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Abstract: In this paper, we propose a direct method for the synthesis of robust systems operating
under parametric uncertainty of the control plant model. The developed robust control procedures
are based on the assumption that the structural properties of the nominal system are conservated
over the entire range of parameter changes. The invariant-to-parametric-uncertainties transformation
of the initial model to a regular form makes it possible to use the concept of super-stable systems
for the synthesis of a stabilizing feedback. It is essential that the synthesis of super-stable systems is
carried out not on the basis of assigning eigenvalues to the matrix of the close-loop system, but in
terms of its elements. The proposed approach is applicable to a wide class of linear systems with
parametric uncertainties and provides a given degree of stability.

Keywords: parametric uncertainty; robust control; super-stability; regular form; decomposition

1. Introduction

The problem of stabilizing the state variables of dynamic automatic control plants
is a fundamental problem, the formulation and solution of which served as the basis for
the formation and development of control theory. Classical methods of control theory,
in particular modal control, are based on the assumption of an accurate description of
the mathematical model of the control process and the environment of its operation. In
reality, there is often parametric uncertainty in the mathematical model of control plants, in
particular due to the discarding of residual terms of higher order in the linearized models.
This leads to the need to consider a parametrically indeterminate model when synthesizing
feedback and to set the robust control problem. Many researchers are currently paying
increased attention to control problems in conditions of parametric uncertainty. The direct
way to solve the stabilization problem is to obtain estimates of unknown parameters of
the control plant model, either directly using the parametric identification theory [1,2], or
indirectly, based on the adaptation theory [3,4]. After obtaining estimates of unknown
parameters, it becomes possible to use well-developed modal control methods. Another
trend in solving the problem of stabilization of parametrically uncertain systems refers to
the currently actively developing theory of robust control, in which we can roughly define
two main fields: problems of analysis and problems of synthesis. Classical methods for an-
alyzing open-loop systems include results on interval stability of polynomials [5,6], robust
frequency methods [7], the D-partition technique [8], H∞ optimization methods [9], and
others. Direct and very effective methods of robust control include the use of sliding-mode
technique [10] and deep feedback [11]. Note that both methods provide the independence
of motions in the sliding mode (slow motions) only from the matching uncertainties. It
should be noted that usually on the problem statement step of these approaches, no as-
sumptions are made about the structural properties of the controllability of the system.
These methods of robust theory allow us to establish only the fact of system stability and
do not give a direct answer to the question of the nature of convergence, which reduces
their practical value.
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This paper considers a different approach to robust stabilization, where a guaran-
teed stability margin for linear stationary systems with interval parameter uncertainty is
achieved using linear state feedback. The methodological basis of the developed approach
is the synthesis of super-stable closed systems [12], and decomposition is based on the
transformation of the control plant model to a regular form [13]. It is essential that in
these approaches, the results are expressed in terms of matrix elements rather than their
eigenvalues. Possibilities for extending this approach are available by using the block
approach [14–16].

The paper has the following structure. Section 2 considers parametrically certain linear
stationary systems. As a methodological basis for further discussion, the procedure of
modal synthesis based on transformation to a regular form is presented. For the partic-
ular case of a regular form, which consists of two elementary subsystems, we formalize
a procedure for the synthesis of a stabilizing feedback that ensures super-stability of the
closed-loop system in the new coordinate basis and a guaranteed stability margin in the
initial system. Section 3 considers a significant practical class of linear stationary systems, in
which, for all values of uncertain parameters from intervals with known bounds, the struc-
tural controllability properties defined by the nominal system are conserved. For a class
of systems with a controllability indicator equal to two, we formalize rank requirements
for the structure of indeterminate matrices, in case of which the indeterminate system is
reduced to a regular form regardless of the unknown parameters. Sufficient conditions for
the feasibility of robust control are formalized. The procedure for synthesizing a stabilizing
feedback is also formalized. In this case, the super-stability of the system is ensured in the
coordinate basis of a regular form, and for the original system, a given stability margin is
provided in all intervals of uncertain parameters. Section 4 contains numerical examples to
illustrate the developed theoretical results.

2. Parametrically Certain Systems
2.1. The Elementary Control Problem

A mathematical model of a linear stationary control plant is considered

.
x = Ax + Bu, (1)

where x ∈ Rn is measurable state vector, u = col(u1, . . . , um) ∈ Rm is control vector;
A ∈ Rn×n, B ∈ Rn×m are constant known matrices, and pair (A, B) is controllable.

For system (1), there is a problem of stabilization by means of a linear static feedback

u = Fx, (2)

resulting in a closed-loop system

.
x = (A + BF)x = A0x. (3)

Typical for a linear system is the modal control problem, in which the choice of the
feedback matrix F ∈ Rm×n must assign a given spectrum σd to the closed-loop matrix

σd = σ(A0) =
{

λi ∈ C : det (λi In − A0) = 0, i = 1, n
}

, Reλi(A0) < 0, i = 1, n, (4)

which ensures asymptotic convergence of the state vector to the zero equilibrium position

lim
t→+∞

x(t) =
→
0 .

In Formula (4) and below, I is unit matrix of a given dimension.
In general, the following problems arise when solving the modal control problem:

(1) by assigning only eigenvalues in a closed system (3), it is not always possible to
achieve the desired transients of the state variables;
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(2) in multidimensional systems with vector control, there are certain computational
difficulties in synthesis, called the “curse of dimensionality”;

(3) full parametric certainty of the matrices A and B is required.

The first two problems can be solved in some special cases of system (1). These include
elementary systems with full-rank control.

Definition 1. System (1) is called elementary if the number of controls in it is not less than the
dimensionality of the state vector and the control matrix has a full rank:

dimu = m ≥ n = dimx, rankBn×m = n.

The synthesis problem in the elementary system is also called elementary, because the
feedback matrix is directly found from the matrix equation A + BF = A0, such as

m > n : F = B+(A0 − A); m = n : F = B−1(A0 − A), (5)

where in the first expression B+—pseudo-inverse matrix B, BB+B = B. In the elementary
system, the matrix B rows are linearly independent, hence Bn×mB+

m×n = In and B+ =

BT(BBT)
−1 [17].

Thus, in the elementary system, at first, the synthesis problem (5) is solved in terms of
matrix elements rather than their eigenvalues. Second, one can easily provide the desired
transients in all state variables by choosing a reference matrix of simple structure, in a
Jordanian form or diagonal form. In the latter case, the transient process of each state
variable will be monotonous with a given rate of convergence to zero, which is determined
by the values of the diagonal elements of the reference matrix.

The advantages of systems with full control are obvious, but in practice, usually the
control problem is not elementary. In the next subsection, the procedure of nonsingular
linear transformations is given, which allows extracting an elementary subsystem with full
control from the initial system of general form.

2.2. Synthesis of Modal Control Based on a Regular Form

We will consider the general case of system (1), where the number of controls is less
than the dimension of the state vector and 0 < rankBn×m = m0 ≤ m < n, i.e., out of n
matrix rows B only m0 are basic. For such a system, there is an equivalent representation in
a new coordinate basis, which is called a regular form (RF) with respect to the control [13,18].
In this form, the elementary subsystem with full control is singled out. The point of the
corresponding linear nonsingular transformation is grouping of basis rows and zeroing
linearly dependent rows of the matrix B.

Definition 2. A regular form with respect to the control vector is an equivalent representation of
system (1), rankBn×m = m0 ≤ m < n in the form of two subsystems

.
x1 = A11x1 + A12x2,
.
x2 = A21x1 + A22x2 + B2u,

(6)

which are obtained as a result of nonsingular variable change

Tx = x =

(
x1
x2

)
, detT(n×n) 6= 0, x1 ∈ Rn−m0 , rankB = rankB2 = dimx2 = m0

and similarity transformation

TAT−1 = A =

(
A11(n−m0)×(n−m0)

A12(n−m0)×m0

A21(m0×(n−m0))
A22(m0×m0)

)
, TB = B =

(
O(n−m0)×m
B2(m0×m)

)
.

Here and further in the text, O is the zero matrix of the corresponding dimension.
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The second subsystem of system (6) contains full-rank control, which is a condition
for the solution of the elementary control problem in this subsystem; similar to (5), pair
(A22, B2) is obviously controllable. In the first subsystem of system (6), which in the general
case is not elementary, the vector x2 is considered virtual control action. If system (1) pair
(A, B) is controllable, then due to invariance of the controllability property to nonsingular
linear transformations, this means that in the first subsystem of (6) the pair (A11, A12) is
also controllable.

Note that there can be several sets of basis rows in matrix B, so in general there are
several equivalent realizations of the regular form (6) for a particular system. They differ
by the values of the matrix elements A and B2, but all have the same structure, in that the
first subsystem has no control, and the second has a dynamic order m0 and is elementary.

Based on the regular form, the problem of synthesis of modal control is decomposed
into two successively solvable subproblems of lesser dimensions than the original system.
In the first subsystem n−m0 with virtual control x2, the problem of assigning a part of
a given spectrum (4) is solved. The derived linear local feedback is introduced by a non-
singular linear transformation, and the assignment of the second part of the spectrum is
provided by a real linear control u, meaning the elementary synthesis problem of dimen-
sion m0 is solved. As a result, a linear control law for the variables of the transformed
system will be obtained. Using the resulting transformation matrix, it should be presented
with respect to the state variables of the initial system in the form (2). According to the
property of invariance of the roots of the characteristic equation to nondegenerate linear
transformations, the characteristic polynomials (and hence the spectrum) of matrices of
closed-loop initial and transformed systems will be equal to each other. Let us present
these transformations in the form of a step-by-step description.

Procedure 1. Synthesis of modal control based on transition to a regular form.

1. Nonsingular transformation of system (1) to the regular form (6).

1.a. Grouping basis rows of the matrix B and forming matrix B2(m0×m).
If necessary, rearrange the matrix B rows in a way that m0 of its last rows are linearly

independent, and perform an appropriate variable change, in which the transformation
matrix is a permutation matrix Tp(n×n), detTp 6= 0:

TpB = B̃ =

(
B̃1
B2

)
,Tpx = x̃ =

(
x̃1
x2

)
,x̃1 ∈ Rn−m0 ,Tp AT−1

p = Ã =

(
Ã11 Ã12
Ã21 Ã22

)
,

rankB = rankB2 = dimx2 = m0.
(7)

System (1) will be represented in the following equivalent form:

.
x̃1 = Ã11 x̃1 + Ã12x2 + B̃1u,

.
x2 = Ã21 x̃1 + Ã22x2 + B2u. (8)

If no permutations are required, then Tp = I, and to obtain the system (8), the
appropriate notation is introduced.

1.b. Zeroing out the linearly dependent rows of a matrix B.
If in system (8) B̃1(n−m0)×m 6= O, then the matrix B̃1, which consists of linearly depen-

dent rows of a matrix B2, needs to be reset to zero. It is required that as a result of partial
change of the variables,

x1 = x̃1 − B∗2 x2, x1 ∈ Rn−m0 . (9)

In the new subsystem relative to x1 control was absent, as follows

.
x1 =

.
x̃1 − B∗2

.
x2 = (Ã11 − B∗2 Ã21)x̃1 + (Ã12 − B∗2 Ã22)x2 + (B̃1 − B∗2 B2)u⇒ B̃1 − B∗2 B2 = O.

From the resulting matrix equation, we have

m0 < m : B∗2 = B̃1B+
2(m×m0)

, B+
2 = BT

2 (B2BT
2 )
−1

; m0 = m : B∗2 = B̃1B−1
2(m×m)

. (10)
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The corresponding transformation of partial variable change (9) has the form

Ta B̃ = Ta

(
B̃1
B2

)
= B =

(
O
B2

)
,detTa(n×n) 6= 0, Ta x̃ = Ta

(
x̃1
x2

)
= x =

(
x1
x0

)
,Ta ÃT−1

a = A

, Ta =

(
In−m0 −B∗2(n−m0)×m0

Om0×(n−m0)
Im0

)
,T−1

a =

(
In−m0 B∗2(n−m0)×m0

Om0×(n−m0)
Im0

) (11)

and leads system (8) to the regular form (6). If in system (8) B̃1(n−m0)×m = O, it corresponds
exactly to the regular form (6) and Ta = I.

The sequence of the above transformations of system (1) to the regular form (6) is

Tx = Ta(Tpx) = x, T = TaTp, (12)

where some cases may be Tp = I and/or Ta = I. Clearly, the equality Tp = Ta = I occurs
in mathematical models that are initially of the regular form (6), and this situation is typical
of many practical applications.

Procedure 2. Decomposition synthesis of modal control based on RF.

2.a. Synthesis of fictitious control in the first RF subsystem.
We have to choose n−m0 values from a given spectrum σd (4) so as not to disconnect

complex-conjugate pairs, if any. If an odd n − m0 and/or m0 is required to break the
complex-conjugate pair, then the decomposition will have to be dropped, and a different
synthesis method should be used. Otherwise, this method will produce a complex feedback
matrix (2), which is not acceptable in practical applications.

If the above choice is possible, in the first subsystem of system (6) we form a linear
virtual control x2 = F1x1 and obtain the local feedback matrix

F1(m0×(n−m0))
:A1 = A11 + A12F1,σ(A1) ⊂ σd. (13)

Due to the controllability of the pair (A11, A12), this problem has a solution. In
the particular case rankA12 = dimx1 = n− m0 ≤ m0, when also the first subsystem is
elementary, then similarly to (5) we can assign in it both a given spectrum and a given
matrix of own movements. In the general case, problem (13) is not elementary, but the
dimensions of the desired matrix are smaller than when solving problem (3) in the original
system (1), (2), where dimF = m× n.

Remark 1. In many applications, the transition to the RF simplifies the synthesis procedure
sufficiently, and it is possible to simply represent the initial system in the form of two subsystems.
In general case for large-dimensional systems, one can continue the mentioned transformations
and in the first subsystem of (6) allocate in a similar way an elementary subsystem with respect
to virtual control x2, etc. As a result, the first subsystem of system (6) will be represented as
associated elementary subsystems (blocks) with full-rank virtual controls, which are the variables of
the following block. The form in this case is called the block form of controllability, on the basis of
which the synthesis problem is divided into consecutive elementary control problems [14].

In order to implement the local relation of variables that has been formed, we need to
introduce a mismatch between the real control and the selected virtual control by means of
partial variable change

x2 = F1x1, e1 := x1, e2 = x2 − F1x1, e2 ∈ Rm0 (14)

and the corresponding linear transformation

Tex =

(
x1
x2

)
= e =

(
e1
e2

)
, Te =

(
I(n−m) O(n−m0)×m0
−F1(m0×(n−m0))

Im0

)
,T−1

e =

(
I(n−m0)

O(n−m0)×m0
F1(m0×(n−m0))

Im0

)
,

detTe(n×n) 6= 0,Te AT−1
e = Ae =

(
A1 A12
C21 C22

)
,TeB = Te

(
O
B2

)
=

(
O
B2

)
.

(15)
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As a result, RF with local relation closed-loop will be obtained:

.
e1 = A1e1 + A12e2,
.
e2 = C21e1 + C22e2 + B2u.

(16)

2.b. Synthesis of real control by variables of transformed systems.
Next, the local feedback generated in the first subsystem of (16) must be provided

by the real control. For the second elementary subsystem of (16) we have to compose a
reference matrix A2(m0×m0)

with m0 with eigenvalues from the rest of the given spectrum
σ(A1) ∪ σ(A2) = σd, and form a feedback on the variables of the transformed system:

m0 < m : u = B+
2 (−C21e1 − C22e2 + A2e2) = Ke;

m0 = m : u = B−1
2 (−C21e1 − C22e2 + A2e2) = Ke.

(17)

System (16), with closed-loop by control (17), will take the form

.
e1 = A1e1 + A12e2,

.
e2 = A2e2. (18)

Its matrix has an upper triangular block structure(
A1 A12
O A2

)
and is stable according to (4), and its eigenvalues meet the characteristic equation det(λI −
A1)det(λI − A2) = 0.

2.c. A modal control law based on the state of the initial system.
Finally, based on (17), it is necessary to form a feedback on the variables of the original

systems (1) and (2), since it is these variables that are measured. By substitutions of variables
(7), (11), and (15), the resulting transformation matrix and the resulting modal control law
(2) are as follows:

TeTaTpx = e, u = Ke = Fx,Fm×n = KTeTaTp, (19)

which provides (3), (4), and a solution to the stabilization problem.
Modal control synthesis is complete.
As stated in subsection 2.a, full parametric certainty of the matrices A and B is required

to implement modal control, which limits its applicability in practical applications, as
models of real-world control plants often depend on unknown parameters.

In such cases, the requirements of the closed-loop system are relaxed, and the stability
margin, which is one of the key quality indicators of the transition process, is considered as
the target condition. The problem is to synthesize a linear feedback (2), which provides in
the closed-loop system (3) a stability margin not less than a given ηd > 0:

min{−Reλi(A + BF)}i=1,n = η ≥ ηd. (20)

As a methodological basis for problem (20), we will use the concept of super-stability
of the system, which is defined in terms of matrix elements using inequalities rather than
characteristic Equation (4), which is a precondition for using this concept in solving robust
control problems in systems with uncertain parameters.

Definition 3 ([12]). Matrix A = (aij) ∈ Rn×n and, consequently, the system
.
x = Ax are called

super-stable if A is a negative-diagonal-dominated matrix, i.e., all the elements of its main diagonal
are negative numbers aii < 0, i = 1, n, which are greater in absolute value than the sum of the
modules of the non-diagonal elements in the row:

min

{
−aii −

n

∑
j=1, j 6=i

∣∣aij
∣∣}

i=1,n

= ν > 0, (21)
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where ν has the meaning of a margin of super-stability.

The statements in Lemma 1 below are rather obvious. However, we will present a
rigorous proof of them, because they are important for further discussion.

Lemma 1. Any super-stable matrix A = (aij) ∈ Rn×n, (21) is Hurwicz, and its stability margin
min{−Reλi(A)}i=1,n = η > 0 is as much as the margin of her super-stability (21), i.e.,

η ≥ ν. (22)

Proof 1. According to Gershgorin’s theorem [17], each of the eigenvalues λ of matrix A

is always located in one of the circles of the complex plane |aii − λ| ≤
n
∑

j=1,j 6=i

∣∣aij
∣∣, i = 1, n

centered at aii and with a radius of
n
∑

j=1,j 6=i

∣∣aij
∣∣. Each eigenvalue λ of matrix A corresponds

to the eigenvector h:
n
∑

j=1
aijh = λh, i = 1, n. Let |hk| = max

i
|hi| > 0; then,

|akk − λ||hk| =
∣∣∣∣∣ n

∑
i,j 6=k

akjhi

∣∣∣∣∣ ≤ |hk|
n

∑
j 6=k

∣∣∣akj

∣∣∣ and |akk − λ| ≤
n

∑
j 6=k

∣∣∣akj

∣∣∣.
It follows that if the matrix A is super-stable and −akk >

n
∑

j 6=k

∣∣∣akj

∣∣∣, then each of its

eigenvalues lies in the left half-plane of the complex plane, i.e., matrix A is Hurwitz and its
stability margin is defined as η = −Reλ0 = min{−Reλi(A)} > 0.

Let λ0 be a real simple eigenvalue of the matrix A, to which corresponds the eigen-
vector h0 = (h1, . . . , hn)

T , λ0h0 = Ah0, and for the k-th (k = 1, 2, . . . , n) element we have:

λ0hk =
n
∑

j=1
akjhj. Let hk be an element with a maximum module h0: |hk| = max{|hi|}i=1,n.

Then, a fair estimate is |λ0||hk| ≥ |akk||hk| −
n
∑

j=1,j 6=k

∣∣∣akj

∣∣∣|hj| ≥ |hk|(|akk| −
n
∑

j=1,j 6=k

∣∣∣akj

∣∣∣) =

|hk|ν, whence it follows η = |λ0| ≥ ν, inequality (20) is satisfied. The case of Reλ0 corre-
sponds to a pair of complex-conjugate eigenvalues, and the estimate becomes |Reλ0||hk| ≥
|akk||hk| −

n
∑

j=1,j 6=k

∣∣∣akj

∣∣∣∣∣hj
∣∣ ≥ |hk|ν inequality (26) is satisfied.

In the case of an multiple-eigenvalue λ0, similar estimates hold for all linearly inde-
pendent eigenvectors corresponding to a given eigenvalue. Lemma 1 is proved. �

In a controllable linear system with certain parameters, it is always possible to achieve
stability with state feedback, but super-stability is rarely achieved due to a lack of control
actions. In this sense, the only obvious exceptions are elementary systems.

As it is shown in subsection 2.a, it is possible to provide any reference matrix A0,
including a super-stable one, in a closed-loop system using feedback (2) and (5), if the
parameters of the elementary system are known. Let us note that a diagonal matrix with
negative elements A0 = diag{ai}, ai < 0, i = 1, n is a special case of a super-stable matrix,
where min{|ai|} = min{−λi(A0)} = η = ν.

Let us distinguish a class of nonelementary linear systems, for the stabilization of
which with a given stability margin (20) we can interconnectively apply the concept of
super-stability and decomposition synthesis based on the transition to the RF. This class
includes a particular case of controllable systems (1), in which RF (6) will consist of two
elementary subsystems. The possibility of such a representation is contained in the rank
structure of the controllability matrix.
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If system (1), where 0 < rankBn×m = m0 ≤ m < n, is controllable, its controllability
matrix is of full rank:

rank(B AB A2B . . . An−m0 B)n×m(n−m0+1) = n. (23)

The rank structure of the controllability matrix (23) is characterized by a controllability
index and a controllability indicator [19]. If the rank of the controllability matrix (23) is
increased according to the following scheme:

rankB = m0 6= 0, rank(B AB) = m0 + m1, m0 ≥ m1 6= 0,
rank(B AB A2B) = m0 + m1 + m2, m1 ≥ m2 6= 0, . . . ,

rank(B AB . . . ArB) = m0 + m1 + . . . + mr, mr−1 ≥ mr 6= 0,
rank(B AB . . . ArB Ar+1B) = m0 + m1 + . . . + mr + 0⇒

⇒ rank(B AB . . . Ar+1B Ar+2B) = m0 + m1 + . . . + mr + 0 + 0,

(24)

then pair (A, B) corresponds to a specific set of natural numbers m0, . . . , mr:

rank(B AB . . . ArB) = m0 + m1 + . . . + mr = n, m0 ≥ m1 ≥ . . . ≥ mr, r ≤ n−m0, (25)

which are called the indexes of controllability of the pair (A, B). mi ∈ N, i = 0, r is
the number of linearly independent matrix columns AiB, which form the basis of the
controllability matrix, compiled according to the specified scheme; r + 1 is controllability
indicator of pair (A, B), the number of its controllability indices. �

Lemma 2. If the controllability matrix of a linear controlled system (1) has a controllability indicator
equal to two,

rankB(n×m) = m0 6= 0, rank(B AB)n×2m = m0 + m1 = n, m0 ≥ (n−m0), (26)

then, using the nondegenerate replacement of variables (12), system (1) will be represented in RF
(6), in which not only the second, but also the first subsystem will be elementary with respect to the
virtual control,

rankA12(n−m0)×m0
= n−m0. (27)

Proof 2. Let us rearrange the blocks of the controllability matrix (26) without performing a
rearrangement inside the blocks W(n×2m) = (A B B). For convenience, we denote AB = P.
Let us multiply this matrix from the left by the transition matrix to RF (12). According
to (7) and (12), the matrix obtained as a result of multiplication can be represented in the
following form:

TW = TaTp(P B) = Ta

(
P̃1 B̃1
P̃2 B2

)
=

(
P1(n−m0)×m O

P2 B2(m0×m)

)
= W,

where P1 = P̃1 − B̃1B+
2 P̃2. By design, rankW(n×2m) = n, and rankB = rankB2(m0×m) = m0.

When multiplied by the nonsingular matrix detT(n×n) 6= 0, the rank does not change and
rankW(n×2m) = n, which is why matrix P1 is of full rank:

rankP1(n−m0)×m = n−m0. (28)

Considering that the matrices Wn×2m and Wn×2m = TW are of full rank and consist of
linearly independent rows, there are pseudo-inverse matrices for them, and

W+
2m×n : WW+ = In, W+

= (TW)+ =

(
P+

1(m×(n−m0))
O

× B+
2(m×m0)

)
. (29)

In Formula (29) and further in the text, the symbol × denotes matrices, the type of
which does not affect the structural properties.
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Taking (27) into account, the similarity transformation of the matrix A to RF TAT−1 =
A can be represented as

TAT−1 = T AWW+ T−1 = T AW(TW)+ = (TAW)W+,

where TAW = TA(AB B) = T(A2B AB), AB = P. Then,

TAT−1 = (T(A2B AB))W+
=

(
× P1
× ×

)(
P+

1 O
× B+

2

)
=

(
× P1B+

2
× ×

)
=

(
A11 A12(n−m0)×m0

A21 A22

)
,

where A12(n−m0)×m0
= (P1B+

2 )(n−m0)×m0
due to (28), (29), and rank(P1B+

2 )(n−m0)×m0
=

n−m0, so equality (27) is satisfied. Lemma 2 is proved. �

Let us extend (without proof) the results of Lemma 2 to controlled systems of general
form (25).

A consequence of Lemma 2 is as follows. If condition (25) is satisfied in system (1),
then it can be represented in the block form of controllability, which consists of r + 1
elementary blocks of dimension m0, m1, . . . mr by a linear nonsingular transformation
Tx = (x1, . . . , xr+1), detT 6= 0, x1 ∈ Rmr , x2 ∈ Rmr−1 , . . . , xr+1 ∈ Rm0 . Matrix T can be
found by transforming the matrix W to the bottom-triangular block form with matrices of
full rank on the main diagonal:

TW = T(ArB . . . AB B) = W =


Pr . . . O O O
. . . . . . . . . . . . . . .

. . . P2 O O

. . . P1 O

. . . P0

, (30)

where rankP0(m0×m) = m0, rankPi(mi×mi−1)
= mi, i = 1, r.

Just as in the procedure of converting to the RF (6), the essence of the transformations
is that successively in each block B, AB, . . . , Ar−1B, one needs to group mi basis rows of
matrix Pi by transpositions (similar to (7)) and zero out the top linearly dependent lines
(similar to (11)). In this case, the leftmost block ArB can be discarded, since its elements do
not participate in the formation of the matrix T.

For the selected class of systems (1), (26), it is possible to provide a guaranteed stability
margin (24) by providing super-stability of the closed system (18) in a new coordinate basis,
where the reference matrices A1, A2 can be assigned arbitrarily. Selecting these matrices
diagonally

A1 = diag
{

a1
i

}
i=1, n−m0

, A2 = diag
{

a2
i

}
i=1, m0

, (31)

on the one hand, excludes the presence of complex-conjugate eigenvalues in the matrix
of the closed system, but, on the other hand, simplifies the computational aspect of the
synthesis. Then, for any parameters satisfying the non-strict inequalities

ν ≥ ηd, a1
i ≤ −(ν +

m0

∑
j=1

∣∣∣a12
ij

∣∣∣), A12 = (a12
ij ), i = 1, n−m0; a2

i ≤ −ν > 0, i = 1, m0, (32)

the closed-loop system (18) will be super-stable with a margin of super-stability ν ≥ ηd.
As it was noted, the property of super-stability is formulated in terms of matrix

elements (21) rather than their eigenvalues, so it is not invariant to linear transformations,
and the initial closed system (1), (19), (31), (32) in general case will not be super-stable.
However, because of (22), it guarantees stabilization with a stability margin at least equal
to the one given in (20).

In the next section, we consider the possibility of synthesis of robust control of para-
metrically uncertain systems in the context of the proposed approach.
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3. Parametrically Uncertain Systems
3.1. Elementary Control Problem

This section considers the problem of stabilization of linear stationary systems operat-
ing under interval parameter uncertainty

.
x =

(
A + Â

)
x +

(
B + B̂

)
u, x ∈ Rn, u ∈ Rm, m < n, (33)

where matrices elements A = (aij), i, j = 1, n, B = (bij), i = 1, n, j = 1, m, which define
the nominal system (1), are known, and pair (A, B) is controllable. Elements of matrices
Â = (âij) and B̂ = (b̂ij) are constant but unknown; their values belong to closed intervals
with known boundaries:

aijmin ≤ âij ≤ aijmax, i, j = 1, n; bijmin ≤ b̂ij ≤ bijmax, i = 1, n, j = 1, m.

In the following, to simplify the explanation, we will assume that the values of the
uncertain elements are in intervals symmetric with respect to zero

aij −
_
a ij ≤ aij + âij ≤ aij +

_
a ij, i, j = 1, n; bij −

_
b ij ≤ bij + b̂ij ≤ bij +

_
b ij, i = 1, n, j = 1, m. (34)

Then, the values of the matrix elements of the system (33) will be in closed intervals
with known bounds, symmetrical for the corresponding nominal values

aij −
_
a ij ≤ aij + âij ≤ aij +

_
a ij, i, j = 1, n; bij −

_
b ij ≤ bij + b̂ij ≤ bij +

_
b ij, i = 1, n, j = 1, m.

It is supposed that pair ((A + Â), (B + B̂)) is controllable in all acceptable intervals of
parameter uncertainty, and moreover, the rank structures of the controllability matrices of
the nominal system (1) and the parametrically perturbed system (33) are the same. This
requirement is due to practical considerations. The uncertain system model (33) describes
the functioning of a real control plant, and, for example, the failure to meet the condition
rank B = rank (B + B̂) indicates a “faulty” actuator or damaged communication with the
control plant.

In a general case, the solution of the modal control problem with the assignment of
a given spectrum (4) in the system (33) is not possible. We set the problem of synthesis
of linear feedback (2), providing stabilization of the system (33) at all acceptable values
of uncertain parameters (34) with stability margin not less than the given one ηd > 0, i.e.,
providing in a closed-loop system

min
{
−Reλi[(A + Â) + (B + B̂)F]

}
i=1,n = η ≥ ηd. (35)

We first investigate the possibility of solving the problem (35) for parametrically
uncertain elementary systems of two types. The first type of the considered elementary
systems are the systems with known control matrix

.
x = (A + Â)x + Bu, dimu = m ≥ n = dimx = rankB, (36)

which are obviously controllable. No additional requirements are imposed on them. Vari-
able states with uncertain coefficients cannot be compensated for by feedback, so the control
law can be formed in two ways:

u = Fx = B+(K− A)x or u = Fx = B+Kx, K = diag(ki)i=1, n. (37)

In (37) and below we consider the general case of a rectangular matrix B. In a special
case m = n, instead of B+, matrix B−1 should be used. The corresponding closed-loop
systems have the following form:

.
x = (K + Â)x or

.
x = (K + A + Â)x. (38)
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Obviously, the choice of matrix elements K can provide super-stability of systems (38)
with any stability margin ν > 0. To achieve the control goal (35), let us assume ν ≥ ηd.
Then, for any ki, satisfying the inequalities

ki ≤ −(η +
n

∑
j=1

_
a ij) or ki ≤ −(η + aii +

_
a ij +

n

∑
j=1, j 6=i

(
∣∣aij
∣∣+_

a ij)), i = 1, n, (39)

matrices of systems (38) will be super-stable (21), which due to (22) and ν ≥ ηd solves the
problem (35).

In practical applications, in order to save control resources, the first method of feedback
generation is recommended (37), and the calculated values of the super-stability margin
and ki take on the basis of equalities ν = ηd and (39).

Consider the general case of parametrically uncertain elementary systems

.
x = (A + Â)x + (B + B̂)u, dimu = m ≥ n = dimx = rankB, (40)

where the elements of the undefined matrices satisfy (34), but additional constraints must
be imposed on the matrix B̂ so that the system remains controllable.

Remark 2. In a first-order system
.
x = (a + â)x + (b + b̂)u, the condition b 6= 0 is added to a

basic requirement b + b̂ 6= 0. From a theoretical point of view, the situation is acceptable when
sign(b) 6= sign(b + b̂), and the problem (35) has a solution. However, in models of real control
plants the parameters have a certain physical meaning, so the following conditions are proposed:

b 6= 0, b + b̂ 6= 0 and sign(b) = sign(b + b̂)⇒ |b| >
_
b ⇔ 1 >

_
b /|b|. (41)

The conditions (41) are characteristic of adequate models of parametrically uncertain control plants,
in which the uncertainty intervals have “reasonable” bounds with respect to the nominal system
parameters.

Then, the control law
u = ksign(b + b̂)x (42)

will result in a closed-loop system
.
x = (a + â + k

∣∣∣b + b̂
∣∣∣)x, and the choice of gain based on

inequality k ≤ −(ηd + a +
_
a )/(|b| −

_
b ) provides a given margin of safety.

The condition under which the multidimensional system (40) is not only controllable,
but also preserves the structural property of the nominal system, namely, it remains
elementary, appears as

rankB = rank(B + B̂) = n. (43)

When making any of the requirements for uncertain matrices in (43) and below, it is
assumed by default that these requirements are met for all values of uncertain elements
from the allowable ranges (34).

However, as will be shown below, in the used approach the fulfillment of (43) is
necessary but not sufficient to solve the problem (35).

Due to the parametric uncertainty of the control matrix in system (40), even state
variables with certain coefficients cannot be compensated for by feedback, so we form a
one-parameter control law in the form

u = Fx = kB+Sx, k = const, S = diag{sign(1 + lii)}i=1, n, L(n×n) = B̂B+ = (lij) . (44)

From the form of the matrix of the closed-loop system (40), (44),

.
x = [A + Â + k(In + L)S]x , (45)
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the choice of matrix S is clear. It contains the signs of the diagonal elements of the matrix
I + L . The conditions for these signs to be constant for all acceptable values of the matrix
B̂ uncertain parameters are formulated in Lemma 3.

Lemma 3. If in system (45), the matrix In + L has a predominant diagonal

min{|1 + lii| −
n

∑
j=1, j 6=i

∣∣lij∣∣}
i=1,n

= µ > 0, (46)

there is a real number k such that for any real values of elements of matrix A, Â (34) and ν > 0, the
system (45) will be super-stable with an super-stability margin ν > 0.

Proof 3. In each i-th matrix row of system (45), we substitute k = ki, i = 1, n. The resulting
matrix will be super-stable with a margin of super-stability ν > 0, if

aii +
_
a ii + ki|1 + lii| ≤ −(ν +

n

∑
j=1,j 6=i

(
∣∣aij
∣∣+_

a ij) + kisign(ki)
n

∑
j=1,j 6=i

∣∣lij∣∣), i = 1, n.

Due to (46), |1 + lii|+ sign(ki)
n
∑

j=1,j 6=i

∣∣lij∣∣ > 0 at any sign of ki. Taking the “worst” case into

account, we obtain autonomous upper estimates for the selection of ki:

ki ≤ ki = −
ν + aii +

_
a ii +

n
∑

j=1,j 6=i
(
∣∣aij
∣∣+_

a ij)

|1 + lii| −
n
∑

j=1,j 6=i

∣∣lij∣∣ , i = 1, n. (47)

Obviously, the number we are looking for is k ≤ min
{

ki

}
i=1,n

, at which all inequalities (47)

are fulfilled simultaneously, which ensures that the system (45) is super-stable with any
super-stability margin ν > 0. Lemma 3 is proved. �

Using (46), we simplify the final inequality, obtaining a slightly higher estimate module
for the choice of the parameter k:

k ≤ min
i=1, n
{−(ν + aii +

_
a ii +

n

∑
j=1,j 6=i

(
∣∣aij
∣∣+_

a ij))}/µ. (48)

From the set of elementary parametrically indeterminate systems (40), (34), a class of
systems with additional requirements (43), (46), for which there is a robust control law (44),
(48), provides a solution to the problem (35) if ν = ηd. Notice that condition (41) is a special
case of (46).

In the next subsection, a class of systems is extracted from the set of parametrically
uncertain non-elementary systems whose nominal model satisfies conditions (28), for which
a guaranteed stability margin can be provided by the proposed feedback approach.

3.2. Formalisation of a Class of Acceptable Non-Elementary Systems

Let us consider the question of possibility in the combination of concepts of super-
stability and RF in robust synthesis of parametrically uncertain non-elementary system
(33), (34), under the assumption that in its nominal model (1), a pair (A, B) is controllable
and has a controllability indicator equal to two (26). As is proved in Lemma 2, in this
case, the RF of the nominal system consists of two elementary subsystems, which allows
one to synthesize a super-stable closed-loop system in terms of discrepancies and, as a
consequence, to provide a guaranteed stability margin in the original closed-loop system.
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In order to obtain the RF structure for system (33), it is necessary to impose additional
constraints on the undefined matrices Â and B̂. When fulfilled, the system (33) will not only
be controllable, but it will also retain the structural properties of the nominal system (26);
more specifically, it will have the same dislocation of the basis columns of the controllability
matrix and, hence, the structural zeros in the RF. Thus, it is necessary to formalize the
conditions under which, as a result of a non-singular linear transformation Tx = x (12),
which is determined by the matrices of the nominal system (1), the indeterminate system
(33) will be represented in a form similar to RF (6), (26), that is:

.
x1 = (A11 + Â11)x1 + (A12 + Â12)x2,
.
x2 = (A21 + Â21)x1 + (A22 + Â22)x2 + (B2 + B̂2)u,

(49)

where
rank(B2 + B̂2) = rankB2 = rankB = dimx2 = m0;
rank(A12 + Â12) = rankA12 = dimx1 = n−m0,

(50)

matrices Aij, B2 are known and match the corresponding RF matrices (6) of the nominal
system (1), (26), the elements of the matrices Âij, B̂2 are constant and unknown, and the
limits of the intervals to which their values belong are recalculated with regard to (34) by
the formulas

T(A + Â)T−1 = Â, T(B + B̂) = B̂. (51)

Lemma 4. Let the pair(A, B) in the nominal system (1) be controllable and characterized by the
controllability indices (26). If, in system (33), all uncertainty intervals (34) for pair ((A+ Â), (B+
B̂)) rank conditions are met, including

rankB = rank(B + B̂) = rank(B
(

B + B̂)) = m0,
(rank(B AB) = rank((B + B̂) (A + Â)(B + B̂))
= rank(B AB (B + B̂) (A + Â)(B + B̂) ) = m0 + m1 = n)
⇔ (rank(B AB) = rank(B AB (A + Â)(B + B̂)) = m0 + m1 = n),

(52)

then by means of a non-singular change of the variables Tx = x (12) and transformations (51),
where T depends only on the matrices of the nominal system A, B, system (33) will be represented
in the form of RF (49), where conditions (50) are met.

Proof 4. First condition (52) rankB = rank(B
(

B + B̂)) means that the columns of the ma-
trix B + B̂ are linear combinations of the columns of the matrix B; hence, the indeterminate
matrix can be represented as

Bn×m + B̂n×m = BΛ0(m×m), (53)

where Λ0 is indeterminate matrix, m0 ≤ rankΛ0 ≤ m. The second condition (50), rewritten
with (53) as

rank(B AB ) = rank(BΛ0 (A + Â)BΛ0 ) = rank(B AB (A + Â)BΛ0) = m0 + m1,

means that the columns of the matrix (A + Â)BΛ0 are linear combinations of the columns
of the matrix (B AB) and are represented in the form of

(A + Â)BΛ0 = (B AB )Λ1 = BΛ10 + ABΛ11, Λ1 =

(
Λ10(m×m)

Λ11(m×m)

)
, rankΛ11 ≥ n−m0.

The columns of the matrices BΛ10 are linear combinations of the columns of the
matrix BΛ0 = Bn×m + B̂n×m and can be represented as BΛ10 = BΛ0Λ00. Consequently,
(BΛ0 ABΛ11) ∼ (BΛ0 ABΛ11 BΛ0Λ00), and then rank(BΛ0 ABΛ11) = m0 + m1 = n.
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Thus, the controllability matrix of the pair ((A + Â), (B + B̂)) when conditions (50)
are fulfilled has a full rank and can be represented in the form

((B + B̂) (A + Â)(B + B̂)) = (BΛ0 BΛ0Λ00 + ABΛ11),

where the matrix elements Λ0, Λ00, Λ11 are unknown. Let us denote AB = P, swap the
control matrix blocks Ŵ = (BΛ0Λ00 + PΛ11 BΛ0), and multiply this matrix on the left by
the transition to RF matrix (12), which depends only on the matrix elements of the nominal
system:

TŴ = TaTp(BΛ0Λ00 + PΛ11 BΛ0) = Ta

((
B̃1
B2

)
Λ0Λ00 +

(
P̃1
P̃2

)
Λ11

(
B̃1
B2

)
Λ0

)
=

((
O
B2

)
Λ0Λ00 +

(
P1
P2

)
Λ11

(
O
B2

)
Λ0

)
= Ŵ.

In the obtained matrix, the right-hand block corresponds to the transformation of the
matrix (B + B̂). With (53), it follows that

T(B + B̂) =
(

O
B2

)
Λ0 =

(
O

B2Λ0

)
=

(
O

B2 + B̂2

)
, rank(B2 + B̂2) = rankB2 = m0,

i.e., the first condition (52) is satisfied.
According to the scheme given in Lemma 2, let us perform a similarity transformation

T(A+ Â)T−1 = (T((A + Â)
2
(B+ B̂) (A+ Â)(B+ B̂))Ŵ

+
=

(
A11 + Â11 A12 + Â12
A21 + Â21 A22 + Â22

)
,

where A12 + Â12 = P1Λ11(B2Λ0)
+ ⇒ rankA12 = rank(A12 + Â12) = n−m0, i.e., and the

second condition (50) is satisfied. Hence, system (33) is representable in the form (49),
whose structure corresponds to the structure of the RF of the nominal system (1), (26).
Lemma 4 is proved. �

Thus, a class of systems (35), (50) is defined, which can be reduced to RF (49) consisting
of two elementary blocks (50) in an invariant way to the unknown parameters (34). Let us
adopt without proof the inverse statement for Lemma 4, defining a constructive way to
check the rank conditions (50). In system (1), the pair (A, B) is characterized by control-
lability indices (26). If the change of variables (12) leads system (33) to RF (49), (50), then
in all uncertainty intervals (34) the rank conditions (50) for the pair ((A + Â), (B + B̂)) is
fulfilled.

However, as is shown in the previous subsection, satisfaction of conditions (50) and
RF (49), (50) are necessary but, in general, not sufficient for solving the problem (35) in the
framework of the technique we used.

Let us first distinguish particular cases that do not require any additional constraints
from the theoretical point of view.

If in (26) n = 2, m0 = 1, then the RF will consist of two first-order subsystems, where

(rank (B2 + B̂2) = rankB2 = 1)⇔ (b2 6= 0 and b2 + b̂2 6= 0);
(rank (A12 + Â12) = rankA12 = 1)⇔ (a12 6= 0 and a12 + â12 6= 0).

Then, similarly to (42), using virtual control and subsequent variable change,

x2 = k1sign(a12 + â12)x1, e2 = x2 − k1sign(a12 + â12)x1 (54)

The first subsystem of the RF is stabilized, and the second subsystem is stabilized with
real control u = k2sign(b2 + b̂2)e2. In another particular case, for arbitrary m0 ≥ n− m0 > 1
in system (49), Â12 ≡ O and B̂2 ≡ O. Then, the virtual and real control is chosen in a form
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similar to (37). Furthermore, the last particular case is a combination of the first two, where
m0 = n− 1 > 1 and B̂2 ≡ O.

Only for the systems with the mentioned properties is the fulfillment of conditions
(52) necessary and sufficient to ensure the super-stability of the closed-loop system, with
the help of the linear static feedback in terms of the discrepancies.

For the general case of systems from the considered class, sufficient conditions similar
to (46) are formulated in terms of elements of the RF matrices (49). Let us first form in the
system (49) the virtual and real control analogous to (44):

x2 = F1x1 = k1 A+
12S1x1, e1 := x1, e2 = x2 − F1x1,

S1 = diag{sign(1 + l1
ii)}, L1(n−m0)×(n−m0)

= Â12 A+
12 = (l1

ij) ;
u = K2e2 = k2B+

2 S2e2, u = Ke, K = (O K2), k1,2 = const,
S2 = diag{sign(1 + l2

ii)}, L2(m0×m0)
= B̂2B+

2 = (l2
ij),

(55)

and let us change the variables (14), (15) and make a closed-loop RF of the uncertain system
(49), (55) in discrepancies

.
e1 = (A11 + Â11 + k1(I + L1)S1)e1 + (A12 + Â12)e2,
.
e2 = (C21 + Ĉ21)e1 + (C22 + Ĉ22 + k2(I + L2)S2)e2,

(56)

where the ranges of elements of the unknown matrices are assumed to be symmetric and are
calculated from (34), considering the performed transformations (12), (15), which depend
only on the matrices of the nominal system (1) and the selected k1.

From Lemma 3, it follows that by successively selecting at first the parameter k1 =
const, and then k2 = const, the system (56) can be made super-stable with a given margin
of super-stability ν ≥ ηd, if matrices In−m0 + L1, Im0 + L2 (55) have dominant diagonals

min{|1 + l1
ii| −

n−m0

∑
j=1, j 6=i

∣∣∣l1
ij

∣∣∣}
i=1,n−m0

= µ1 > 0, min{|1 + l2
ii| −

m0

∑
j=1, j 6=i

∣∣∣l2
ij

∣∣∣}
i=1,m0

= µ2 > 0. (57)

Then, similarly to (47), a joint system of inequalities can be obtained, based on which
the feedback parameters are successively specified in the form of (48). Taking into account
the notations

A11(n−m0)×(n−m0)
= (a11

ij ),A12(n−m0)×m0
= (a12

ij ),C21(m0×(n−m0))
= (c21

ij ),C22(m0×m0)
= (c22

ij ),

Â11 = (â11
ij ),Â12 = (â12

ij ),Ĉ21 = (ĉ21
ij ),Ĉ22 = (ĉ22

ij ),∣∣∣â11
ij

∣∣∣ ≤ _
a

11
ij ,
∣∣∣â12

ij

∣∣∣ ≤ _
a

12
ij ,
∣∣∣ĉ21

ij

∣∣∣ ≤ _
c

21
ij ,
∣∣∣ĉ22

ij

∣∣∣ ≤ _
c

22
ij

we have

k1 ≤ min
i=1,n−m0

{−(ν + a11
ii +

_
a

11
ii +

n−m0
∑

j=1,j 6=i
(
∣∣∣a11

ij

∣∣∣+_
a

11
ij ) +

m0
∑

j=1
(
∣∣∣a12

ij

∣∣∣+_
a

12
ij ))}/µ1,

k2 ≤ min
i=1,m0

{−(ν + c22
ii +

_
c

22
ii +

m0
∑

j=1,j 6=i
(
∣∣∣c22

ij

∣∣∣+_
c

22
ij ) +

n−m0
∑

j=1
(
∣∣∣c21

ij

∣∣∣+_
c

21
ij ))}/µ2.

(58)

The control law based on (55) on the variables of the initial system (19) depends
only on the matrices of the nominal system and selected parameters (58) and ensures
stabilization of the initial parametrically uncertain system (33) with a guaranteed stability
margin (35).

The theoretical statements presented in this subsection and the decomposition synthe-
sis procedure for systems with a controllability indicator equal to two (26) can similarly be
extended to non-elementary controllable systems of the general form (24).
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4. Simulations

We consider a mathematical model of the control plant of the form

.
x = Ax + Bu, A =

 1 1 0
0 1 0
1 0 1

, B =

 1 0
2 1
0 1

, dimx = n = 3, dimu = m = 2. (59)

Let us investigate the rank structure of the controllability matrix of the system (59)
according to scheme (24):

rankB = rank

 1 0
2 1
0 1

 = 2 6= 0, rank(B AB) = rank

 1 0 3 1
2 1 2 1
0 1 1 1

 = 2 + 1 = 3.

Pair (A, B) is controllable and has a controllability indicator equal to 2. The system
(59) belongs to the valid class (26), and its RF will consist of two elementary subsystems
of the first and second orders. On the example of system (59), let us demonstrate the
decomposition procedures developed in Sections 2 and 3 for the synthesis of modal and
robust control based on the transition to the RF.

Example 1. For the system (59), the goal is to synthesize a linear feedback that provides a given
spectrum in a closed-loop system σd = {−1; −1± 3j}. To solve the problem, we use the synthesis
of modal control based on transition to RF (Procedure 1).

1.a. In the matrix B, the bottom two rows are linearly independent and form a basis. It is
not necessary to rearrange the rows. We assume

B2 =

(
2 1
0 1

)
, Tp = I,T = Ta,x = x̃.

1.b. Using the second Formula (10), we find the cancellation matrix

B∗2 = B̃1B−1
2 =

1
2
(

1 0
) ( 1 −1

0 2

)
=
(

0.5 −0.5
)

and after performing the transformation (11) to the matrix

T =

 1 −0.5 0.5
0 1 0
0 0 1

, T−1 =

 1 0.5 −0.5
0 1 0
0 0 1

 (60)

we obtain an equivalent representation of system (59) in RF (6), which has the form

.
x1 = 1.5x1 + (1.25 − 0.25)x2,

.
x2 =

(
0
1

)
x1 +

(
1 0

0.5 0.5

)
x2 +

(
2 1
0 1

)
u.

(61)

2.a. (Procedure 2) In the first subsystem, we take a valid eigenvalue from the given
spectrum (61) as the reference matrix: A1 = −1. The local feedback matrix x2 =
F1(2×1)x1, providing (13), has infinitely many realizations. The solution obtained is
similar to the first equality (5):

A11 + A10F1 = A1 ⇒ F1 = A+
10(A1 − A11) =

(
f1
f2

)
=
( −25/13

5/13

)
, A+

10 =
(

10/13
−2/13

)
which is inconvenient for calculations. To determine F1, we use a direct method:

A11 + A10F1 = A1 ⇒ 1.5 +
(

1.25 −0.25
)( f1

f2

)
= −1⇔ f2 = 10 + 5 f1.
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Let us assume, for example F1 = (−1 5)T . After performing the transformation (15),
we obtain the RF closed by the local relation (16), in the form

.
e1 = −e1 + (1.25 − 0.25)e2,

.
e2 =

(
−2

8

)
e1 +

(
2.25 −0.25
−5.75 1.75

)
e2 +

(
2 1
0 1

)
u.

2.b. For the remaining complex-conjugate pair from a given spectrum λ = −1± 3j, we

make a reference matrix, e.g., in the form of a Jordanian cell A2 =

(
−1 3
−3 −1

)
, and

generate the feedback from the second Formula (17) in the form of

u =

(
0.5 − 0.5

0 1

)((
2
−8

)
e1 +

(
−2.25 0.25
−5.75 −1.75

)
e2 +

(
−1 3
−3 −1

)
e2

)
,

u = Ke =
(

5 −3 3
−8 2.75 −2.75

)
e,

which leads to a closed system of discrepancies (18), that is,

.
e1 = −e1 + (1.25 − 0.25)e2,

.
e2 =

(
−1 3
−3 −1

)
e2.

2.c. Considering the transformations performed, let us find the feedback matrix and form
a modal state control law for the initial system in form (19)

F2×3 = KTeT =

(
5 −3 3
−8 2.75 −2.75

) 1 0 0
1 1 0
−5 0 1

 1 −0.5 0.5
0 1 0
0 0 1

,

u = Fx =

(
−13 3.5 −3.5
8.5 −1.5 1.5

)
x,

(62)

which provides a solution to the problem: σ(A + BF) = σd = {−1; −1± 3j}.

Figure 1 shows the behavior of the variables x(t) = (x1(t), x2(t), x3(t))
T and controls

u(t) = (u1(t), u2(t))
T in closed-loop system (59), (62) with x(0) = (0.5, 0.5, 0.5 )T.
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Example 2. For system (59), the problem is to synthesize a linear feedback that provides a given
margin of stability in the closed-loop system η ≥ ηd = 1. To solve this problem, we use the
procedure for synthesis of a super-stable closed-loop system (18) based on the transition to the
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RF (61). We assign the numerical values of the super-stability margin and the elements of the
reference matrices of the closed-loop system (18) on the basis of equalities (32) ν = ηd = 1, A1 =
−(ν +

∣∣a12
11

∣∣+ ∣∣a12
12

∣∣) = −(1 + 1.25 + 0.25) = −2.5; a2
1 = a2

2 = −ν = −1, which will ensure
that the closed-loop system is super-stable.

.
e1 = −2.5e1 + (1.25 − 0.25)e2,

.
e2 =

(
−1 0
0 −1

)
e2.

The matrix of this system has a spectrum of σ = {−1; −1; −2, 5}. This spectrum, and
hence a given stability margin, will be provided in the original closed-loop system (59) by
the control (19). To determine the local feedback matrix F1, we also use the direct method:

A11 + A10F1 = A1 ⇒1.5 + 1.25 f1 − 0.25 f2 = −2.5⇔ f2 = 16 + 5 f1.

Let us take, for example, F1 = (−2 6)T . After performing the transformation (15), we
obtain the RF of the closed-loop system (16) in the form

.
e1 = −2.5e1 + (1.25 − 0.25)e2,

.
e2 =

(
−7
18

)
e1 +

(
3.5 −0.5
−7 2

)
e2 +

(
2 1
0 1

)
u.

The second subsystem of this system gives the control laws for the transformed (17)
and initial variables (19) as

u =

(
0.5 − 0.5

0 1

)((
7
−18

)
e1 +

(
−3.5 0.5

7 −2

)
e2 +

(
−1 0
0 −1

)
e2

)
,

u = Ke =
(

12.5 −5.75 1.75
−18 7 −3

)
e,

F = KTeT =

(
12.5 −5.75 1.75
−18 7 −3

) 1 0 0
2 1 0
−6 0 1

 1 −0.5 0.5
0 1 0
0 0 1

,

u = Fx =

(
−9.5 −1 −3

14 0 4

)
x.

(63)

The matrix of a closed-loop system (59), (63), expressed as

A + BF =

 −8.5 0 −3
−5 −1 −2
15 0 5


is not super-stable, but the system has a given margin of stability:

σ(A + BF) = {−1; −1; −2, 5}, min{−Reλi(A + BF)} = 1 = ηd.

Figure 2 shows the behavior of the variables x(t) = (x1(t), x2(t), x3(t))
T and controls

u(t) = (u1(t), u2(t))
T in a closed-loop system (59), (63) with x(0) = (0.5, 0.5, 0.5 )T.
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Compared to the system (59), (62) (see Figure 1), the transients of the closed-loop
system (59), (63) with real spectrum are not oscillatory but aperiodic, but the range of
variation in all the variables has increased by about 2.5 times, and the time of regulation
has not significantly changed.

Example 3. With the nominal system (59) we will consider a parametrically indeterminate system
(33), where Â = αA, B̂ = βB. Parameters α, β are constant and unknown, their values belong to
closed symmetric intervals with known boundaries:

|α| ≤ _
α = 0.1, |β| ≤

_
β = 0.1. (64)

The problem is to synthesize a linear feedback that provides a guaranteed margin of
stability in a closed-loop system η ≥ ηd = 1 in all uncertainty intervals. In this system,

A + Â = A(1 + α), B + B̂ = B(1 + β), α 6= −1, β 6= −1, (65)

conditions (53), (52) of Lemma 4 are met. The uncertain system is controllable in all
uncertainty intervals and keeps the structural controllability properties of the nominal
system (59). Hence, the uncertain system is representable in the form of RF (49)–(50) by
transformation (12), (51) with matrix (60), where due to (65), Âij = αAij, i, j = 1, 2, B̂2 =
βB2.

Let us check that the condition (57) is met:

L1 = Â12 A+
12 = α(5/4 − 1/4)

(
10/13
−2/13

)
= α = l1

11 ;

L2 = B̂2B−1
2 = β

(
2 1
0 1

)(
0.5 −0, 5
0 1

)
= βI2, l2

11 = l2
22 = β.

(66)

Due to (64) 1 + α > 0, 1 + β > 0, the sufficient condition (57) is fulfilled, and because
µ1 = µ2 = 0.9, in RF of an uncertain system, it is possible to provide super-stability by
means of feedback (55), where

S1 = sign(1 + α) = 1 , S2 = diag{sign(1 + β)} = I.

In the first subsystem of the uncertain RF
.
x1 = (6/4)(1+ α)x1 +(5/4 − 1/4)(1+ α)x2

let us form the virtual control in the form of (55),

x2 = F1x1 = k1 A+
12S1x1 = k1

(
10/13
−2/13

)
x1. (67)
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With variable changes e1 := x1, e2 = x2 − F1x1 we obtain

.
e1 = (1 + α)((A11 + k1)e1 + A12e2) = (1 + α)((1.5 + k1)e1 + (1.25 − 0.25)e2).

As can be seen, in this subsystem the choice of gain k1 does not depend on undefined
parameters. Let us assume ν = ηd = 1; then, similarly to (21), we have

−(1.5 + k1)− (1.25 + 0.25) ≥ 1⇒ k1 ≤ −4.

For the convenience of the calculation (67), let us assume k1 = −13/2 = −6.5, then
F1 = (−5 1)T . Let us perform transformations (15) taking into account (61), (65)–(67),
forming the control law in the form (55), that is,

u = K2e2 = k2B−1
2 S2e2 = k2

(
0.5 −0, 5
0 1

)
e2, (68)

and we obtain a closed RF of the uncertain system in terms of discrepancies in the form
(56), namely,

.
e1 = (1 + α)(−5e1 + (1.25 − 0.25)e2,

.
e2 = (1 + α)

(
−30

3

)
e1 +

(
(1 + α)

(
7.25 −1.25
−0.75 0.75

)
+ k2(1 + β)

(
1 0
0 1

))
e2.

From the second inequality (58), we find the second gain

k21 ≤ −(1 + (1 +
_
α )(30 + 7.25 + 1.25))/(1−

_
β ) ≈ −48.2,

k22 ≤ −(1 + (1 +
_
α )(3 + 0.75 + 0.75))/(1−

_
β ) ≈ −6.62,k2 ≤ min{−48.2; −6.62}.

Let us take k2 = −50. Then due to (68), (19), we get

u = Ke, K = (O K2) =

(
0 −25 25
0 0 −50

)
,

F = KTeT =

(
0 −25 25
0 0 −50

) 1 0 0
5 1 0
−1 0 1

 1 −0.5 0.5
0 1 0
0 0 1

.

Control law

u = Fx =

(
−150 50 −50

50 −25 −25

)
x (69)

provides in the initial uncertain system a guaranteed margin of stability η ≥ ν = ηd = 1
in all uncertainty intervals, and this solves the problem. For example, in the nominal
system (59) and in the uncertain system with different boundary values of parameters
α = ±0.1, β = ±0, 1 we obtain

σ(A + BF) = {−6.0531; −41.5559; −49.3910},η = 6.0531;

σ(1.1A + 0.9BF) = {−7.0628; −35.3071; −44.33}, η = 7.0628;

σ(1.1A + 1.1BF) = {−6.6585; −45.7114; −54.3301}, η = 6.6585;

σ(0.9A + 1.1BF) = {−5.2231; −47.625; −54.4519}, η = 5.2231;

σ(0.9A + 0.9BF) = {−5.4478; −37.4003; −44.4519}, η = 5.4478.

Figure 3 shows the behavior of the state variables x(t) = (x1(t), x2(t), x3(t))
T and

controls u(t) = (u1(t), u2(t))
T in the closed-loop system

.
x = (1.1A + 0.9BF)x, (59), (69)

with x(0) = (0.5, 0.5, 0.5 )T.
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.
x =

(1.1A + 0.9BF)x, (59), (69) with x(0) = (0.5, 0.5, 0.5 )T.

In comparison with system (59), (63) (see Figure 2), the solution norm of the closed-
loop system is practically the same, but the regulation time has been reduced by about 6
times. In addition, the value of ‖u(0)‖ has increased by about 10 times.

It should be noted that the control spikes at the beginning of the transient can be
limited by piecewise linear control with saturation

u = (10sat(u1), 10sat(u2))
T. (70)

Corresponding graphs for the closed-loop system
.
x = (1.1A + 0.9BF)x, (59), (69), (70)

are shown in Figure 4. As can be seen from Figures 3a and 4a, the control constraint (70)
had no effect on the state variable transients.
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.
x =

(1.1A + 0.9BF)x, (59), (69), (70).

Figure 5 shows the behavior of the variables x(t) = (x1(t), x2(t), x3(t))
T and control

vector u(t) = (u1(t), u2(t))
T in a closed-loop system

.
x = ((1 + α)A + (1 + β)BF)x, (59),

(69), (70), x(0) = (0.5, 0.5, 0.5 )T , where the unknown parameters smoothly vary within the
specified ranges (64): α = 0.1 sin 4t, β = 0.1 sin 2t. As we can see, at variable parameters the
nature of the transients is practically unchanged, a fact that opens perspectives for using the
developed approach in relation to parametrically uncertain non-stationary control systems.
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5. Discussion 
In this paper, we propose a new approach to the synthesis of robust control for a 

practically significant class of linear stationary parametrically uncertain systems, in which 
the structural controllability properties of the nominal system do not change with param-
eter variation within acceptable limits. For the special case of systems with a controllabil-
ity indicator equal to two, the procedures for the synthesis of a stabilizing feedback are 
formalized in detail, using the concepts of regular form and super-stability. The possibility 
of extending this approach to a general form of controllable systems is shown theoreti-
cally. 

It should be noted that the tuning of the feedback coefficients, which guarantee a 
given margin of stability in the closed-loop system in all uncertainty intervals, is done on 
the basis of inequalities in terms of matrix elements rather than their eigenvalues. On the 
one hand, this is what allows synthesizing of a robust system. However, on the other 
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It should be noted that the tuning of the feedback coefficients, which guarantee a
given margin of stability in the closed-loop system in all uncertainty intervals, is done
on the basis of inequalities in terms of matrix elements rather than their eigenvalues. On
the one hand, this is what allows synthesizing of a robust system. However, on the other
hand, these conditions are only sufficient, and the resulting estimates are conservative. As
a result, there may be spikes in the start of transients of state variables and controls that are
not acceptable in practical applications.

Numerical examples show the fundamental possibility of limiting the control actions,
as well as the performance of the proposed method for non-stationary systems. However,
further research is needed to formalize these problems rigorously.
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