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Abstract: In this paper, we study the restricted cohomology of Lie algebras of semisimple and
simply connected algebraic groups in positive characteristics with coefficients in simple restricted
modules and their applications in studying the connections between these cohomology with the
corresponding ordinary cohomology and cohomology of algebraic groups. Let G be a semisimple
and simply connected algebraic group G over an algebraically closed field of characteristic p > h,
where h is a Coxeter number. Denote the first Frobenius kernel and Lie algebra of G by G1 and g,
respectively. First, we calculate the restricted cohomology of g with coefficients in simple modules for
two families of restricted simple modules. Since in the restricted region the restricted cohomology of
g is equivalent to the corresponding cohomology of G1, we describe them as the cohomology of G1 in
terms of the cohomology for G1 with coefficients in dual Weyl modules. Then, we give a necessary
and sufficient condition for the isomorphisms Hn(G1, V) ∼= Hn(G, V) and Hn(g, V) ∼= Hn(G, V),
and a necessary condition for the isomorphism Hn(g, V) ∼= Hn(G1, V), where V is a simple module
with highest restricted weight. Using these results, we obtain all non-trivial isomorphisms between
the cohomology of G, G1, and g with coefficients in the considered simple modules.
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1. Introduction

The cohomology of modular classical Lie algebras can be viewed both in the category
of all modules and so in the category of all restricted modules. Usually, the first one is
called ordinary cohomology, and the second one is called restricted cohomology. Modular
classical Lie algebras are Lie algebras of semisimple and simply connected algebraic groups
in positive characteristics. They are restricted Lie algebras [1]. Hochschild introduced the
restricted cohomology of a restricted Lie algebra with coefficients in a restricted module
in [2]. In this paper, he obtained a long exact sequence establishing connections between
ordinary and restricted cohomology and gave an explicit description of some of its initial
terms. The described initial part of this sequence is called the Hochschild five-term exact
sequence. The restricted cohomology of classical Lie algebras with coefficients in a trivial
one-dimensional module was completely described by Friedlander and Parshall in [3]. For
dual Weyl modules, a complete description of restricted cohomology is also obtained [4,5].
The spectral sequence relating the ordinary and restricted cohomology constructed by
Friedlander, Parshall [6] (p. 1079), and Farnsteiner [7] (p. 114) make it possible to study the
connections between ordinary and restricted cohomology of higher degrees. For instance,
in [8] (Theorem 3.1), the five-term exact sequences for higher cohomology, generalizing
the Hochschild five-term exact sequence, were obtained. To date, a cochain complex for
restricted cohomology of a restricted Lie algebra has not been completely constructed.
Evans and Fuchs obtained the spaces of cochains and differentials for the calculation of the
first and second degrees restricted cohomology for non-abelian restricted Lie algebras [9].
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Using these results, the authors of the papers [10–15] computed central extensions and
deformations of some non-classical restricted Lie algebras.

As we know, investigations devoted to the study of the restricted cohomology of
modular classical Lie algebras with coefficients in simple modules relate mainly with the
cohomology of low degrees or the cohomology of Lie algebras of low rank. According to the
Hochschild five-term exact sequence, for simple modules, the restricted first cohomology
coincides with the ordinary first cohomology. Jantzen studied them in detail [16]. The
restricted second cohomology of simple modules was described for the following classical
Lie algebras: sl2 [17] (p. 429); sl3 [18] (p. 4706); sp4 [19] (p. 1126); and G2 [20] (p. 389).
For restricted third cohomology, similar results were obtained for the simple classical
Lie algebras of rank two [21] (pp. 52–53). In [22], the authors described the ordinary
cohomology of two families of simple modules for modular classical Lie algebras. The
aim of this paper is to study the restricted cohomology and the connections between the
ordinary and restricted cohomology of these modules, as well as their connections between
the cohomology of algebraic groups, related to the studied classical Lie algebras.

The interest in this problem is motivated by the fact that restricted cohomology is an
important part of the cohomology theory of modular Lie algebras, in which there is no
analogue in characteristic zero, and by the presence of unsolved problems that require deep
research. Restricted cohomology also appears in the cohomology theory of semisimple and
simply connected algebraic groups in positive characteristic as the cohomology of their
infinitesimal subgroups. As is known, by homological tools, the study of the cohomology
of algebraic groups can be reduced to the study of the cohomology of their infinitesimal
subgroups. Consequently, our results on the restricted cohomology of modular classical Lie
algebras with coefficients in restricted simple modules can be applied to the study of the
corresponding cohomology of algebraic groups. In addition, known results on restricted
cohomology of classical Lie algebras can be very useful in studying restricted cohomology
of restricted Lie algebras related with classical Lie algebras, as well as in studying the usual
cohomology of restricted Lie algebras.

The concept of cohomology has been defined for many other classes of algebras, such
as Lie superalgebras [23,24], Leibniz algebras [25], Lie antialgebras [26], alternative alge-
bras [27], non-associative algebras with metagroup relations [28–30], and n-Lie algebras
with derivations [31]. In the modular case, among these classes of algebras, the restrict-
ness of cohomology extends to Leibniz algebras [32] and to Lie superalgebras [33]. It
would be very interesting if one developed the idea of restrictness for other classes of
non-associative algebras.

In Section 2 below, we give the main notation, preliminary information, and a short
presentation of the algorithm for computing restricted cohomology of classical modular Lie
algebras with coefficients in simple modules. This algorithm is a well-known homology
tool based on the use of the properties of long exact cohomology sequences. In Section 3,
we formulate the main results and give their proofs. The restricted cohomology of simple
modules related to Weyl modules with a simple radical is described in Theorem 1. A similar
result for the restricted cohomology of simple modules, related to Weyl modules with a
Janzen filtration of depth 2, is formulated in Theorems 2–4. Their proofs use the same argu-
ments, so the detailed proof is given only for Theorem 3, which is the more variable among
these theorems. In Theorem 5, formulated in Section 3.1, necessary and sufficient condi-
tions are obtained for the isomrphisms Hn(G1, V) ∼= Hn(G, V) and Hn(g, V) ∼= Hn(G, V),
and a necessary condition for the isomrphism Hn(g, V) ∼= Hn(G1, V). In Corollaries 1–6,
formulated in Section 3.1, all non-trivial isomorphisms between the cohomologies G, G1,
and g with coefficients in the considered simple modules are given. The proofs of the main
results are given in Section 3.2.

2. Preliminaries

We will mainly use the standard notation and preliminary facts given in [22]. We
summarize them and add some short information on restricted Lie algebras and restricted
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Lie algebra cohomology. Let G be a semisimple and simply connected algebraic group over
an algebraically closed field of characteristic p > h, where h is the Coxeter number. Denote
the first Frobenius kernel and Lie algebra of G by G1 and g, respectively. We denote the
rank of g by l. Let R be a root system of g and assume that R ⊂ Rm. On Rm there is the
usual euclidian inner product (·, ·). This leads to the natural pairing 〈·, ·〉 : Rm ×Rm → R
given by 〈λ, µ〉 = (λ, µν), where µν = 2

(µ,µ)µ. Let R+ be the set of positive roots and
∆ = {α1, α2, · · · , αl} be the set of simple roots.

Let T ⊂ G be the maximal torus, and B be the Borel subgroup corresponding to
the negative roots. We denote by U the unipotent radical of B. The set X(T) of additive
characters for T can be seen as a subset of Rm with basis {ω1, ω2, · · · , ωl} satisfying〈

ωi, αj
〉
= δij. The set X(T) also has the following property:

X(T) = {λ ∈ Rm |〈λ, α〉 ∈ Z for all α ∈ R}.

Let X(T)+ = {λ ∈ X(T) |〈λ, α〉 ≥ 0 for all α ∈ R+} be the set of dominant weights
and let X1(T) =

{
λ ∈ X(T)+ | 0 ≤ 〈λ, α〉 < p for all α ∈ ∆

}
be the set of restricted weights.

Let λ ∈ X(T)+ and H0(λ) =
{

f ∈ k[G] | f (gb) = λ(b)−1 f (g) for all g ∈ G, b ∈ B
}

,

where k[G] is the algebra of all regular functions on G. The action of G on H0(λ) is
defined by g f (h) = f

(
g1h
)
, where f ∈ H0(λ), g, h ∈ G [34] (p. 26). On the other hand,

H0(λ) = IndG
B (kλ), where kλ is a one dimensional B-module defined by λ ∈ X(T(+ via the

isomorphism B/U ∼= T [34] (p. 176). Let L(λ) be a maximal semi-simple submodule (socle)
of H0(λ). If H0(λ) 6= 0, then L(λ) is simple [34] (p. 177, II.2.3) and every simple G-module
is isomorphic to L(λ) for some λ ∈ X(T)+ [34] (p. 177, II.2.4). Since H0(λ) 6= 0 for all
λ ∈ X(T)+ [34] (p. 178, II.2.6), then, for all λ ∈ X(T)+, there is a short exact sequence

0→ L(λ)→ H0(λ)→ H0(λ)/L(λ)→ 0 (1)

of G-modules. One of the effective ways to explicitly describe the structure of H0(λ)/L(λ)
is to study the radical of the Weyl module V(λ) with the highest weight λ ∈ X(T)+. The
Weyl module V(λ) is isomorphic to H0(−w0(λ) )

∗, where w0 is the maximal element of the
Weyl group W for R [34] (p. 182, II.2.13). So, for all λ ∈ X(T)+, there is a short exact sequence

0→ rad V(λ)→ V(λ)→ L(λ)→ 0

of G-modules, where rad V(λ) is the radical of V(λ). For the Lie algebra g of G, we will
consider the corresponding differentials of the G-modules H0(λ), V(λ), and L(λ). We will
keep these notations for the corresponding g-modules. In the restricted region, these three
g-modules are restricted, moreover L(λ) remains simple as a g-module.

For α ∈ R+ and n ∈ Z, let us define the affine reflections sα,n on X(T) by

sα,n·λ = λ− 〈λ + ρ, α〉α + npα for all λ ∈ X(T).

Denote by Wp the affine Weyl group generated by all sα,n with α ∈ R+ and n ∈ Z. The
finite Weyl group W of R appears as the subgroup of Wp generated by the reflections sα,0
with α ∈ R+.

Let α0 be the unique maximal short root of R. We will use the following short no-
tation: sαi ,0si for all i ∈ {1, 2, · · · , l} and s0sα0,1. The set of simple reflections in W is
S = {si |i = 1, 2, · · · , l} and the set of simple affine reflections in Wp is Sp = S ∪ {s0}.
Denote by l(w) the length of the element w ∈ W with respect to the simple reflections
s1, s2, · · · , sl .

Denote by L(1) the Frobenius twist of the G-module L. Suppose V is a Frobenius twist
of some rational G-module. Then, there is a unique rational G-module L such that L(1) = V.
Denote this module by V(−1).

For Lie algebras, the concept of a restricted Lie algebra (also a p-Lie algebra) was first
introduced by Jacobson in [35] (p. 210). A Lie algebra g over a field k of characteristic
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p is called restricted if it admits an additional unary operation x 7→ x[p] that satisfies the
following conditions:

• (ax)[p] = apx[p], for all a ∈ k and for all x ∈ g;

• ad
(

x[p]
)
= (ad x)[p] for all x ∈ g;

• (x + y)[p] = x[p] + y[p] + ∑
p−1
i=1 si(x, y)for all x, y ∈ g,

where si(x, y) is the coefficient of ai−1 in (ad (ax + y))p−1(y). As noted above, all classical
Lie algebras are restricted; as an unary operation, we can take the Frobenius mapping.
Another example of a restricted Lie algebra is the general linear Lie algebra gln. Lie algebras
of Cartan type of height one are also restricted Lie algebras.

Let g be a restricted Lie algebra over a field k of characteristic p, denote by Ig the ideal
of U(g) which generated by the elements of the form xp − x[p] with x ∈ g, where U(g)
is the universal enveloping algebra of g. The quotient algebra U0(g) = U(g)/Ig is called
the restricted universal enveloping algebra of the Lie algebra g. Following Hochschild,
we define the restricted cohomology Hn

∗ (g, V) with coefficients in a restricted module V as
the Cartan-Eilenberg extension Extn

U0(g)
(k, V) [2] (p. 561). As is known, the cohomology

Hn(G1, V) is equivalent to the restricted cohomology Hn
∗ (g, V) [34] (p. 129). Since our main

research method is to use the tools of the representations theory of algebraic groups in
positive characteristic, for restricted cohomology below, we will use the notation Hn(G1, V).

There is the long exact cohomological sequence

· · · → Hn(G1, L (λ) )→ Hn (G1, H0(λ) )→ Hn (G1, H0 (λ)/L (λ) ) → · · · (2)

corresponding to the short exact sequence (1) and the following Andersen-Janzen formula
on cohomology of G1 with coefficients in H0(λ) [4]: let p > h, and λ = w·0 + pν, then

Hn (G1, H0(λ) )(−1) ∼=


IndG

B

S
n− l(w)

2 (n∗)⊗ kν

 if n− l(w) even,

0 if n− l(w) odd,

(3)

where n is the maximal nilpotent subalgebra of g, corresponding to the negative roots. The
Lie algebra n is the Lie algebra of the unipotent radical U of B.

Let λ ∈ X(T)+ and λ = (w·0 + pν). According to (3), the cohomology of

Hn(G1, H0(λ)
)(−1) is trivial if n < l(w) or n − l(w) is odd. Then, according to the ex-

actness of (2),
Hn (G1, L(λ) ) ∼= Hn−1 (G1, H0(λ)/L(λ ) ) (4)

if 1 ≤ n < l(w), and the short sequence

0→ Hn−1 (G1, H0(λ)/L(λ) )→ Hn(G1, L(λ))→ Hn (G1, H0(λ) )→ 0 (5)

is exact if n ≥ l(w).
Formula (4) or the short exact sequence (5) allows us to describe the cohomology

Hn(G1, L(λ)). So, if λ = w·0 + pν ∈ X1(T), then we get the following algorithm for
calculating the cohomology Hn(G1, L(λ)):

• Calculate ν and l(w).
• Describe the structure of H0(λ)/L(λ) as a G1-module.
• Describe the cohomology Hn−1(G1, H0(λ)/L(λ)

)
.

• Calculate the cohomology Hn(G1, L(λ)) using Formula (4) if n < l(w), the short exact
sequence (5) otherwise.
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3. Results
3.1. Formulation of Results

To use long exact cohomological exact sequences to describe the cohomology of
classical modular Lie algebras with coefficients in simple modules, one needs complete
information on the structures of the Weyl modules associated with these simple mod-
ules. As is known, in the general case, the structures of Weyl modules are well studied
for affine dominant alcoves along the walls of the dominant Weyl chambers [36] and
for affine dominant alcoves close to them [37]. Their highest weights are denoted by
λ1, λ2, · · · , λs, µ1, µ2, · · · , µs−1. These highest weights can be obtained by using the action
of the Weyl group and translation to zero weight. Such descriptions of them were obtained
in [22] (pp. 9, 13). For convenience, we will list them in Tables 1 and 2. For Tables 1 and 2,
the following notation are used: α0 is the maximal short root; wi,j = sisi+1 · · · sj, where
i < j. Note that w−1

ij = sjsj−1 · · · si.

Table 1. Descriptions of λi, i = 1, 2, · · · , s.

Root
System i λi

Al 1, 2, · · · , s w1,lw−1
i,l−1·0 + pα0

Bl
1, 2, · · · , l

l + 1, l + 2, · · · , s
w1,lw−1

i,l−1·0 + pα0
w1,2l−i ·0 + pα0

Cl
1, 2, · · · , l − 1
l, l + 1, · · · , s

w2,lw−1
1,l−1w2,lw−1

i+1,l−1·0 + pα0

w2,lw−1
1,l−1w2,2l−i−1w−1

1,l−1·0 + pα0

Dl 1, 2, · · · , s w2,l−2w−1
1,l w2,l−2w−1

i+1,l ·0 + pα0

E6

1
2
3
4
5

s2w−1
4,6 w3,5w−1

1,2 w−1
3,4 s1w4,6s2w4,5w3, 4s2·0 + pα0

s2w−1
4,6 w3,5w−1

1,2 w−1
3,4 s1w4,6s2w4,5w3,4·0 + pα0

s2w−1
4,6 w3,5w−1

1,2 w−1
3,4 s1w4,6s2w4,5s3·0 + pα0

s2w−1
4,6 w3,5w−1

1,2 w−1
3,4 s1w4,6s2w−1

3,4 ·0 + pα0

s2w−1
4,6 w3,5w−1

1,2 w−1
3,4 s1w4,5s2w−1

3,4 ·0 + pα0

E7

1
2, 3, 4, 5

6

s1w−1
2,4 w−1

4,5 w−1
5,6 w3,4w1,3w−1

1,7 w−1
3,5 w−1

4,6 s2w−1
3,7 s1·0 + pα0

s1w−1
2,4 w−1

4,5 w−1
5,6 w3,4w1,3w−1

1,7 w−1
3,5 w−1

4,6 s2w−1
i+1,7·0 + pα0

s1w−1
2,4 w−1

4,5 w−1
5,6 w3,4w1,3w−1

1,7 w−1
3,5 w−1

4,6 s2s7·0 + pα0

E8 1, 2, · · · , 7 w−1
1,8 w−1

3,4 w−1
4,5 s2w−1

3,6 s1w−1
2,7 w−1

1,8 w−1
3,5 w−1

4,6 s2w−1
3,7 w−1

4,8 w1,9−i ·0 + pα0

F4

1
2
3

w−1
1,4 w−1

2,3 w−1
1,4 w−1

2,4 w3,4·0 + pα0

w−1
1,4 w−1

2,3 w−1
1,4 w−1

2,4 s3·0 + pα0

w−1
1,4 w−1

2,3 w−1
1,4 w−1

2,4 ·0 + pα0

G2
1
2

w1,2w1,2s1·0 + pα0
w1,2w1,2·0 + pα0

Table 2. Descriptions of µi, j = 1, 2, · · · , s− 1.

Root
System j µj

Al 1, 2, · · · , s− 1 w1,l−2w−1
j,l ·0 + pα0

Bl
1, 2, · · · , l − 1

l, l + 1, · · · , s− 1
w1,lw−1

j+1,l−1w1,lw−1
1,l−1·0 + pω2

w1,2l−j−1w1,lw−1
1,l−1·0 + pω2

Cl

1, 2, · · · , l − 2
l − 1, l, · · · , s− 2

2l − 2

w2,lw−1
3,l−1w1,lw−1

j+2,l ·0 + pα0

w2,lw−1
3,l−1w2,2l−j−2·0 + pα0

w2,lw−1
2,l−1·0 + pα0

Dl 1, 2, · · · , s− 1 w2,l−2w−1
3,l w1,l−2w−1

j+2,l ·0 + pα0
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In [22], the authors computed the ordinary cohomology of simple modules with
dominant highest weights λ1, λ2, · · · , λs, µ1, µ2, · · · , µs−1. For the corresponding restricted
cohomology, the following results hold.

Theorem 1. Let G be a semisimple and simply connected algebraic group over an algebraically
closed field of characteristic p > h, where h is the Coxeter number, and G1 be the first Frobenius
kernel of G. Consider simple G1-modules with highest weights λ1, λ2, · · · , λs and write them in the
following form, as described in Table 1: λi = wi·0 + pνi, where wi ∈ W and νi ∈ X(T)+. Then
Hn(G1, L(λi)) = 0, except in the following cases:

(a) if i ∈ {1, · · · , tλ}, then

(i) Hn(G1, L(λi)) ∼= k, where n = i,
(ii) Hn(G1, L(λi)) ∼= Hn−i(G1, k), where n− i is even and i < n < l(wi),
(iii) Hn(G1, L(λi)) ∼= Hn−i(G1, k) + Hn(G1, H0(λi)

)
, where n = l(wi),

(iv) Hn(G1, L(λi)) ∼= ∑i
j=0 Hn−i+j(G1, H0(λj

))
, where n > l(wi) and n − l(wi)

is even;

(b) if R = Bl and i = tλ + 1, then

(i) Hi(G1, L(λi)) ∼= k⊕ L(α0)
(1), where n = i,

(ii) Hn(G1, L(λi)) ∼= ∑i
j=0 Hn−i+j(G1, H0(λj

))
, where n > i and n− i is even;

(c) if R = Bl and i ∈ {tλ + 2, tλ + 3, · · · , s}, then

(i) Hn(G1, L(λi)) ∼= L(α0)
(1), where n = l(wi),

(ii) Hn(G1, L(λi)) ∼= ∑n
j=0 H j(G1, H0(λj+2

))
, where n − l(wi) is even and

l(wi) < n < i,
(iii) Hn(G1, L(λi)) ∼= ∑i

j=0 H j(G1, H0(λj
))

, where n = i,

(iv) Hn(G1, L(λi)) ∼= ∑i
j=0 Hn−i+j(G1, H0(λj

))
, where n > i and n− i is even;

(d) if R = Cl and i = s, then

(i) Hn(G1, L(λi)) ∼= k⊕ L(α0)
(1), where n = i,

(ii) Hn(G1, L(λi)) ∼= ∑i
j=0 Hn−i+j(G1, H0(λj

))
, where n > i and n− i is even.

Here λ0 = 0 and

tλ =


s if R = Al , Dl , E6, E7, E8, F4, G2,

s− l + 1 if R = Bl ,
s− 1 if R = Cl .

In the cases of the classical Lie algebras of types Al and Bl , the variability of the
restricted cohomology cases for the simple modules with highest weights µ1, µ2, · · · , µs−1
is slightly different from the general case. Therefore, below the results for them are formu-
lated separately.

Theorem 2. Let G be a semisimple and simply connected algebraic group of type Al (l ≥ 2) over
an algebraically closed field of characteristic p > h, where h is the Coxeter number, and G1 be the
first Frobenius kernel of G. Consider simple G1-modules with highest weights µ1, µ2, · · · , µs−1
and write them in the following form, as described in Table 2: µj = uj·0 + pδj, where uj ∈W and
δj ∈ X(T)+. Then Hn(G1, L

(
µj
))

= 0, except in the following cases:

(a) if j = 1, then

(i) Hn(G1, L
(
µj
)) ∼= k, where n = 2,

(ii) Hn(G1, L
(
µj
)) ∼= Hn−2(G1, k), where n− 2 is even and2 < n < l

(
uj
)
,

(iii) Hn(G1, L
(
µj
)) ∼= Hn−2(G1, k) + Hn(G1, H0(µj

))
, where n = l

(
uj
)
,

(iv) Hn(G1, L
(
µj
)) ∼= Hn−2(G1, k) + Hn−1(G1, H0(λ1)

)
+ Hn(G1, H0(µj

))
, where

n > l
(
uj
)

withn− l
(
uj
)

is even;

(b) if j ∈ {2, 3, · · · , s− 1}, then
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(i) Hn(G1, L
(
µj
)) ∼= k, where n = j− 1,

(ii) Hn(G1, L
(
µj
)) ∼= Hn−j+1(G1, k) + Hn−j−1(G1, k), where l

(
uj
)
− n is even and

j < n < l
(
uj
)
,

(iii) for n = l
(
uj
)
, where n− l

(
uj
)

is even,

Hn(G1, L
(
µj
)) ∼= Hn−j+1(G1, k) + ∑j

i=0 Hn−j−1+i (G1, H0 (λi ) ) + ∑j
i=2 Hn−j+i (G1, H0(µi) ).

(iv) for all n > l
(
uj
)
, where n− l

(
uj
)

is even,

Hn(G1, L
(
µj
)) ∼= Hn−j+1(G1, k) + ∑j

i=0 Hn−j−1+i (G1, H0(λi) ) + ∑j
i=1 Hn−j+i (G1, H0(µi) ).

Here λ0 = 0.

Theorem 3. Let G be a semisimple and simply connected algebraic group of type Bl (l ≥ 2) over
an algebraically closed field of characteristic p > h, where h is the Coxeter number, and G1 be the
first Frobenius kernel of G. Consider simple G1-modules with highest weights µ1, µ2, · · · , µs−1
and write them in the following form, as described in Table 2: µi = uj·0 + pδj, where uj ∈W and
δj ∈ X(T)+. Then Hn(G1, L

(
µj
))

= 0, except in the following cases:

(a) if j = 1 and l = 2, then

(i) Hn(G1, L
(
µj
)) ∼= k⊕ H2(G1, H0(λ2)

)
, where n = 3,

(ii) Hn(G1, L
(
µj
)) ∼= ∑2

i=0 Hn−3+i(G1, H0(λi)
)
+ Hn(G1, H0(µj

))
, where n > 3

and n− 3 is even;

(b) if j = 1 and l > 2, then

(i) Hn(G1, L
(
µj
)) ∼= k, where n = 3,

(ii) Hn(G1, L
(
µj
)) ∼= Hn−3(G1, k), where n− 3 is even and 3 < n < l(w2),

(iii) Hn(G1, L
(
µj
)) ∼= Hn−3(G1, k) + Hn−1(G1, H0(λ2)

)
, where n = l(w2) + 1,

(iv) Hn(G1, L
(
µj
)) ∼= ∑2

i=0 Hn−3+i(G1, H0(λi)
)
, where l

(
uj
)
− n is even and

l(w2) + 1 < n < l
(
uj
)
;

(ii) Hn(G1, L
(
µj
)) ∼= ∑2

i=0 Hn−3+i(G1, H0(λi)
)
+ Hn(G1, H0(µj

))
, where n ≥ l

(
uj
)

and n− l
(
uj
)

is even;

(c) if j ∈ {2, 3, · · · , tλ − 1} and l > 2, then

(i) Hn(G1, L
(
µj
)) ∼= k, where n = j,

(ii) Hn(G1, L
(
µj
)) ∼= Hn−j(G1, k) ⊕ Hn−j−2(G1, k), where j < n < l

(
wj
)

and
l
(
wj
)
− n is even,

(iii) Hn(G1, L
(
µj
)) ∼= Hn−j(G1, k) + Hn−j−2(G1, k) + Hn−1(G1, H0(λj+1

))
, where

n = l
(
wj
)
,

(iv) Hn(G1, L
(
µj
)) ∼= ∑1

i=0 Hn−j+i(G1, H0(λi)
)
+ ∑

j+1
i=0 Hn−j−2+i(G1, H0(λi)

)
,

where l
(
wj
)
< n < l

(
uj
)

and l
(
uj
)
− n is even,

(v) for all n ≥ l
(
uj
)
, where n− l

(
uj
)

is even,

Hn (G1, L
(
µj
)
) ∼=

1

∑
i=0

Hn−j+i (G1, H0(λi) ) +
j+1

∑
i=0

Hn−j−2+i (G1, H0(λi ) ) +
j

∑
i=m

Hn−j+i (G1, H0 (µi) ),

where m =

{
2 if n = l

(
uj
)
,

1 if n = l
(
uj
)
;

(d) if j = tλ and l > 2, then

(i) Hn(G1, L
(
µj
)) ∼= k, where n = j,

(ii) Hn(G1, L
(
µj
)) ∼= ∑1

i=0 Hn−j+i(G1, H0(λi)
)
+ ∑

j+1
i=0 Hn−j−2+i(G1, H0(λi)

)
,

where j < n < l
(
uj
)

and l
(
uj
)
− n is even,

(iii) for all n ≥ l
(
uj
)
, where n− l

(
uj
)

is even,
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Hn (G1, L
(
µj
)
) ∼=

1

∑
i=0

Hn−j+i (G1, H0(λi) ) +
j+1

∑
i=0

Hn−j−2+i (G1, H0(λi) ) +
j

∑
i=1

Hn−j+i (G1, H0(µi) );

(e) if j ∈ {tλ + 1, tλ + 2, · · · , s− 1} and l > 2, then

(i) Hn(G1, L
(
µj
)) ∼= k⊕ Hn−1(G1, H0(λj+1

))
, where n = j,

(ii) Hn(G1, L
(
µj
)) ∼= ∑1

i=0 Hn−j+i(G1, H0(λi)
)
+ ∑

j+1
i=0 Hn−j−2+i(G1, H0(λi)

)
,

where j < n < l
(
uj
)

and l
(
uj
)
− n is even,

(iii) for all n ≥ l
(
uj
)
, where n− l

(
uj
)

is even,

Hn (G1, L
(
µj
)
) ∼=

1

∑
i=0

Hn−j+i (G1, H0(λi) ) +
j+1

∑
i=0

Hn−j−2+i (G1, H0(λi) ) +
j

∑
i=1

Hn−j+i (G1, H0(µi) ).

Here λ0 = 0 and tλ = s− l + 1.

Theorem 4. Let G be a semisimple and simply connected algebraic group of type Cl (l ≥ 3) or
Dl (l ≥ 4) over an algebraically closed field of characteristic p > h, where h is the Coxeter number,
and G1 be the first Frobenius kernel of G. Consider simple G1-modules with highest weights
µ1, µ2, · · · , µs−1 and write them in the following form, as described in Table 1: µi = uj·0 + pδj,
where uj ∈W and δj ∈ X(T)+. Then Hn(G1, L

(
µj
))

= 0, except in the following cases:

(a) if j = 1, then

(i) Hn(G1, L
(
µj
)) ∼= k, where n = 3,

(ii) Hn(G1, L
(
µj
)) ∼= Hn−3(G1, k), where n− 3 is even and 3 < n < l

(
uj
)
,

(iii) Hn(G1, L
(
µj
)) ∼= Hn−3(G1, k) + Hn(G1, H0(µj

))
, where n = l

(
uj
)
,

(iv) Hn(G1, L
(
µj
)) ∼= ∑2

i=0 Hn−3+i(G1, H0(λi)
)
+ Hn(G1, H0(µj

))
, where n > l

(
uj
)

and n− l
(
uj
)

is even;

(b) if j ∈
{

2, 3, · · · , tµ

}
, then

(i) Hn(G1, L
(
µj
)) ∼= k, where n = j,

(ii) Hn(G1, L
(
µj
)) ∼= Hn−j(G1, k) ⊕ Hn−j−2(G1, k), where j < n < l

(
uj
)

and
n− l

(
uj
)

is even,
(iii) Hn(G1, L

(
µj
)) ∼= Hn−j(G1, k) + Hn−j−2(G1, k) + Hn(G1, H0(µj

))
, where

n = l
(
uj
)
, for all n > l

(
uj
)
, where n− l

(
uj
)

is even,

Hn (G1, L
(
µj
)
) ∼=

1

∑
i=0

Hn−j+i (G1, H0(λi) ) +
j+1

∑
i=0

Hn−j−2+i (G1, H0(λi ) ) +
j

∑
i=1

Hn−j+i (G1, H0 (µi ) );

(c) if j = s− 1 and R = Cl , then

(i) Hn(G1, L
(
µj
)) ∼= k⊕ Hn(G1, H0(µj

))
, where n = l

(
uj
)
,

(ii) for all n > l
(
uj
)
, where n− l

(
uj
)

is even,

Hn(G1, L
(
µj
)) ∼= 1

∑
i=0

Hn−j+i (G1, H0(λi ) ) +
j+1

∑
i=0

Hn−j−2+i (G1, H0 (λi) ) +
j

∑
i=1

Hn−j+i (G1, H0(µi) ).

Here λ0 = 0 and

tµ =

{
s− 1 if R = Dl ,
s− 2 if R = Cl .

The following general result shows the importance of the cohomology of G1 (restricted
cohomology) in studying the connections between the cohomology of g, G1, and G with
coefficients in simple restricted modules.
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Theorem 5. Let G be a semisimple and simply connected algebraic group over an algebraically
closed field of characteristic p > h, where h is the Coxeter number, G1 be the first Frobenius kernel
of G, and g be the Lie algebra of G. Suppose that V is a simple module with the restricted highest
weight. Then, for all n > 0,

(a) Hn(G1, V) ∼= Hn(G, V) if and only if Hn(G1, V) ∼= HomG (k, Hn(G1, V)(−1) );

(b) Hn(g, V) ∼= Hn(G, V) if and only if Hn(g, V) ∼= HomG (k, Hn(G1, V)(−1) );
(c) Hn(G, V) ∼= HomG (k, Hn(g, V )(−1) ) if Hn(g, V) ∼= Hn(G1, V ).

Theorems 1–5 allow us to compare the structures of ordinary cohomology (cohomology
for g), restricted cohomology (cohomology for G1), and cohomology of the algebraic
group associated with a given Lie algebra (cohomology for G). For example, comparison
of Theorem 1 with the results on cohomology Hn(g, L(λi)) obtained in [22] yields the
following result:

Corollary 1. Let G be a semisimple and simply connected algebraic group over an algebraically
closed field k of characteristic p > h, where h is the Coxeter number, G1 be the first Frobenius kernel
of G, and g be the Lie algebra of G. Then, the nontrivial isomorphism

Hn(g, L(λi)) ∼= Hn(G1, L(λi))

of G -modules holds only in the following cases:

(a) n = i and i ∈ {1, · · · , tλ};
(b) g = Bl , n = i, and i = tλ + 1;
(c) g = Bl , n = l(wi), and i ∈ {tλ + 2, tλ + 3, · · · , s};
(d) g = Cl , n = i, and i = s.

Comparison of Theorems 2–4 with the results on cohomology Hn(g, L
(
µj
))

obtained
in [22] yields the following result:

Corollary 2. Let G be a semisimple and simply connected algebraic group over an algebraically
closed field k of characteristic p > h, where h is the Coxeter number, G1 be the first Frobenius kernel
of G, and g be the Lie algebra of G. Then, the non-trivial isomorphism

Hn(g, L
(
µj
)) ∼= Hn(G1, L

(
µj
))

of G -modules holds only in the following cases:

(a) g = Al , n = j + 1, and j = 1;
(b) g = Bl , Cl , Dl , n = j + 2, and j = 1;
(c) g = Al , n = j− 1, and j ∈ {2, 3, · · · , s− 1};
(d) g = Bl , Cl , Dl , n = j, and j ∈ {2, 3, · · · , s− 1}.

Using Theorem 1 and Statement (a) of Theorem 5, we obtain the following result on
the connection between cohomology Hn(G1, L(λi)) and Hn(G, L(λi)):

Corollary 3. Let G be a semisimple and simply connected algebraic group over an algebraically
closed field k of characteristic p > h, where h is the Coxeter number, and G1 be the first Frobenius
kernel of G. Then, the non-trivial isomorphism Hn(G1, L(λi)) ∼= Hn(G, L(λi)) of G-modules
holds only for n = i and i ∈ {1, · · · , tλ}.

Similarly, using Theorems 2–4 and Statement (a) of Theorem 5, we obtain the following
result on the connection between cohomology Hn(G1, L

(
µj
))

and Hn(G, L
(
µj
))

:

Corollary 4. Let G be a semisimple and simply connected algebraic group over an algebraically
closed field k of characteristic p > h, where h is the Coxeter number, and G1 be the first Frobenius
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kernel of G. Then, the nontrivial isomorphisms Hn(G1, L
(
µj
)) ∼= Hn(G, L

(
µj
))

of G-modules
holds only in the following cases:

(a) g = Al , n = j + 1, and j = 1;
(b) g = Bl , Cl , Dl , n = j + 2, and j = 1;
(c) g = Al , n = j− 1, and j ∈ {2, 3, · · · , s− 1};
(d) g = Bl , n = j, and j ∈ {2, 3, · · · , tλ};
(a) g = Cl , Dl, n = j, and j ∈

{
2, 3, · · · , tµ

}
.

Corollaries 1 and 3 immediately imply the following result:

Corollary 5. Let G be a semisimple and simply connected algebraic group over an algebraically
closed field k of characteristic p > h, where h is the Coxeter number, g be the Lie algebra of G,
and G1 be the first Frobenius kernel of G. Then, the non-trivial isomorphisms Hn(g, L(λi)) ∼=
Hn(G1, L(λi)) ∼= Hn(G, L(λi)) of G-modules hold only for n = i and i ∈ {1, · · · , tλ}.

The existence of these isomorphisms was previously established in [22] (p. 7). Corol-
lary 5 establishes that for simple modules L(λ1), L(λ2), · · · , L(λs), there are no other such
non-trivial isomorphisms.

Similarly, the following result immediately follows from Corollaries 2 and 4:

Corollary 6. Let G be a semisimple and simply connected algebraic group over an algebraically
closed field k of chacteristic p > h, where h. is the Coxeter number, g be the Lie algebra of G,
and G1 be the first Frobenius kernel of G. Then, the non-trivial isomorphisms Hn(g, L

(
µj
)) ∼=

Hn(G, L
(
µj
)) ∼= Hn(G1, L

(
µj
))

of G-modules hold only in the following cases:

(a) g = Al , n = j + 1, and j = 1;
(b) g = Bl , Cl , Dl , n = j + 2, and j = 1;
(c) g = Al , n = j− 1, and j ∈ {2, 3, · · · , s− 1};
(d) g = Bl , n = j, and j ∈ {2, 3, · · · , tλ};
(e) g = Cl , Dl, n = j, and j ∈

{
2, 3, · · · , tµ

}
.

3.2. Proof of the Results

Proof of Theorem 1. We will use the algorithm for calculating restricted cohomology with
coefficients in simple modules given at the end of Section 2 for λ = λi with i ∈ {1, 2, · · · , s}.
Let us calculate νi and l(wi). According to Table 1, for all i ∈ {1, 2, · · · , s}, νi = α0 and

l(wi) =



2l − i for g = Al , Bl ,
4l − i− 4 for g = Cl ,
4l − i− 6 for g = Dl ,
22− i for g = E6,
34− i for g = E7,
58− i for g = E8,
16− i for g = F4,
6− i for g = G2.

. (6)

Now, let us give the structure of H0(λi)/L(λi) as a G1-module. Since in the restricted
region the representation theories G and G1 are equivalent, then H0(λi)/L(λi) has the
same structure as a G-module and a G1-module. Therefore, by Statement (a) of Lemma 4.1
in [22] (p. 3870),

H0(λi)/L(λi) ∼= L(λi−1) (7)

for all i ∈ {1, 2, · · · , s} as G1-module.
The next two steps of the algorithm for calculating the cohomology Hn(G1, L(λi)) will

be done separately in the corresponding statements of the theorem. �
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Proof of Statement (a) of Theorem 1. We will calculate Hn−1(G1, H0(λi)/L(λi)
)

and
Hn(G1, L(λi)) simultaneously. By (7), Hn−1(G1, H0(λi)/L(λi)

) ∼= Hn−1(G1, L(λi−1)) for
all i ∈ {1, 2, · · · , tλ}. By (6), i < l(wi) for all i ∈ {1, 2, · · · , tλ}. Then, by (4) and (5), for all
i ∈ {1, 2, · · · , tλ},

Hn(G1, L(λi)) ∼=
{

Hn−1(G1, L(λi−1)) if n < l(wi),
Hn−1(G1, L(λi−1)) + Hn(G1, H0(λi)

)
if n ≥ l(wi).

(8)

Let n < i. Then, using the induction on i, from (8), we obtain

Hn(G1, L(λi)) ∼= Hn−1(G1, L(λi−1)) (9)

for all i ∈ {1, 2, · · · , tλ}. We use the induction on i. If i = 1, then, by (9),

Hn(G1, L(λ1)) ∼= Hn−1(G1, L(λ0)) = Hn−1(G1, k) = 0,

since n < 1. Suppose that Hn(G1, L(λi)) = 0 for all i < i0, where i0 ≤ tλ, and prove that
Hn(G1, L

(
λi0
))

= 0. By (9), Hn(G1, L
(
λi0
)) ∼= Hn−1(G1, L

(
λi0−1

))
for all n < i0. By the

induction hypothesis, Hn−1(G1, L
(
λi0−1

))
= 0 for all n < i0. Therefore, Hn(G1, L

(
λi0
))

=
0 for all n < i0. Thus, Hn(G1, L(λi)) = 0 for all i ∈ {1, 2, · · · , tλ} and for all n < i.
Now, let n = i. Then, using (8), we see that in this case also (9) holds. If i = 1, then,
by (9), Hn(G1, L(λ1)) ∼= H0(G1, L(λ0)) = H0(G1, k) = k, since n = 1. Suppose that
Hn(G1, L(λi)) = k for all i < i0, where i0 ≤ tλ, and n = i. We prove that Hn(G1, L

(
λi0
))

= k
if n = i0. Using (9), we get that Hn(G1, L

(
λi0
)) ∼= Hn−1(G1, L

(
λi0−1

))
if n = i0. By the

induction hypothesis, Hn−1(G1, L
(
λi0−1

))
= k if n = i0. Therefore, Hn(G1, L

(
λi0
))

= k if
n = i0. Thus, Hn(G1, L(λi)) = k for all i ∈ {1, 2, · · · , tλ} and for n = i. This proves the
sub-statement (i).

If i < n < l(wi), then, by (8), in this case also the Formula (9) holds. Let i = 1, then, by
(9), Hn(G1, L(λ1)) ∼= Hn−1(G1, k) if 1 < n < l(w1). If n− 1 is even, then, by (3), Hn−1(G1, k)
is non-trivial, otherwise Hn−1(G1, k) = 0. Suppose that Hn(G1, L(λi)) ∼= Hn−i(G1, k) for
all i < i0 if i < n < l(wi). Prove that Hn(G1, L

(
λi0
))

= Hn−i0(G1, k) if i0 < n < l
(
wi0
)
.

Using (9), we get that

Hn(G1, L
(
λi0
)) ∼= Hn−1(G1, L

(
λi0−1

))
if i0 < n < l

(
wi0
)
. By the induction hypothesis, Hn−1(G1, L

(
λi0−1

))
= Hn−i0(G1, k) if

i0 < n < l
(
wi0
)
. Therefore, Hn(G1, L

(
λi0
))

= Hn−i0(G1, k) if i0 < n < l
(
wi0
)
. Thus,

Hn(G1, L(λi)) = Hn−i(G1, k) for all i ∈ {1, 2, · · · , tλ} if tλ < n < l(wtλ
). If n− i is even,

then, by (3), Hn−i(G1, k) is non-trivial, otherwise Hn−i(G1, k) = 0. So, we get the sub-
statement (ii).

If n = l(wi), then (8),

Hn(G1, L(λi)) ∼= Hn−1(G1, L(λi−1)) + Hn (G1, H0 (λi ) ) (10)

for all i ∈ {1, 2, · · · , tλ}. By the sub-statement (ii) of this Statement (a), Hn−1 (G1, L (λi−1) ) ∼=
Hn−i (G1, k ) if n = l (wi). Then, by (10),

Hn(G1, L(λi)) ∼= Hn−i (G1, k ) + Hn (G1, H0(λi) )

for all i ∈ {1, 2, · · · , tλ}. By (3), Hn−i(G1, k) and Hn(G1, H0(λi)
)

are non-trivial. Therefore,
the sub-statements (iii) hold.

Finally, let n > l(wi). Then, using (8), we see that in this case (10) also holds. Let i = 1,
then, by (10),

Hn(G1, L(λ1)) ∼= Hn−1(G1, k) + Hn (G1, H0(λ1) )



Mathematics 2022, 10, 1680 12 of 23

if n > l(w1). If n− l(wi) is even, then, by (3), both summands of the sum of the left-hand
side of the last isomorphism are nontrivial, otherwise both of them are trivial. Suppose that

Hn(G1, L(λi)) ∼=
i

∑
j=0

Hn−i+j (G1, H0(λj
)
)

for all i < i0 if n > l(wi). Prove that

Hn(G1, L
(
λi0
)) ∼= i0

∑
j=0

Hn−i0+j (G1, H0(λj
)
)

if n > l
(
wi0
)
. Using (10), we get that

Hn(G1, L
(
λi0
)) ∼= Hn−1(G1, L

(
λi0−1

))
+ Hn (G1, H0(λi0

)
)

if n > l
(
wi0
)
. By the induction hypothesis,

Hn−1(G1, L
(
λi0−1

))
=

i0−1

∑
j=0

Hn−i0+j (G1, H0 (λj ) )

if n > l
(
wi0
)
. Therefore,

Hn(G1, L
(
λi0
))

=
i0−1

∑
j=0

Hn−i0+j (G1, H0 (λj ) ) + Hn (G1, H0(λi0 ) ) =
i0

∑
j=0

Hn−i0+j (G1, H0(λj ) )

if n > l
(
wi0
)
. Thus,

Hn(G1, L (λi)) ∼=
i

∑
j=0

Hn−i+j (G1, H0(λj ) )

for all i ∈ {1, 2, · · · , tλ} if n > l(wtλ
). If n− l(wi) is even, then, by (3), all summands of the

sum of the left-hand side of the last isomorphism are non-trivial, otherwise they are all
trivial. Therefore, the sub-statement (iv) is true. The proof of the statement (a) is complete.

If i > tλ, then the situation is slightly different from the previous case. The following
statements cover them. �

Proof of Statement (b) of Theorem 1. In this case, R = Bl and i = tλ + 1. Note that
i = l(wi) = l.

Let n < i. Since i < l(wi), we will use the Formula (4) for λ = λi. Using (4) and (7),
we get Hn(G1, L(λi)) ∼= Hn−1(G1, L(λi−1)). By the Statement (a), Hn−1(G1, L(λi−1)) = 0.
Therefore, Hn(G1, L(λi)) = 0.

Let n = i. By (7), Hn−1(G1, H0(λi)/L(λi)
) ∼= Hn−1(G1, L(λi−1)) and by the Statement

(a), Hn−1(G1, L(λi−1)) ∼= k. Moreover, according to (3), Hn(G1, H0(λi)
)
= L(α0)

(1). Be-

cause Ext1
G

(
k, L(α0)

(1)
)
= 0, then, for λ = λi, the short exact sequence (5) splits. So, we

get an isomorphism
Hn(G1, L(λi)) ∼= k⊕ L(α0)

(1).

This is the sub-statement (i).
If n > i, then by (5) for λ = λi, Hn(G1, L(λi)) ∼= Hn−1(G1, L(λi−1)) + Hn(G1, H0(λi)

)
.

To avoid repetition, here and in what follows we will omit all the details of the induction
process on i. Using the sub-statement (i) of this Statement (b) and the induction on i,
we get Hn(G1, L(λi)) ∼= ∑i

j=0 Hn−i+j(G1, H0(λj
))

. By (3), all summands of this sum are
non-trivial if n − i is even, otherwise they are all trivial. Hence, the sub-statement (ii)
is true. �
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Proof of Statement (c) of Theorem 1. Note that R = Bl , i = {tλ + 1, tλ + 2, · · · , s},. and
i > l(wi).

Let n < l(wi). Using (4) and (7), we get Hn(G1, L(λi)) ∼= Hn−1(G1, L(λi−1)).. By the
Statement (b), Hn−1(G1, L(λi−1)) = 0. Therefore, Hn(G1, L(λi)) = 0.

Let n = l(wi). We will use the short exact sequence (5) for λ = λi. By (7),
Hn−1(G1, H0(λi)/L(λi)

) ∼= Hn−1(G1, L(λi−1)). Since i > l(wi), then, by the Statement
(b), Hn−1(G1, L(λi−1)) = 0. Moreover according to (3), Hn(G1, H0(λi)

) ∼= L(α0)
(1). Then,

using the short exact sequence (5), we get an isomorphism

Hn(G1, L(λi)) ∼= L(α0)
(1).

This is the sub-statement (i).
If l(wi) < n < i,. then by (5) for λ = λi,. Hn(G1, L(λi)) ∼= Hn−1(G1, L(λi−1)) +

Hn(G1, H0(λi)
)
. Using the sub-statement (i) of this Statement (c) and the induction on

i, we get Hn(G1, L(λi)) ∼= ∑n
j=0 H j(G1, H0(λj+2

))
. By (3), all summands of this sum are

non-trivial if n− l(wi) is even, otherwise they are all trivial. Hence, the sub-statement (ii)
is true.

Now let n = i. Then by (5) for λ = λi, Hn(G1, L(λi)) ∼= Hn−1(G1, L(λi−1))+
Hn(G1, H0(λi)

)
.. Using the sub-statement (ii) of this Statement (c) and the induction

on i,. we get Hn(G1, L(λi)) ∼= ∑i
j=0 H j(G1, H0(λj

))
. By (3), all summands of this sum are

non-trivial. So, we get the sub-statement (iii).
Finally let n > i. Then, by (5) for λ = λi, Hn(G1, L(λi)) ∼= Hn−1(G1, L(λi−1)) +

Hn(G1, H0(λi)
)
. Using the sub-statement (iii) of this Statement (c) and the induction on

i, we get Hn(G1, L(λi)) ∼= ∑i
j=0 Hn−i+j(G1, H0(λj

))
. By (3), all summands of this sum

are non-trivial if n − i is even, otherwise they are all trivial. Hence, we have obtained
sub-statement (iv). �

Proof of Statement (d) of Theorem 1. Is similar to Proof of Statement (b) of Theorem 1. We
only note that, in this case, R = Cl , i = tλ + 1 and i = l(wi) = 2l − 2. �

Proof of Theorems 2–4. First, we will calculate δj and According to Table 2, for all
∈ {1, 2, · · · , s− 1}, δj = α0, except in the case where R = Bl and δj = ω1, and

l
(
uj
)
=


2l − j− 1 if g = Al ,
4l − j− 2 if g = Bl ,
4l − j− 6 if g = Cl ,
4l − j− 8 if g = Dl .

(11)

Now, let us give the structure of H0(µj
)
/L
(
µj
)

as a G1-module. Since in the restricted
region the representation theories G and G1 are equivalent, then H0(µj

)
/L
(
µj
)

has the
same structure as an G. -module and a G1-module. Therefore, by the statements (b)–(d) of
Lemma 4.1 in [22] (p. 3870),

H0(µ1)/L(µ1) ∼= L(λ2), (12)

and there exist the following short exact sequences:

0→ L(µ1)⊕ L(λ3)⊕ L(λ1)→ H0(µ2)/L(µ2)→ L(λ2)→ 0, (13)

and
0→ L

(
µj−1

)
⊕ L

(
λj+1

)
→ H0(µj

)
/L
(
µj
)
→ L

(
λj
)
→ 0 (14)

for all j ∈ {3, 4, · · · , s− 1}.
The next two steps of the algorithm for calculating the cohomology Hn(G1, L

(
µj
))

will be done separately in the corresponding statements. Since the proofs of Theorems 2–4



Mathematics 2022, 10, 1680 14 of 23

are similar, we will only illustrate in more detail the proofs of Statements of Theorem 3,
which is more variable. �

Proof of Statement (a) of Theorem 3. In this case, g = B2 and j = 1. By (12),
Hn−1(G1, H0(µj

)
/L
(
µj
)) ∼= Hn−1(G1, L(λ2)). By (6), l(w2) = 2, and by (11), l(u1) = 5.

Let n < 3. Since Hn−1(G1, L(λ2)) = 0 for all n < 3, then Hn(G1, L
(
µj
)) ∼=

Hn−1(G1, L(λ2)) = 0.
If n = 3, then, by Statement (b) of Theorem 1, Hn−1(G1, L(λ2)) ∼= k ⊕ L(α0)

(1). So,
by (4),

Hn(G1, L
(
µj
)) ∼= Hn−1(G1, L(λ2)) = k⊕ L(α0)

(1).

This is the sub-statement (i).
Let 3 < n < l(u1) = 5. In this case, there is only one value n = 4. Then, by Statement

(b) of Theorem 1, Hn−1(G1, L(λ2)) = 0. Therefore, Hn(G1, L
(
µj
))

= 0.
If n ≥ l(u1) = 5, Then, by Statement (b) of Theorem 1,

Hn−1(G1, L(λ2)) ∼=
2

∑
i=0

Hn−3−i (G1, H0 (λi) ).

Then, by (5),

Hn(G1, L
(
µj
)) ∼= Hn−1(G1, L(λ2)) + Hn (G1, H0(µj

)
) =

2

∑
i=0

Hn−3−i (G1, H0(λi) ) + Hn (G1, H0(µj
)
).

By (3), all summands of this sum are non-trivial if n− 3 is even, otherwise they are
trivial. Hence, we have obtained sub-statement (ii). �

Proof of Statement (b) of Theorem 3. In this case, g = Bl (l > 2) and j = 1. By (12),

Hn−1 (G1, H0(µj
)
/L
(
µj
)
) ∼= Hn−1(G1, L(λ2)).

By (6), l(w2) = 2l − 2, and by (11), l(u1) = 4l − 3.
Let n < 3. Since Hn−1(G1, L(λ2)) = 0 for all n < 3, then Hn(G1, L

(
µj
)) ∼=

Hn−1(G1, L(λ2)) = 0.
If n = 3, then, by Statement (a) of Theorem 1, Hn−1(G1, L(λ2)) ∼= k. So, by (4),

Hn(G1, L
(
µj
)) ∼= Hn−1(G1, L(λ2)) = k.

This is the sub-statement (i).
Let 3 < n < l(w2) = 2l − 2. Then, by Statement (a) of Theorem 1, Hn−1(G1, L(λ2)) ∼=

Hn−3(G1, k). Therefore, by (4), Hn(G1, L
(
µj
)) ∼= Hn−1(G1, L(λ2)) ∼= Hn−3(G1, k). This

cohomology is non-trivial if n − 3 is even, and is trivial otherwise. So, we get the sub-
statement (ii).

If n = l(w2) = 2l − 2, then, by Statement (a) of Theorem 1, Hn−1(G1, L(λ2)) = 0.
Therefore, by (4), Hn(G1, L

(
µj
)) ∼= Hn−1(G1, L(λ2)) = 0.

If n = l(w2) + 1 = 2l − 1, then, by Statement (a) of Theorem 1, Hn−1(G1, L(λ2)) ∼=
Hn−3(G1, k) + Hn−1(G1, H0(λ2)

)
. Therefore, by (4),

Hn(G1, L
(
µj
)) ∼= Hn−1(G1, L(λ2)) = Hn−3(G1, k) + Hn−1 (G1, H0(λ2) ).

This is the sub-statement (iii).
If l(w2) + 1 < n < l(u1) = 4l − 3, then, by Statement (b) of Theorem 1,

Hn−1(G1, L(λ2)) ∼=
2

∑
i=0

Hn−3−i (G1, H0(λi) ).
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Using (4), we get

Hn(G1, L
(
µj
)) ∼= Hn−1(G1, L(λ2)) =

2

∑
i=0

Hn−3−i (G1, H0(λi) ).

If l(ui)− n is even, then, by (3), all summands of the sum of the left-hand side of the
last isomorphism are non-trivial, otherwise they are all trivial. Therefore, the sub-statement
(iv) is true.

Finally, let n ≥ l(u1) = 4l − 3. then, by Statement (b) of Theorem 1,

Hn−1(G1, L(λ2)) ∼=
2

∑
i=0

Hn−3−i (G1, H0(λi) ).

Using (5), we get

Hn(G1, L
(
µj
)) ∼= Hn−1 (G1, L(λ2) ) + Hn (G1, H0(µj

)
) =

2

∑
i=0

Hn−3−i (G1, H0(λi) ) + Hn (G1, H0(µj
)
).

If n− l(ui) is even, then, by (3), all summands of the sum of the left-hand side of the
last isomorphism are non-trivial, otherwise they are all trivial. Therefore, the sub-statement
(v) is true. �

Proof of Statement (c) of Theorem 3. In this case, g = Bl (l > 2) and j ∈ {2, 3, · · · , tλ}.
The long cohomological sequences corresponding to the short exact sequences (13) and (14)
yield the exact sequences

0→ Hn−2(G1, L(λ2))→ Hn−1(G1, L(µ1)⊕ L(λ3)⊕ L(λ1))→ Hn−1 (G1, H0(µ2)/L(µ2) )→ 0. (15)

0→ Hn−2(G1, L
(
λj
))
→ Hn−1(G1, L

(
µj−1

)
⊕ L

(
λj+1

))
→ Hn−1 (G1, H0(µj

)
/L
(
µj
)
)→ 0, j > 2, (16)

respectively.
Let n < j. By Statement (a) of Theorem 1 and Statement (b) of this Theorem 3,

Hn−2(G1, L
(
λj
))

= 0, Hn−1(G1, L(µ1)⊕ L(λ3)⊕ L(λ1)) = 0, and

Hn−1(G1, L
(
µj−1

)
⊕ L

(
λj+1

))
= 0.

Then it follows from the exactness of the sequences (15) and (16) that
Hn−1(G1, H0(µ2)/L(µ2)

)
= 0. Therefore, by (4),

Hn (G1, L
(
µj
))

= Hn−1 (G1, H0(µ2)/L(µ2) ) = 0.

Let n = j. We use the induction on j. If j = 2, then Hn−2 (G1, L(λ2)) = 0, and, by
Statement (a) of Theorem 1 and Statement (b) of this Theorem 3,

Hn−1(G1, L(µ1)⊕ L(λ3)⊕ L(λ1)) ∼= Hn−1(G1, L(λ1)) ∼= k.

Then it follows from the exactness of the sequence (15) that Hn−1(G1, H0(µ2)/L(µ2)
)
= k.

Therefore, by (4),

Hn(G1, L(µ2)) ∼= Hn−1 (G1, H0(µ2)/L(µ2) ) ∼= k.
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Now suppose that Hn(G1, L
(
µj
)) ∼= k for all j < j0. By Statement (a) of Theorem

1, Hn−2(G1, L
(
λj0
)) ∼= 0 and Hn−1(G1, L

(
λj0+1

)) ∼= 0. By the induction hypothesis,
Hn−1(G1, L

(
µj0−1

)) ∼= k. Then the exactness of the sequence (16) yields

Hn−1
(

G1, H0(µj0
)
/L
(
µj0
))

= k.

Hence, by (4), Hn(G1, L
(
µj0
)) ∼= Hn−1(G1, H0(µj0

)
/L
(
µj0
)) ∼= k. So, Hn(G1, L

(
µj
)) ∼=

k for all j ∈ {2, 3, · · · , tλ}, which proves the sub-statement (i).
Let j < n < l(w2) = 2l − 2. We will use induction on j. If j = 2, then by Statement

(a) of Theorem 1, Hn−1(G1, L(λ1)) ∼= Hn−2(G1, k), Hn−2(G1, L(λ2)) ∼= Hn−4(G1, k), and
Hn−1(G1, L(λ3)) ∼= Hn−4(G1, k). By Statement (b) of this Theorem 3, Hn−1(G1, L(µ1)) ∼=
Hn−4(G1, k). Then it follows from the exactness of the sequence (15) that

Hn−1
(

G1, H0(µ2)/L(µ2)
)
= Hn−2(G1, k) + Hn−4(G1, k).

Now suppose that Hn(G1, L
(
µj
)) ∼= Hn−j(G1, k) + Hn−j−2(G1, k) for all j < j0. By

Statement (a) of Theorem 1, Hn−2(G1, L
(
λj0
)) ∼= Hn−j0−2(G1, k) and Hn−1(G1, L

(
λj0+1

)) ∼=
Hn−j0−2(G1, k). By the induction hypothesis, Hn−1(G1, L

(
µj0−1

)) ∼= Hn−j0(G1, k)+
Hn−j0−2(G1, k). Then the exactness of the sequence (16) yields

Hn−1
(

G1, H0(µj0
)
/L
(
µj0
))

= Hn−j0(G1, k) + Hn−j0−2(G1, k).

Hence, by (4),

Hn(G1, L
(
µj0
)) ∼= Hn−1

(
G1, H0(µj0

)
/L
(
µj0
)) ∼= Hn−j0(G1, k) + Hn−j0−2(G1, k).

So, Hn(G1, L
(
µj
)) ∼= Hn−j(G1, k) + Hn−j−2(G1, k) for all j ∈ {2, 3, · · · , tλ}, which

proves the sub-statement (ii).
Let n = l

(
wj
)
= 2l− j. If j = 2, then by Statement (a) of Theorem 1, Hn−1(G1, L(λ1)) ∼=

Hn−2(G1, k), Hn−2(G1, L(λ2)) ∼= Hn−4(G1, k), and Hn−1(G1, L(λ3)) ∼= Hn−4(G1, k)+
Hn−1(G1, H0(λ3)

)
. By Statement (b) of this Theorem 3, Hn−1(G1, L(µ1)) ∼= Hn−4(G1, k).

Then it follows from the exactness of the sequence (15) that

Hn−1
(

G1, H0(µ2)/L(µ2)
)
= Hn−2(G1, k) + Hn−4(G1, k) + Hn−1

(
G1, H0(λ3)

)
.

Now suppose that

Hn(G1, L
(
µj
)) ∼= Hn−j(G1, k) + Hn−j−2(G1, k) + Hn−1

(
G1, H0(λj+1

))
for all j < j0. By Statement (a) of Theorem 1, Hn−2(G1, L

(
λj0
)) ∼= Hn−j0−2(G1, k) and

Hn−1(G1, L
(
λj0+1

)) ∼= Hn−j0−2(G1, k) + Hn−1(G1, H0(λj0+1
))

. By the induction hypothesis,

Hn−1(G1, L
(
µj0−1

)) ∼= Hn−j0(G1, k) + Hn−j0−2(G1, k) + Hn−1
(

G1, H0(λj0+1
))

.

Then the exactness of the sequence (16) yields

Hn−1
(

G1, H0(µj0
)
/L
(
µj0
))

= Hn−j0(G1, k) + Hn−j0−2(G1, k) + Hn−1
(

G1, H0(λj0+1
))

.

Hence, by (4),

Hn(G1, L
(
µj0
)) ∼= Hn−j0(G1, k) + Hn−j0−2(G1, k) + Hn−1

(
G1, H0(λj0+1

))
.
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So, Hn(G1, L
(
µj
)) ∼= Hn−j(G1, k) + Hn−j−2(G1, k) + Hn−1(G1, H0(λj+1

))
for all j ∈

{2, 3, · · · , tλ}, which proves the sub-statement (iii).
Let l

(
wj
)

< n < l
(
uj
)

= 4l − j − 2. If j = 2, then by Statement (a) of The-
orem 1, Hn−1(G1, L(λ1)) ∼= ∑1

i=0 Hn−2+i(G1, H0(λi)
)
, Hn−2(G1, L(λ2)) ∼= ∑2

i=0 Hn−4+i(
G1, H0(λi)

)
, and Hn−1(G1, L(λ3)) ∼= ∑3

i=0 Hn−4+i(G1, H0(λi)
)
. By Statement (b) of this

Theorem 3, Hn−1(G1, L(µ1)) ∼= ∑2
i=0 Hn−4+i(G1, H0(λi)

)
. Then it follows from the exact-

ness of the sequence (15) that

Hn−1
(

G1, H0(µ2)/L(µ2)
)
=

1

∑
i=0

Hn−2+i
(

G1, H0(λi)
)
+

3

∑
i=0

Hn−4+i
(

G1, H0(λi)
)

.

Now suppose that

Hn(G1, L
(
µj
)) ∼= 1

∑
i=0

Hn−j+i
(

G1, H0(λi)
)
+

j+1

∑
i=0

Hn−j−2+i
(

G1, H0(λi)
)

for all j < j0. By Statement (a) of Theorem 1, Hn−2(G1, L
(
λj0
)) ∼=

∑
j0
i=0 Hn−2−j0+i(G1, H0(λi)

)
and Hn−1(G1, L

(
λj0+1

)) ∼= ∑
j0+1
i=0 Hn−2−j0+i(G1, H0(λi)

)
. By

the induction hypothesis,

Hn−1(G1, L
(
µj0−1

)) ∼= 1

∑
i=0

Hn−j0+i
(

G1, H0(λi)
)
+

j0

∑
i=0

Hn−j0−2+i
(

G1, H0(λi)
)

.

Then the exactness of the sequence (16) yields

Hn−1
(

G1, H0(µj0
)
/L
(
µj0
))

=
1

∑
i=0

Hn−j0+i
(

G1, H0(λi)
)
+

j0+1

∑
i=0

Hn−2−j0+i
(

G1, H0(λi)
)

.

Hence, by (4),

Hn(G1, L
(
µj0
)) ∼= 1

∑
i=0

Hn−j0+i
(

G1, H0(λi)
)
+

j0+1

∑
i=0

Hn−2−j0+i
(

G1, H0(λi)
)

.

So,

Hn(G1, L
(
µj
)) ∼= 1

∑
i=0

Hn−j+i
(

G1, H0(λi)
)
+

j+1

∑
i=0

Hn−j−2+i
(

G1, H0(λi)
)

for all j ∈ {2, 3, · · · , tλ − 1}, which proves the sub-statement (iv).
Let n ≥ l

(
uj
)

= 4l − j − 2. If j = 2, then by Statement (a) of Theorem 1,
Hn−1(G1, L(λ1)) ∼= ∑1

i=0 Hn−2+i(G1, H0(λi)
)
, Hn−2(G1, L(λ2)) ∼= ∑2

i=0
Hn−4+i(G1, H0(λi)

)
, and Hn−1(G1, L(λ3)) ∼= ∑3

i=0 Hn−4+i(G1, H0(λi)
)
. By Statement (b)

of this Theorem 3,

Hn−1(G1, L(µ1)) ∼=


2
∑

i=0
Hn−4+i(G1, H0(λi)

)
if n = l

(
uj
)
,

2
∑

i=0
Hn−4+i(G1, H0(λi)

)
+ Hn−1(G1, L(µ1)) if n > l

(
uj
)
.

Then it follows from the exactness of the sequence (15) that
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Hn−1
(

G1, H0(µ2)/L(µ2)
)
=


1
∑

i=0
Hn−2+i(G1, H0(λi)

)
+

3
∑

i=0
Hn−4+i(G1, H0(λi)

)
if n = l

(
uj
)
,

1
∑

i=0
Hn−2+i(G1, H0(λi)

)
+

3
∑

i=0
Hn−4+i(G1, H0(λi)

)
+ Hn−1(G1, L(µ1)) if n > l

(
uj
)
.

Since n ≥ l
(
uj
)
, using (5), we get

Hn(G1, L
(
µj
)) ∼= Hn−1

(
G1, H0(µ2)/L(µ2)

)
+ Hn

(
G1, H0(µj

)) ∼=
1

∑
i=0

Hn−2+i
(

G1, H0(λi)
)
+

3

∑
i=0

Hn−4+i
(

G1, H0(λi)
)
+

j

∑
i=m

Hn−j+i
(

G1, H0(µi)
)

,

where m =

{
2 if n = l

(
uj
)
,

1 if n = l
(
uj
)
.

Now suppose that

Hn(G1, L
(
µj
)) ∼= 1

∑
i=0

Hn−j+i
(

G1, H0(λi)
)
+

j+1

∑
i=0

Hn−j−2+i
(

G1, H0(λi)
)
+

j

∑
i=m

Hn−j+i
(

G1, H0(µi)
)

.

for all j < j0, where j0 ≤ tλ − 1. By Statement (a) of Theorem 1, Hn−2(G1, L
(
λj0
)) ∼=

j0
∑

i=0
Hn−2−j0+i(G1, H0(λi)

)
and Hn−1(G1, L

(
λj0+1

)) ∼= j0+1
∑

i=0
Hn−2−j0+i(G1, H0(λi)

)
. By the

induction hypothesis,

Hn−1(G1, L
(
µj0−1

)) ∼= 1

∑
i=0

Hn−j0+i
(

G1, H0(λi)
)
+

j0

∑
i=0

Hn−j0−2+i
(

G1, H0(λi)
)
+

j0−1

∑
i=m

Hn−j0+i
(

G1, H0(µi)
)

.

Then the exactness of the sequence (16) yields

Hn−1
(

G1, H0(µj0
)
/L
(
µj0
))

=
1

∑
i=0

Hn−j0+i
(

G1, H0(λi)
)
+

j0+1

∑
i=0

Hn−2−j0+i
(

G1, H0(λi)
)
+

j0−1

∑
i=m

Hn−j0+i
(

G1, H0(µi)
)

.

Hence, by (5),

Hn(G1, L
(
µj0
)) ∼= 1

∑
i=0

Hn−j0+i
(

G1, H0(λi)
)
+

j0+1

∑
i=0

Hn−2−j0+i
(

G1, H0(λi)
)
+

j0

∑
i=m

Hn−j0+i
(

G1, H0(µi)
)

.

So,

Hn(G1, L
(
µj
)) ∼= 1

∑
i=0

Hn−j+i
(

G1, H0(λi)
)
+

j+1

∑
i=0

Hn−j−2+i
(

G1, H0(λi)
)
+

j

∑
i=m

Hn−j+i
(

G1, H0(µi)
)

,

for all j ∈ {2, 3, · · · , tλ − 1}, which proves the sub-statement (v). �

Proof of Statement (d) of Theorem 3. In this case, g = Bl (l > 2) and j = tλ. Let n < j.
By Statement (a) of Theorem 1 and Statement (b) of this Theorem 3, Hn−2(G1, L

(
λj
))

= 0,
Hn−1(G1, L

(
λj+1

))
= 0, and Hn−1(G1, L

(
µj−1

))
= 0. Then it follows from the exactness of

the sequence (16) that Hn−1(G1, H0(µj
)
/L
(
µj
))

= 0. Therefore, by (4),

Hn(G1, L
(
µj
))

= Hn−1
(

G1, H0(µj
)
/L
(
µj
))

= 0

.
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Let n = j = tλ. Then, by Statement (a) of Theorem 1 and Statement (b) of this Theorem
3, Hn−2(G1, L

(
λj
))

= 0, Hn−1(G1, L
(
λj+1

))
= 0, and Hn−1(G1, L

(
µj−1

))
= k. Then it fol-

lows from the exactness of the sequence (16) that Hn−1(G1, H0(µj
)
/L
(
µj
))

= k. Therefore,
by (4), Hn(G1, L

(
µj
))

= Hn−1(G1, H0(µj
)
/L
(
µj
))

= k. We get the sub-statement (i).
Let j < n < l

(
uj
)
. Then, by Statement (a) of Theorem 1, Hn−2(G1, L

(
λj
))

=

∑
j
i=0 Hn−2−j+i(G1, H0(λi)

)
, Hn−1(G1, L

(
λj+1

))
= ∑

j+1
i=0 Hn−2−j+i(G1, H0(λi)

)
, and by

Statement (b) of this Theorem 3,

Hn−1(G1, L
(
µj−1

))
=

1

∑
i=0

Hn−j+i
(

G1, H0(λi)
)
+

j

∑
i=0

Hn−j+i
(

G1, H0(λi)
)

.

Then it follows from the exactness of the sequence (16) that

Hn−1
(

G1, H0(µj
)
/L
(
µj
))

=
1

∑
i=0

Hn−j+i
(

G1, H0(λi)
)
+

j+1

∑
i=0

Hn−j+i
(

G1, H0(λi)
)

.

Therefore, by (4),

Hn(G1, L
(
µj
))

= Hn−1
(

G1, H0(µj
)
/L
(
µj
))

=
1

∑
i=0

Hn−j+i
(

G1, H0(λi)
)
+

j+1

∑
i=0

Hn−2−j+i
(

G1, H0(λi)
)

.

So, we get the sub-statement (ii).
Let n ≥ l

(
uj
)
. Then, by Statement (a) of Theorem 1, Hn−2(G1, L

(
λj
))

=

∑
j
i=0 Hn−2−j+i(G1, H0(λi)

)
, Hn−1(G1, L

(
λj+1

))
= ∑

j+1
i=0 Hn−2−j+i(G1, H0(λi)

)
, and by

Statement (b) of this Theorem 3,

Hn−1(G1, L
(
µj−1

))
=

1

∑
i=0

Hn−j+i
(

G1, H0(λi)
)
+

j

∑
i=0

Hn−j+i
(

G1, H0(λi)
)
+

j−1

∑
i=1

Hn−j+i
(

G1, H0(λi)
)

.

Then it follows from the exactness of the sequence (16) that

Hn−1
(

G1, H0(µj
)
/L
(
µj
))

=
1

∑
i=0

Hn−j+i
(

G1, H0(λi)
)
+

j+1

∑
i=0

Hn−j+i
(

G1, H0(λi)
)
+

j−1

∑
i=1

Hn−j+i
(

G1, H0(λi)
)

.

Therefore, by (5),

Hn(G1, L
(
µj
))

=
1

∑
i=0

Hn−j+i
(

G1, H0(λi)
)
+

j+1

∑
i=0

Hn−j+i
(

G1, H0(λi)
)
+

j

∑
i=1

Hn−j+i
(

G1, H0(λi)
)

.

So, we get the sub-statement (iii). �

Proof of Statement (e) of Theorem 3. In this case, g = Bl (l > 2) and j = {tλ + 1, tλ + 2, · · · ,
s− 1}. Let n < j. By Statement (a) of Theorem 1 and Statement (b) of this Theorem 3,
Hn−2(G1, L

(
λj
))

= 0, Hn−1(G1, L
(
λj+1

))
= 0, and Hn−1(G1, L

(
µj−1

))
= 0. Then it fol-

lows from the exactness of the sequence (16) that Hn−1(G1, H0(µj
)
/L
(
µj
))

= 0. Therefore,
by (4),

Hn(G1, L
(
µj
))

= Hn−1
(

G1, H0(µj
)
/L
(
µj
))

= 0.

Let n = j. If j = tλ + 1, then by Statement (b) of Theorem 1, Hn−2(G1, L
(
λj
))

=

0 and Hn−1(G1, L
(
λj+1

)) ∼= Hn−1(G1, H0(λj+1
))

. By Statement (d) of this Theorem 3,
Hn−1(G1, L

(
µj−1

)) ∼= k. Then it follows from the exactness of the sequence (15) that
Hn−1(G1, H0(µj

)
/L
(
µj
))

= k + Hn−1(G1, H0(λj+1
))

. Therefore, by (4),

Hn(G1, L
(
µj
)) ∼= Hn−1

(
G1, H0(µj

)
/L
(
µj
)) ∼= k + Hn−1

(
G1, H0(λj+1

))
.
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Now suppose that Hn(G1, L
(
µj
)) ∼= k+ Hn−1(G1, H0(λj+1

))
for all tλ < j < j0, where

j0 ≤ s− 1. By Statement (c) of Theorem 1, Hn−2(G1, L
(
λj0
)) ∼= ∑n−2

i=1 Hi(G1, H0(λi+2)
)

and
Hn−1(G1, L

(
λj0+1

)) ∼= ∑n−1
i=1 Hi(G1, H0(λi+2)

)
. By the induction hypothesis,

Hn−1(G1, L
(
µj0−1

)) ∼= k. Then the exactness of the sequence (16) yields

Hn−1
(

G1, H0(µj0
)
/L
(
µj0
))

= k + Hn−1
(

G1, H0(λj0+1
))

.

Hence, by (4), Hn(G1, L
(
µj0
)) ∼= Hn−1(G1, H0(µj0

)
/L
(
µj0
)) ∼= k + Hn−1(

G1, H0(λj0+1
))

. So, Hn(G1, L
(
µj
)) ∼= k + Hn−1(G1, H0(λj+1

))
for all j ∈ {tλ + 1, tλ + 2,

· · · , s− 1}, which proves the sub-statement (i).
The proofs of the sub-statements (ii) and (iii) are similar to the proofs of the sub-

statements (iv) and (v) of Statement (c) of this Theorem 3. �

Proof of Theorem 5. By Theorem 1 in [38] (p. 38), for all n > 0 there is an isomorphism

Hn(G, V) ∼= HomG

(
k, Hn(G1, V)(−1)

)
(17)

of G-modules, where V is a simple G-modules with the restricted highest weight. �

Proof of Statement (a) of Theorem 5. Necessity. If Hn(G1, V) ∼= Hn(G, V), then, by (17),

Hn(G1, V) ∼= HomG

(
k, Hn(G1, V)(−1)

)
.

Sufficiency. If Hn(G1, V) ∼= HomG

(
k, Hn(G1, V)(−1)

)
, then, by (17), Hn(G1, V) ∼= Hn(G, V).

�

Proof of Statement (b) of Theorem 5. Necessity. If Hn(g, V) ∼= Hn(G, V), then, by (17),

Hn(g, V) ∼= HomG

(
k, Hn(G1, V)(−1)

)
.

Sufficiency. If Hn(g, V) ∼= HomG

(
k, Hn(G1, V)(−1)

)
, then, by (17), Hn(g, V) ∼= Hn(G, V).

�

Proof of Statement (c) of Theorem 5. If Hn(g, V) ∼= Hn(G1, V), then, by (17).

Hn(G, V) ∼= HomG

(
k, Hn(g, V)(−1)

)
. (18)

�

Proof of Corollary 1. If n < i, then by Theorem 1, Hn(G1, L(λi)) = 0, and, by Theorem 1
in [22] (p. 6), Hn(g, L(λi)) = 0. Therefore, in this case, there is no non-trivial isomorphism
Hn(g, L(λi)) ∼= Hn(G1, L(λi)).

Let i ∈ {1, 2, · · · , tλ} and i < n < l(wi). If the cohomology Hn(g, L(λi)) and
Hn(G1, L(λi)) are non-trivial, then, according to Theorem 1 in [22] (p. 6), the cohomology
Hn(g, L(λi)) is isomorphic to the cohomology Hn−i(g), but, by Theorem 1 of this paper,
the cohomology Hn(G1, L(λi)) is isomorphic to the cohomology Hn−i(G1, k). It is known
that the cohomology Hn−i(g) is a G-module with a trivial action of G [39] (pp. 173–174).
According to (3), the cohomology Hn−i(G1, k) is not a trivial as G-module. Consequently,
in this case, too, a non-trivial isomorphism Hn(g, L(λi)) ∼= Hn(G1, L(λi)) does not exist.

If i ∈ {1, 2, · · · , tλ} and n ≥ l(wi), then arguing as in the previous case, we obtain that,
in the non-trivial cases, the cohomology Hn(g, L(λi)) and Hn(G1, L(λi)) are not isomorphic.
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Now, let i ∈ {1, 2, · · · , tλ} and n = i. Then, by Theorem 1, Hn(G1, L(λi)) ∼= k, and, by
Theorem 1 in [22] (p. 6), Hn(g, L(λi)) ∼= k. Therefore, we get the non-trivial isomorphism
Hn(g, L(λi)) ∼= Hn(G1, L(λi)). Thus, we have Statement (a).

Let g = Bl and i = tλ. If n < i, then by Theorem 1, Hn(G1, L(λi)) = 0, and, by Theorem
1 in [22] (p. 6), Hn(g, L(λi)) = 0. If n = i, then, by Theorem 1, Hn(G1, L(λi)) ∼= k⊕ L(α0)

(1),
and, by Theorem 1 in [22] (p. 7), Hn(g, L(λi)) ∼= k⊕ L(α0)

(1). Therefore, we get the non-
trivial isomorphism Hn(g, L(λi)) ∼= Hn(G1, L(λi)). Thus, we have Statement (b). If n > i,
then arguing as in the proof of Statement (a), we obtain that the required non-trivial
isomorphism does not exist.

Let g = Bl and i ∈ {tλ + 1, tλ + 2, · · · , s}. If n < l(wi) = 2l − i, then by Theorem 1,
Hn(G1, L(λi)) = 0, and, by Theorem 1 in [22] (p. 7), Hn(g, L(λi)) = 0. If n = l(wi), then,
by Theorem 1, Hn(G1, L(λi)) ∼= L(α0)

(1), and, by Theorem 1 in [22] (p. 7), Hn(g, L(λi)) ∼=
L(α0)

(1). Therefore, we get the non-trivial isomorphism Hn(g, L(λi)) ∼= Hn(G1, L(λi)).
Thus, we have Statement (c). In other cases, there are no non-trivial isomorphisms, since
Hn(g) and Hn(G1, k) have different G-module structures.

Let g = Bl and i = s. If n < s = 2l − 2, then by Theorem 1, Hn(G1, L(λi)) = 0, and, by
Theorem 1 in [22] (p. 7), Hn(g, L(λi)) = 0. If n = s, then, by Theorem 1, Hn(G1, L(λi)) ∼=
k⊕ L(α0)

(1), and, by Theorem 1 in [22] (p. 7), Hn(g, L(λi)) ∼= k⊕ L(α0)
(1). Therefore, we

get the non-trivial isomorphism Hn(g, L(λi)) ∼= Hn(G1, L(λi)). Thus, we have Statement
(d). Since Hn(g) and Hn(G1, k) have different G-module structures, no other nontrivial
isomorphisms appear. �

Proof of Corollary 2. Is similar to that of Corollary 1. �

Proof of Corollary 3. Follows from Theorem 1 and Statement (a) of Theorem 5. �

Proof of Corollary 4. Follows from Theorems 2–4 and Statement (a) of Theorem 5. �

4. Discussion

The results of this paper relate to the following topical cohomology problem for
semisimple and simply connected algebraic groups in positive characteristic and their
Lie algebras:

• examine the cohomology of simple modules for g;
• examine the cohomology of simple modules for G1;
• determine the connection between the cohomology of simple modules for g, G1, and G.

It was formulated in [22] and the authors studied its first part in detail for the simple
modules with highest weights λ1, λ2, · · · , λs; µ1, µ2, · · · , µs. Our paper is a continuation
of this work. We have completely solved the second and third parts of this problem for
the considered simple modules. In addition, we have obtained a necessary and sufficient
condition for the isomorphisms Hn(G1, V) ∼= Hn(G, V) and Hn(g, V) ∼= Hn(G, V), and
a necessary condition for the isomorphism Hn(g, V) ∼= Hn(G1, V), where V is a simple
restricted module . To obtain the isomorphisms Hn(g, V) ∼= Hn(G1, V), we did not use
Theorem 5, since the isomorphism Hn(G, V) ∼= HomG

(
k, Hn(g, V)(−1)

)
is not a sufficient

condition. Although all non-trivial isomorphisms of Corollaries 1 and 2 satisfy this condi-
tion, the question on a sufficiency condition for the isomorphism Hn(g, V) ∼= Hn(G1, V)
remains open.

Statement (b) of Theorem 5 generalizes the results of the papers [40,41] in which
necessary and sufficient conditions of the isomorphism Hn(g, V) ∼= Hn(G, V) are obtained
for n = 1 and n = 2, respectively. In the case n = 1, the necessary and sufficient condition
of the paper [40] (p. 492) coincides with the condition of Statement (b) of Theorem 5, since
H1(g, V) ∼= H1(G1, V). In the case the necessary and sufficient condition in Theorem 5
simplifies the two conditions H2(G1, V) ∼= HomG

(
k, H2(G1, V)(−1)

)
and Im f = 0 in [41]



Mathematics 2022, 10, 1680 22 of 23

(p. 843) to one condition H2(g, V) ∼= HomG

(
k, H2(G1, V)(−1)

)
. The results of this paper

can be used in the study of restricted cohomology of restricted Lie algebras related to the
modular classical Lie algebras. Such Lie algebras, for example, include the restricted Lie
algebras of Cartan type and the general linear Lie algebra gln. The restricted cohomology
of the Lie algebras of Cartan type, as noted above, were computed only for the trivial
one-dimensional and adjoint modules. In other cases, the restricted cohomology of the Lie
algebras of Cartan type with coefficients in simple modules has not yet been studied. The
restricted cohomology of the Lie algebra gln with coefficients in simple modules has also
not yet been calculated.

Analysis of the obtained results shows that the restricted cohomology plays an impor-
tant role in the study of ordinary cohomology for modular restricted Lie algebras. Therefore,
applying the idea of restrictness of an algebra, module, and cohomology to other classes of
algebras can give a new motivation to their development.
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