ)|R/a2, i.e., in the plane x1Ox3, and a very good coincidence with
the results obtained by Krenk and Schmidt [28] is observed for R/a > 10. In Figure 4, value
R/a = 103 has been used, while it should be mentioned that the results are almost the same
for R/a > 10 due to the same normalization.

Two more examples of the comparison of the presented advanced BIEM with the
meshless method [39] for circular delaminations are exhibited in Figures 5 and 6. In these
figures, two contour plots show the vertical components of the COD |4u3(x1, x2)| of a
circular open crack calculated using the present BIEM and the meshless approach [39] in
the case of the incident the SV-wave at 30◦ angle to plane x3 = 0 and 90◦ angle to plane
x2 = 0 for homogeneous glass (Figure 5) and for aluminium/polycarbonate (Figure 6) at
kT2a = 20. The meshless method [39] gives an integral estimation of the COD, which allows
achieving a good convergence for the solution in a far-field zone or the average COD, but it
leads to a slow convergence for the COD itself. Therefore, the proposed advanced BIEM
provides a more accurate solution with lower computational costs for the COD compared
to the meshless method [39].

0
0

0.4

0.5 1
r / a

|∆u|

|uin|

Kundu T. and Boström A., 1991

N  = 12N  = 8N  = 6

Spectral BIEM,   N  = 15

Meshless (1177 nodal points)

Figure 3. Amplitudes of the COD |∆u| of an open circular crack in the elastic space with Poisson’s
ratio ν = 0.25 for the normally incident longitudinal wave at kT2a = 10: comparison with [29].

a) Scattered transverse waves, |u
2
|R/a2 b) Scattered longitudinal waves, |u

1
|R/a2

BIEM Krenk S. and Schmidt H., 1982

ϑϑ

0°180°

135° 45°

-45°

-90°

225°

90°

0°180°

135° 45°

-45°

-90°

225°

90°

1.0
0.5

1.0

0.5

Figure 4. Amplitudes of transverse |u2(103, θ = π/2 ± π/2, ϑ)| (a) and longitudinal |u1(103,
θ = π/2± π/2, ϑ)| (b) waves scattered by an open circular crack in the elastic space (glass) for
the obliquely incident transverse SV-wave (incidence angle 30◦ to the plane x3 = 0 and 90◦ angle to
plane x2 = 0 at kT2a = 2. Comparison with [28].
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Figure 5. Amplitudes of the vertical components of the COD |4u3(x1, x2)| of a circular open crack
calculated using the present BIEM and the meshless approach [39] for the transverse wave incident
at 30◦ angle to plane x3 = 0 and 90◦ ayngle to plane x2 = 0: space made of glass, kT2a = 20.

Figure 6. Amplitudes of the vertical components of the COD |4u3(x1, x2)| of a circular open crack
calculated using the present BIEM and the meshless approach [39] for the transverse wave incident
at 30◦ angle to plane x3 = 0 and 90◦ angle to plane x2 = 0: two half-spaces made of aluminium and
polycarbonate, kT2a = 20.

Figure 7, where the amplitudes of the COD vector |4u(x1, 0)| for the same parameters
as in Figure 6 are shown, demonstrates that the BIEM has rather fast convergence for all
kinds of delaminations under study. A fast convergence rate is provided by diagonal
dominance in the left-hand side matrix, which becomes stronger if κ 6= 0. Figure 7 also
illustrates the fact that scattering by a uniformly partially closed delamination and bridged
delamination is rather similar.
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|∆
u

 |

-1.0 1.00
x

1
 / a

0

90

|∆
u

 |

0

90

N = 19N = 14N = 9N = 4

-1.0 1.00
x

1
 / a

a) Open crack b) Uniformly partially closed delamination

c) Bridged crack d) Bridged delamination

Figure 7. Amplitudes of the COD |4u(x1, 0)| of circular delaminations for a transverse wave incident
at 30◦ angle to plane x3 = 0 and 90◦ angle to plane x2 = 0: two half-spaces made of aluminium and
polycarbonate, kT2a = 20.

3.2. Eigenfrequencies

The eigenfrequencies of an open circular crack in the homogeneous space made of
glass calculated by the present BIEM have been compared with [41], where the first three
eigenfrequencies were computed using Padé approximations: the results of comparison
are given in Table 3. In this table, three decimal places are given to compare with [41]. It
should be also noted that due to different introduction of the Fourier transform, the real
and imaginary parts of the eigenfrequencies calculated in this study and by Kaptsov and
Shifrin [41] change places.

Analysis of a partial contact between faces of delamination can be provided using
Figure 8, where trajectories of the eigenfrequencies k̂m

n (κ) of a circular uniformly distributed
delamination in an elastic space made of glass in the frequency complex plane are depicted.
Markers show the eigenfrequencies for intermediate values of κa/µ̂ (µ̂ = µ2 is the shear
modulus of the upper half-space). The obtained spectral points k̂n are also in agreement
with results obtained by Eriksson [40].

Table 3. Eigenfrequencies k̂0
n of an open crack in a homogeneous space (glass): comparison with [41].

The Present BIEM Padé Approximations [41]

1.639–0.595 i 1.639–0.595 i
4.394–0.658 i 4.351–0.713 i
2.445–3.786 i 2.308–3.850 i
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Figure 8. Eigenfrequencies k̂m
n (κ) of a circular uniformly distributed delamination in the elastic space

made of glass.

4. Resonance Frequencies and Wave Scattering
4.1. Open Crack

At first, an elastic space with an open crack is considered. Figure 9 shows the variation
of the values of real and imaginary parts of the eigenfrequencies k̂m

n with the increase of
Poisson’s ratio of elastic space. Markers of larger radius in Figure 9 correspond to larger
values of Poisson’s ratio, whereas the eigenfrequencies are given for the first four groups
and the first five modes, respectively. One can see that the eigenfrequencies are more or
less uniformly distributed along Imk̂ = 0 axis (see also Figure 8) and that the larger ν
the larger Rek̂m

n . The smallest attenuation, which is given as the imaginary part of the
eigenfrequency Imk̂m

n is achieved at ν = 0 for the majority of cases. At the same time,
the largest attenuation is usually observed in the vicinity of ν = 0.4, and the attenuation
decreases with the increase of Poisson’s ratio for ν > 0.4. The latter might be related with
the sufficient increase of the ratio

β = cLj/cTj =

√
2(νj − 1)
(2νj − 1)

between transverse and longitudinal velocities (1) with the increase of Poisson’s ratio if
ν > 0.4: β j(ν = 0.35) = 1.472, β j(ν = 0.4) = 1.732 and β j(ν = 0.45) = 2.345.

A similar analysis can also be performed for an open circular crack between two
dissimilar materials. The case of dissimilar half-spaces is even more complicated for the
analysis due to extra reflection by the interface itself and additional parameters (material
properties of the second media) to be taken into account. As an example, Figure 10 shows
the eigenfrequencies k̂0

n(ν1, ν2) for a circular crack between dissimilar elastic half-spaces
with identical densities (ρ1 = ρ2) and shear moduli (µ1 = µ2). In this case, an increase of
any of Poisson’s ratios also leads to the increase of the real part of eigenfrequencies Rek̂m

n . It
should be also mentioned that trajectories of k̂m

n do not change their behaviour qualitatively
in the case of dissimilar media.
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Figure 9. Eigenfrequencies k̂m
n for a circular crack in an elastic space with Poisson ratio ν.

4.2. Partially Closed Delamination

In this subsection, the eigenfrequencies and eigenforms of various circular delam-
inations are compared and analysed. The values of the first five eigenfrequencies k̂0

1 of
circular delaminations of the four kinds considered in the study are given in Tables 4–7.
Tables 4 and 5 demonstrate the eigenfrequencies for identical half-spaces and Tables 6 and 7
are for dissimilar media. The analysis confirms that the eigenfrequencies of uniformly
partially closed delamination are situated further from the real axis compared with an open
crack. The more general conclusion is that the larger the average value of spring stiffness
in the SBC for delamination, the further the eigenfrequencies from the real axis Imk̂ = 0.
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Figure 10. Eigenfrequencies k̂0
n(ν1, ν2) for a circular crack between dissimilar elastic half-spaces;

ρ1 = ρ2, µ1 = µ2.

Table 4. Eigenfrequencies k̂0
n for open and bridged cracks in a homogeneous space (glass).

Eigenfrequency Open Crack Bridged Crack
κ0a/µ̂ = 1

k̂0
1 1.6392–0.5953 i 1.7466–0.64183 i

k̂0
2 4.3935–0.6578 i 4.6709–0.7432 i

k̂0
3 7.2317–0.6316 i 7.6603–0.7813 i

k̂0
4 10.1194–0.6319 i 10.6579–0.8931 i

k̂0
5 12.9837–0.6171 i 13.5403–0.9960 i

Table 5. Eigenfrequencies k̂0
n for uniformly distributed and bridged delaminations in a homogeneous

space (glass).

Eigenfrequency
Uniformly Partially Bridged Delamination

Closed Delamination κ0a/µ̂ = 1
κ0a/µ̂ = 1 κtipa/µ̂ = 10

k̂0
1 2.0584–1.4232 i 2.1573–1.5158 i

k̂0
2 4.8814–1.2382 i 5.1249–1.3648 i

k̂0
3 7.7694–1.0692 i 8.1361–1.2518 i

k̂0
4 10.7511–0.9727 i 11.2040–1.2551 i

k̂0
5 13.6850–0.9271 i 14.1255–1.3010 i
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Table 6. Eigenfrequencies k̂0
n for open and bridged cracks between aluminium and polycarbonate.

Eigenfrequency Open Crack Bridged Crack
κ0a/µ̂ = 1

k̂0
1 1.7906–0.6232 i 1.8574–0.6560 i

k̂0
2 4.4101–1.2778 i 4.5683–1.3788 i

k̂0
3 7.5124–0.8703 i 7.7492–0.9939 i

k̂0
4 10.3327–1.2528 i 10.6380–1.5031 i

k̂0
5 13.4210–0.9257 i 13.7657–1.1810 i

Table 7. Eigenfrequencies k̂0
n for uniformly distributed and bridged delaminations between alu-

minium and polycarbonate.

Eigenfrequency
Uniformly Partially Bridged Delamination

Closed Delamination κ0a/µ̂ = 1
κ0a/µ̂ = 1 κtipa/µ̂ = 10

k̂0
1 2.1615–1.1530 i 2.2316–1.1970 i

k̂0
2 4.4559–1.7796 i 4.7643–2.0668 i

k̂0
3 7.7061–1.2261 i 8.0901–1.6362 i

k̂0
4 10.6059–1.7710 i 10.3337–2.3692 i

k̂0
5 13.8405–1.1542 i 14.2268–1.5495 i

The BIEM can also be employed for determining the resonance response of delam-
inations at the eigenfrequencies. Thus, Figure 11 exhibit the amplitudes of the non-zero
vertical components of the COD |∆u| corresponding to the resonance regimes of motion at
the first five eigenfrequencies k̂0

n, n = 1, 5 given in Tables 6 and 7 for interface delamina-
tions of the four considered kinds. An interesting conclusion can be made by analysing
Figure 11: maximal amplitudes are achieved in the centre of circular delamination for open
and bridged cracks, which are characterized by the stress-free boundary conditions in the
centre (κ0 = 0). On the other hand, the maximum values of the COD for uniformly partially
closed and bridged delaminations with (κ0 6= 0) are reached further from the centre of Ω.

|∆
u

 |

0 10.5
r / a

0 0.5 1
r / a

0

1

|∆
u

 |

0

1

1

n = 4n = 3n = 2n = 1 n = 5

a) Open crack b) Uniformly partially closed delamination

c) Bridged crack d) Bridged delamination

Figure 11. The amplitudes of the non-zero components of the COD |∆u| corresponding to the
resonance regimes of motion at the eigenfrequencies k̂0

n for interface delaminations of four kinds: two
half-spaces are made of aluminium and polycarbonate.

To give another example of the BIEM applicability for the solution of the problems of
non-destructive evaluation, the amplitudes |uj(103, θ = π/2± π/2, ϑ)| of the longitudinal
and transverse waves scattered by each of the four circular delaminations is depicted
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in Figure 12. Naturally, an open crack scatters more energy, so the amplitudes of the
scattered wave-fields are the largest compared to the three other cases in most of the
directions. Nevertheless, scattered transverse waves are larger for a uniformly partially
closed delamination and a bridged delamination within sectors 25◦ ≤ θ ≤ 60◦ and 134◦ ≤
θ ≤ 146◦. Such a piece of information might be useful for the damage identification
procedure, where the partially closed contact is taken into account.

0°180°

135° 45°

-45°

-90°

225°

90°

1.0

2.0

3.0

4.0

ϑ

a) Scattered transverse waves, |u
2
|R/a2 b) Scattered longitudinal waves, |u

1
|R/a2

Uniformly partially closed delamination

Bridged delaminationBridged crack

Open crack

1.0

0°180°

135° 45°

-45°

-90°

225°

90°

1.0

2.0

3.0

4.0

ϑ

Figure 12. Amplitudes of the transverse |u2(103, θ = π/2± π/2, ϑ)| (a) and longitudinal |u1(103,
θ = π/2± π/2, ϑ)| (b) waves scattered by a circular interface delamination for the transverse SV-
wave incident at 15◦ angle to plane x3 = 0 and 90◦ angle to plane x2 = 0: two half-spaces are made
of aluminium and polycarbonate, kT2a = 8.

5. Discussion

The present paper demonstrates that the proposed BIEM is an efficient tool for the
eigenfrequencies calculation and classification. The proposed advanced BIEM is more
efficient for eigenfrequencies calculation than the meshless method and the finite element
method, which demand more computational costs for the system composition and solution
as well as eigenfrequencies determination. However, some limitations of the presented
advanced BIEM should be also mentioned. At first, the presented BIEM is not suitable for
elliptical interface delaminations, which are also often evaluated in practice. Also, the pre-
sented method cannot be easily extended for interface circular damages in anisotropic
composites.

The authors believe that the proposed advanced BIEM will be useful for damage
identification because each delamination has a unique set of the spectral points or resonance
frequencies, which can be estimated from experimental data [4,5]. Besides, the introduction
of the SBCs allows to distinguish and identify more kinds of delaminations.

Several extensions with applications in the nondestructive evaluation are also possible.
Thus, in the presented BIEM formulation, the Hankel transforms of Green’s matrices are
constructed for two-layered media. The procedure can be naturally extended for multi-
layered composites, where the SBCs can also be formulated at the internal boundaries,
which allows simulating imperfect contact between sub-layers of a laminate due to adhesive
degradation [23]. Another possible extension of the advanced BIEM is an extension for
multiple circular delaminations (so-called impact-induced damage). For this purpose,
multiple damages might be introduced in a laminate interfaces in the form of a set of
delaminations, which will lead to the systems of the boundary integral equations for
each delamination.
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