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Abstract: In classical statistics, the primary test statistic is the likelihood ratio. However, for high
dimensional data, the likelihood ratio test is no longer effective and sometimes does not work
altogether. By replacing the maximum likelihood with the integral of the likelihood, the Bayes factor
is obtained. The posterior Bayes factor is the ratio of the integrals of the likelihood function with
respect to the posterior. In this paper, we investigate the performance of the posterior Bayes factor in
high dimensional hypothesis testing through the problem of testing the equality of two multivariate
normal mean vectors. The asymptotic normality of the linear function of the logarithm of the posterior
Bayes factor is established. Then we construct a test with an asymptotically nominal significance
level. The asymptotic power of the test is also derived. Simulation results and an application example
are presented, which show good performance of the test. Hence, taking the posterior Bayes factor as
a statistic in high dimensional hypothesis testing is a reasonable methodology.

Keywords: high dimension; mean test; posterior Bayes factor; asymptotic normality
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1. Introduction

The likelihood ratio is the primary test statistic in hypothesis testing owing to its
dominating power. However, for high dimensional data, the likelihood ratio statistic
is sometimes undefined. For example, the likelihood function of a multivariate normal
distribution is unbounded when the dimension of data is greater than the sample size.
Even if the likelihood ratio is well-defined, its performance is unsatisfactory when the
dimension is proportionally “close to" the sample size [1]. Therefore, when the dimension
is large relative to the sample size, that is the so-called “large p small n” situation; how to
choose a test statistic plays a key role in statistical inference.

In this article, we try to use the posterior Bayes factor to be a test statistic for high
dimensional data, applying it to equality testing of two multivariate normal mean vectors.
The classical likelihood ratio test statistic is the ratio of the maximum values of likelihoods,
whereas the Bayes factor is the ratio of the integrated likelihoods. We chose the posterior
Bayes factor rather than the prior Bayes factor because when the dimension is fixed, the
former is less affected by the variations of the prior. This paper aims to investigate the
ability of the posterior Bayes factor as a test statistic. As a result, a simple prior is taken for
the parameter.

In multivariate analysis, testing the equality of two means is a fundamental problem.
The classical procedure for this problem is the famous Hotelling T2 test in [2], which is
based on Mahalanobis distance between the sample mean vectors weighted by the inverse
sample covariance matrix. Hotelling’s T2 test is the most powerful invariant test when the
dimension is fixed and much smaller than the total sample size [3], but it is unsatisfactory
when the dimension is large relative to the sample size [1]. However, in recent decades,
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hypothesis testing viable for high dimensional data is increasingly demanded in many
application areas such as genomics, finance, medicine, and so on. An important work [1]
modifies Hotelling’s T2 statistic in a high dimensional setting by removing the inverse of
the sample covariance from the Hotelling formulation. Some new test statistics for the
mean vector are introduced by replacing the sample covariance with its diagonal in [4–6].
In [7], a statistic is constructed by retaining the cross-product terms in work [1]. In the
sequel, ref. [8] standardizes each component of X̄− Ȳ in [7] by the corresponding variance
estimation and proposes a scale-invariant test. The test statistics introduced above are
called “sum-of-squares type statistics” (see [9]) and attempt to get around the ill-formed
sample covariance matrix. Another major approach called “projecting data” transforms
high dimensional data into low dimensional data with random projection so that traditional
tests can be applied. See, for example [10–12]. By maximizing an average signal to noise
ratio, ref. [13] finds the optimal projection subspace and proposes a new test procedure
based on it. Besides the two main approaches mentioned above, ref. [14] studies the rates of
convergence for the high-dimensional mean and proposes tests based on the sample mean.
A new test based on random subspaces is proposed by [15]. A generalized component
test is presented in [16], whose statistic is the average of the squared t-statistics for all
the component testing problems. A method using a multiple hypothesis test based on
the maximum of standardized partial sums of logarithmic p-values statistic is introduced
in [17]. More works about testing the mean vectors are presented in [18–20].

Few articles develop tests for the means of two samples with Bayesian machineries in
high dimensional settings. A Bayes factor-based testing procedure is developed by [12].
However, the statistic is still constructed with lower dimensional random projections of
the high dimensional data vectors because Bayes factors based on Jeffrey’s prior involve
inversion of the ill-formed sample covariance matrices, as in the classical Hotelling T2 test
statistic in a “large p small n” setting. The approach of random projection cannot be applied
when the difference of two mean vectors is dense. However, whether the difference of two
mean vectors is dense or sparse is not known in applications. Aitkin [21] proposed the
posterior Bayes factor, which is the ratio of the posterior means of the likelihood under each
model rather than the usual prior means. Suppose two models M0 and M1 for common data
x are considered, under which the likelihood function is Li(θj), where θj is the parameter
of dimension pj and belongs to the parameter space Θj, j ∈ {0, 1}. Specifying prior πj(θj)
to θj, j ∈ {0, 1}, then the posterior Bayes factor in favor of the model M1, denoted by PBF10,
is defined as

PBF10 =
L̄1

L̄0
, (1)

where L̄j is the posterior mean:

L̄j =
∫

Θj

Lj(θj)πj(θj|x, y)dθj, j ∈ {0, 1},

and πj(θj|x, y) is the posterior density of θj:

πj(θj|x, y) =
Lj(θj)πj(θj)dθj∫

Θj
Lj(θj)πj(θj)dθj

, j ∈ {0, 1}. (2)

Unlike the Bayes factor, which is highly dependent on the prior and may be very
sensitive to variations in the prior, the posterior Bayes factor reduces this sensitivity to
the prior. Specifically, when model M0 is a regular submodel of M1, the logarithm of the
posterior Bayes factor under model M1 has

2 ln PBF10
d→ −v ln 2 + χ2(v),
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where “ d→” means the convergence in distribution, and v = p1 − p0 and χ2(v) denotes
a Chi-square distribution with v degrees of freedom. The asymptotic distribution of the
logarithm of the posterior Bayes factor is independent of the prior distribution, which
further illustrates that the posterior Bayes factor is insensitive to the prior.

Inspired by [21], we consider testing the equality of two high dimensional means with
the posterior Bayes factor. With an appropriate prior, the posterior Bayes factor no longer
suffers the impediment of the inversion of ill-formed matrices. Additionally, compared
with the approach in [12], which proposed a test based on the Bayes factor with random
projections, the posterior Bayes factor can be applied for both dense and sparse cases.
In this paper, a non-informative prior also works for the location parameters, while an
inverse Wishart prior is taken for the covariance matrix. We establish the asymptotic
normality of the logarithm of the posterior Bayes factor under the null hypothesis and
derive the asymptotic power of the test. Simulation studies are carried out to investigate
the performance of the proposed test. The numerical results show that the power of our
test outperforms the competitors in most cases.

The rest of this article is organized as follows. In Section 2, we derive the posterior
Bayes factor for testing the equality of two mean vectors in the “large p small n” setting.
The asymptotic null distribution of the posterior Bayes factor and the local power function
of the test are also presented. Simulation results are given in Section 3. We apply the
proposed test to a real dataset in Section 4. Section 5 concludes the paper. Technical proofs
and the code for performing the simulation studies are deferred to Appendices A and B.

2. Test Based on Posterior Bayes Factor

This section tries to construct the test based on the posterior Bayes factor. Let X =
(X1, . . . , Xn1) and Y = (Y1, . . . , Yn2) be iid samples from p-dimensional multivariate normal
distributions Np(µ1, Σ) and Np(µ2, Σ), respectively, where µ1 and µ2 are p× 1 vectors, and
Σ is a positively definite p× p matrix. The goal is to test the hypotheses

H0 : µ1 = µ2 versus H1 : µ1 6= µ2. (3)

In order to test Hypotheses (3) by the posterior Bayes factor, we specify the priors for
the parameters µ1, µ2 and Σ under both the null and alternative hypotheses as

π0(µ) = 1, Σ ∼W−1
p (m0, V−1), (4)

and
π1(µ1) = π1(µ2) = 1, Σ ∼W−1

p (m1, V−1), (5)

respectively, where µ is the common mean vector under the null hypothesis, and
W−1

p (mj, V−1) is the inverse Wishart distribution with real degrees of freedom mj and
a positive definite matrix V−1, j ∈ {0, 1}.

The reasons for choosing the above priors are as follows.

1. When no knowledge about the prior is available, a non-informative prior is sug-
gested. A usual one is Jeffrey’s prior. As a result, for the parameters µ1, µ2, and
the common parameter µ under the null hypothesis, we choose Jeffrey’s prior, i.e.,
Lebesgue measure.

2. For the covariance matrix Σ, the posterior distribution with Jeffrey’s prior does not
exist when p > n− 2, where n = n1 + n2. Therefore, we take the inverse Wishart
distribution, which is a conjugate for a normal covariance matrix.

3. This paper aims to investigate whether the test with the posterior Bayes factor statistic
in high dimensional settings performs better than the existing methods. If the results
turn out to be as expected, the posterior Bayes factor could be suggested to be the test
statistic for high dimensional datasets. Hence, we will take simple priors. Furthermore,
we take V = kIp in the priors for the covariance matrices with small k so that the
variation of the Σ is large.
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The joint densities of X and Y under the null and alternative hypotheses are

(2π)−
np
2 |Σ|−

n
2 exp

{
−1

2
trΣ−1

[
n1

∑
i=1

(xi − µ)(xi − µ)T +
n2

∑
i=j

(yj − µ)(yj − µ)T

]}

and

(2π)−
np
2 |Σ|−

n
2 exp

{
−1

2
trΣ−1

[
n1

∑
i=1

(xi − µ1)(xi − µ1)
T +

n2

∑
i=j

(yj − µ2)(yj − µ2)
T

]}
,

respectively. Then the posterior mean L̄1 under H1 can be calculated as

L̄1 =
∫

Θ1

L1(θ1)

[
L1(θ1)π1(θ1)∫

Θ1
L1(θ1)π1(θ1)dθ1

]
dθ1 =

∫
Θ1

L2
1(θ1)π1(θ1)dθ1∫

Θ1
L1(θ1)π1(θ1)dθ1

,

where ∫
Θ1

L1(θ1)π1(θ1)dθ1

=(2π)−
(n−2)p

2 n−
p
2

1 n−
p
2

2
2

(m1+n−2)p
2 |V−1 + S1 + S2|−

m1+n−2
2 Γp(

m1+n−2
2 )

2
m1 p

2 |V|
m1
2 Γp(

m1
2 )

,

and Γp(·) denotes the multivariate gamma function, that is,

Γp(a) = πp(p−1)/4
p

∏
j=1

Γ[a + (1− j)/2].

S1 =
n1

∑
i=1

(Xi − X̄)(Xi − X̄)T , S2 =
n2

∑
j=1

(Yj − Ȳ)(Yj − Ȳ)T

with X̄ = ∑n1
i=1 Xi/n1, Ȳ = ∑n2

j=1 Yj/n2, and

∫
Θ1

L2
1(θ1)π1(θ1)dθ1

=(2π)−
(2n−2)p

2 (2n1)
− p

2 (2n2)
− p

2
2

(m1+2n−2)p
2 |V−1 + 2S1 + 2S2|−

m1+2n−2
2 Γp(

m1+2n−2
2 )

2
m1 p

2 |V|
m1
2 Γp(

m1
2 )

.

The posterior mean L̄0 under H0 can be calculated as

L̄0 =

∫
Θ0

L2
0(θ0)π0(θ0)dθ0∫

Θ0
L0(θ0)π0(θ0)dθ0

,

where∫
Θ0

L0(θ0)π0(θ0)dθ0

=(2π)−
(n−1)p

2 n−
p
2

2
(m0+n−1)p

2 |V−1 + S1 + S2 +
n1n2

n (X̄− Ȳ)(X̄− Ȳ)T |−
m0+n−1

2 Γp(
m0+n−1

2 )

2
m0 p

2 |V|
m0
2 Γp(

m0
2 )

and
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∫
Θ0

L2
0(θ0)π0(θ0)dθ0

=(2π)−
(2n−1)p

2 (2n)−
p
2

×
2

(m0+2n−1)p
2 |V−1 + 2S1 + 2S2 + 4 n1n2

n (X̄− Ȳ)(X̄− Ȳ)T |−
m0+2n−1

2 Γp(
m0+2n−1

2 )

2
m0 p

2 |V|
m0
2 Γp(

m0
2 )

.

For simplicity, we specify m0 = m + 1 and m1 = m + 2. Then the posterior Bayes
factor in favor of H1 against H0 in (3) denoted by PB admits an expression as

PB(X, Y) = (
1
2
)p/2

[
1 + 2 n1n2

n (X̄− Ȳ)T(V−1 + 2(S1 + S2))
−1(X̄− Ȳ)

]m+2n
2[

1 + n1n2
n (X̄− Ȳ)T(V−1 + S1 + S2)−1(X̄− Ȳ)

]m+n
2

. (6)

Multiplying the logarithm of the posterior Bayes factor by 2, we have

2 ln PB(X, Y) =− p ln 2 + (m + 2n) ln
[
1 + 2

n1n2

n
(X̄− Ȳ)T(V−1 + 2(S1 + S2))

−1(X̄− Ȳ)
]

− (m + n) ln
[
1 +

n1n2

n
(X̄− Ȳ)T(V−1 + S1 + S2)

−1(X̄− Ȳ)
]
.

(7)

Now we want to determine a critical value cα, which makes the test given by the
rejection region

{(x, y) : 2 ln PB(x, y) ≥ cα}

have a significance level α. Since the distribution of 2 ln PB(X, Y) under the null hypothesis
is unknown, the critical value cα is determined by means of the asymptotic distribution of
it. In order to obtain its asymptotic distribution, Taylor series expansion of the logarithm
function ln(1 + x) in (7) around 0 is carried out, which can be summarized as

2 ln PB(X, Y) = −p ln 2 + (m + 2n)

[
A1 −

A2
1

2(1 + A∗1)
2

]
− (m + n)

[
A2 −

A2
2

2(1 + A∗2)
2

]
, (8)

where
A1 = 2

n1n2

n
(X̄− Ȳ)T(V−1 + 2(S1 + S2))

−1(X̄− Ȳ),

A2 =
n1n2

n
(X̄− Ȳ)T(V−1 + S1 + S2)

−1(X̄− Ȳ),

A∗1 ∈ (0, A1) and A∗2 ∈ (0, A2).
In (8), the quadratic form in X̄− Ȳ is

(m + 2n)A1 − (m + n)A2 =
n1n2

n
(X̄− Ȳ)T B(X̄− Ȳ),

where
B = 2(m + 2n)(V−1 + 2S1 + 2S2)

−1 − (m + n)(V−1 + S1 + S2)
−1.

Denotes the spectral decomposition of Σ
1
2 BΣ

1
2 by GT AG, where A = diag(a1, . . . , ap).

Let ξ = (ξ1, ξ2, . . . , ξp)T =
√

n1n2
n GΣ−

1
2 (X̄− Ȳ). Then we have

n1n2

n
(X̄− Ȳ)T B(X̄− Ȳ) = ξTGΣ

1
2 BΣ

1
2 GTξ

= ξTGGT AGGTξ

=
p

∑
i=1

aiξ
2
i .

(9)
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When the null hypothesis is true,√
n1n2

n
(X̄− Ȳ) ∼ Np(0p, Σ),

ξ ∼ Np(0p, Ip). The asymptotic distribution of the above formulation can be derived with
the following Lemma.

Lemma 1 ([22]). Let ζn,i, i ∈ {1, . . . , n}, n = 1, 2, . . . , be iid s-dimensional random vectors with
mean zero, covariance matrix M and finite fourth moment. For n = 1, 2, . . . , let {an,i}n

i=1 be real
random variables which are independent of {ζn,i}n

i=1 and satisfy

max1≤i≤n a2
n,i

∑n
i=1 a2

n,i

P→ 0. (10)

Then
∑n

i=1 an,iζn,i√
∑n

i=1 a2
n,i

d→ Ns(0s, M).

We take ζn,i = ξ2
i − 1, such that Eζn,i = 0, i ∈ {1, . . . , p}. From Lemma 1, (9) needs to

be normalized by √
2

n

∑
i=1

a2
n,i =

√
2trA2 =

√
2tr(ΣB)2

because Var(ζn,i) = 2, i ∈ {1, . . . , p}. To ensure equality,

p

∑
i=1

ai = trA = tr(BΣ)

is added to the right side of the equality. By now, we have

2 ln PB + p ln 2 =
p

∑
i=1

ai(ξ
2
i − 1) + tr(BΣ)− (m + 2n)

A2
1

2(1 + A∗1)
2 + (m + n)

A2
2

2(1 + A∗2)
2 .

As a result,

2 ln PB + p ln 2− t̂r(BΣ)√
2tr(BΣ)2

=
∑

p
i=1 ai(ξ

2
i − 1)√

2tr(BΣ)2
+

tr(BΣ)− t̂r(BΣ)√
2tr(BΣ)2

− (m + 2n)
A2

1

2(1 + A∗1)
2
√

2tr(BΣ)2
+ (m + n)

A2
2

2(1 + A∗2)
2
√

2tr(BΣ)2
,

(11)

where t̂r(BΣ) is the estimator of tr(BΣ). We take

t̂r(BΣ) = tr(BSn),

where Sn = (S1 + S2)/(n− 2).
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We shall next prove that the first item on the right side of (11) converges in distribution
to N(0, 1) and the remaining items converge in probability to 0. If a ratio consistent
estimator of tr(BΣ)2 is obtained, a test with a level of asymptotical significance α can be
constructed by (11). To this end, some usual assumptions are made as follows:

p
n
→ c ∈ (0, ∞),

n1

n
→ τ ∈ (0, 1) as n→ ∞, and m = O(n). (12)

λ1(Σ)√
trΣ2

→ 0, (13)

where λ1(A) is the largest eigenvalue of a matrix A . Let δ = µ1 − µ2. We also assume

n1n2

n
δTΣδ

trΣ2 →0, (14)

and
δTδ

trΣ2 = O(1). (15)

Carefully choosing k = εn/[npλ1(S1 + S2)], where εn→0, we ensure that

m + 2n√
2tr(BΣ)2

A2
1

2(1 + A∗1)
2

P→ 0 and
m + n√
2tr(BΣ)2

A2
2

2(1 + A∗2)
2

P→ 0 (16)

under condition (12), (13) and (15). See Appendix A for the proof. For the estimator tr(BSn),
the following theorem shows its property.

Lemma 2. If conditions (12) and (13) are true, the estimator t̂r(BΣ) satisfies

tr(BSn)− tr(BΣ)√
2tr(BΣ)2

P→ 0. (17)

Combining (11) with (16) and (17), we have

1√
2tr(BΣ)2

[
2 ln PB + p ln 2− t̂r(BΣ)

]
− ∑

p
i=1 ai(ξ

2
i − 1)√

2tr(BΣ)2
P→ 0. (18)

By now, the asymptotic distributions of the linear function of the logarithm of the
posterior Bayes factor can be derived.

Theorem 1. Under the conditions in (12) and (13), the posterior Bayes factor PB has properties
as follows.

1. Under the null hypothesis,

1√
2tr(BΣ)2

[
2 ln(PB) + p ln 2− t̂r(BΣ)

]
d→ N(0, 1). (19)

2. Under the local alternative in (14) and condition (15),

1√
2tr(BΣ)2

[
2 ln(PB) + p ln 2− t̂r(BΣ)− n1n2

n
δT Bδ

]
d→ N(0, 1). (20)

In order to formulate a test procedure based on Lemma 2, the estimator of tr(BΣ)2 is
demanded. The following ratio-consistent estimator for trΣ2 is proposed in [1]:

t̂rΣ2 =
(n− 2)2

n(n− 1)

[
trS2

n −
1

n− 2
(trSn)

2
]

.
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Inspired by it, we propose the following estimator for tr(BΣ)2:

̂tr(BΣ)2 = tr(BSn)
2 − 1

n− 2
[tr(BSn)]

2. (21)

The following theorem shows the property of ̂tr(BΣ)2.

Theorem 2. Under the conditions in (12) and (13), the estimator ̂tr(BΣ)2 is a ratio-consistent
estimator of tr(BΣ)2, which means

̂tr(BΣ)2

tr(BΣ)2
P→ 1 as p and n→ ∞. (22)

By Theorems 1 and 2, we obtain a test statistic for (3),

TPB =
1√

2 ̂tr(BΣ)2
[2 ln(PB) + p ln 2− tr(BSn)],

which is asymptotically distributed as N(0, 1) when the null hypothesis is true. Then the
rejection region of the test with approximate significance level α is{

2 ln(PB) ≥ z1−α

√
2 ̂tr(BΣ)2 − p ln 2 + tr(BSn)

}
,

where z1−α is the 1− α quantile of N(0, 1).
Previous results allow us to investigate the asymptotic power of the proposed test. By

Theorem 1, the following conclusion is obtained.

Corollary 1. Under the conditions in (12), (13), the local alternative (14) and condition (15), the
power of the posterior Bayes factor-based test is

βPBF(δ)− EΣ

Φ

 n1n2
n δT Bδ√
̂2tr(BΣ)2

− z1−α

→0, (23)

where “EΣ” means the expectation about random variance Sn.

3. Simulation

In this section, we conduct simulation studies using R language to evaluate the
performance of the posterior Bayes factor-based test for various scenarios. The significance
level is set to α = 0.05 in all the simulations; p = 1000 and the sample sizes are n1 = n2 = 70.
The data X1, . . . , Xn1 and Y1, . . . , Yn2 are generated from multivariate normal distributions
Np(µ1, Σ) and Np(µ2, Σ), respectively.

We consider the following choices for Σ = ((σi,j)).

1. Σ1 = Ip is the identity matrix.
2. Σ2 is a covariance matrix with σi,j = 0.4|i−j|.
3. Σ3 is block diagonal matrix, with block B25×25 in which the diagonal entries are 1 and

the off-diagonal entries are 0.15.

Σ1 is for independent cases, while Σ2 and Σ3 are for dependent cases.
Theorem 1 shows that TPB is a linear function of the logarithm of the posterior Bayes

factor, which is asymptotically distributed as N(0, 1). Q–Q plots are presented in Figure 1
to reveal the asymptotic behavior of TPB for µ1 = µ2 = 0p×1 and different choices of Σ. We
can see that points in Figure 1a–c are closely aligned along the identity line, indicating that
the distributions of TPB with different Σ are close to N(0, 1).
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(a) Σ = Σ1 (b) Σ = Σ2 (c) Σ = Σ3

Figure 1. Quantile–Quantile plot of asymptotic distribution for TPBF under the null hypothesis µ1 = µ2

against N(0, 1) for different Σ based on 1000 independently generated TPBF with n1 = n2 = 70, p = 1000.

We also compare the empirical significance levels and powers of the proposed test
with several other tests, including not only tests based on the sum-of-squares-type statistics
in [4], referred to as SD, and [7], referred to as CQ, but also a Bayes factor-based test which
relies on two random projection approaches as in [12], referred to as RMPBT1 and RMPBT2.
In this section, the test we proposed is denoted as PB. The results of SD, CQ and RMPBT
are cited from [12].

As in [12], we consider two possible alternatives, as follows. Without loss of generality,
we shall always take µ2 = 0p×1 in the simulations. The proportion of entries of the vector
δ = µ1 − µ2 that are exactly zero is denoted by p0.

1. Simulate µ1 ∼ Np(1, Ip), set p0 randomly selected elements to 0, and scale µ1 so that
δTΣ−1δ = 2.

2. Simulate µ1 ∼ Np(1, Ip), set p0 randomly selected elements to 0, and scale µ1 so that
||δ||2√

trΣ2 = 0.1.

We take p0 = 0.5, 0.75, 0.80, 0.95, 0.975, 1. Note that the case p0 = 1 corresponds to the
null hypothesis and the power becomes the empirical level. A larger p0 corresponds to a
more sparse alternative, while a smaller p0 corresponds to a denser one.

For the PB test, we take m = 2p and εn = 1/ ln(n). The numerical results are calculated
from 1000 replications and summarized in Tables 1–4. Table 1 compares the empirical sizes
of the tests. In general, the test PB performs best in maintaining the significance level. It can
be seen that the estimated sizes of PB are reasonably close to the nominal level 0.05. Tests
RMPBT and SD show lower empirical levels than the nominal one, whereas test CQ is a
little higher.

Tables 2–4 compare the powers of the tests. Covariance matrix Σ in Tables 2–4 are Σ1,
Σ2 and Σ3, respectively. Table 2 shows that our test PB substantively outperforms the other
three tests for both dense and sparse alternatives. This implies that our method provides
the most powerful test compared with the approaches of [4,7,12] for independent cases.
In Table 3, the test PB performs better than its competitors in most cases. In Table 4, PB also
performs better than the competitors with dense alternatives. Finally, from Tables 3 and 4,
either the prior or the posterior Bayes factor-based tests are better than others. For the
dense alternative, the PB test is more powerful than RMPBT.
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Table 1. Empirical sizes based on 1000 replications with α = 0.05, n1 = n2 = 70 and p = 1000.
RMPBT is the approach of [12], SD is the approach of [4] and CQ is the approach of [7].

PB RMPBT1 RMPBT2 SD CQ

Σ1 0.049 0.031 0.030 0.040 0.063
Σ2 0.052 0.038 0.035 0.037 0.049
Σ3 0.060 0.060 0.040 0.045 0.063

Table 2. Power analysis of 4 tests assuming the true covariance matrix is Σ = Σ1; n1 = n2 = 70 and
p = 1000. RMPBT is the approach of [12], SD is the approach of [4] and CQ is the approach of [7].

Alternative 1

p0 PB RMPBT1 RMPBT2 SD CQ

0.975 0.470 0.332 0.309 0.384 0.450
0.950 0.478 0.388 0.339 0.423 0.474
0.800 0.482 0.337 0.304 0.389 0.448
0.750 0.482 0.348 0.294 0.401 0.470
0.500 0.485 0.372 0.343 0.422 0.473

Alternative 2

0.975 0.764 0.685 0.612 0.722 0.761
0.950 0.797 0.694 0.612 0.741 0.775
0.800 0.785 0.660 0.581 0.717 0.762
0.750 0.806 0.695 0.616 0.756 0.789
0.500 0.786 0.677 0.588 0.727 0.767

Table 3. Power analysis of 4 tests assuming the true covariance matrix is Σ = Σ2. n1 = n2 = 70 and
p = 1000; RMPBT is the approach of [12], SD is the approach of [4] and CQ is the approach of [7].

Alternative 1

p0 PB RMPBT1 RMPBT2 SD CQ

0.975 0.269 0.259 0.243 0.219 0.266
0.950 0.277 0.249 0.232 0.209 0.258
0.800 0.282 0.261 0.222 0.221 0.270
0.750 0.299 0.264 0.236 0.242 0.284
0.500 0.336 0.303 0.265 0.268 0.326

Alternative 2

0.975 0.783 0.791 0.738 0.722 0.768
0.950 0.780 0.786 0.734 0.718 0.766
0.800 0.794 0.755 0.699 0.700 0.756
0.750 0.792 0.772 0.722 0.730 0.785
0.500 0.789 0.753 0.686 0.720 0.766

Table 4. Power analysis of 4 tests assuming the true covariance matrix is Σ = Σ3; n1 = n2 = 70 and
p = 1000. RMPBT is the approach of [12], SD is the approach of [4] and CQ is the approach of [7].

Alternative 1

p0 PB RMPBT1 RMPBT2 SD CQ

0.975 0.296 0.315 0.278 0.245 0.294
0.950 0.303 0.335 0.307 0.270 0.311
0.800 0.332 0.348 0.318 0.285 0.343
0.750 0.357 0.327 0.294 0.278 0.331
0.500 0.422 0.414 0.379 0.353 0.401

Alternative 2

0.975 0.785 0.836 0.776 0.716 0.755
0.950 0.801 0.827 0.776 0.730 0.782
0.800 0.795 0.796 0.734 0.728 0.775
0.750 0.793 0.790 0.727 0.718 0.764
0.500 0.778 0.774 0.717 0.720 0.761
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4. An Application Example

To further explore the practical utility of the posterior Bayes factor-based test, we
analyze a real dataset about the small round blue cell tumors (SRBCTs), which is available at
https://file.biolab.si/biolab/supp/bi-cancer/projections/info/SRBCT.html, accessed on
1 March 2022.

The SRBCTs are four different childhood tumors including Ewing’s family of tumors
(EWS), neuroblastoma (NB), non-Hodgkin lymphoma (BL) and rhabdomyosarcoma (RMS).
Our interest is in examining the equality of means of the genes between the EWS and the
RMS tumor groups. The dataset contains 29 examples of EWS and 25 examples of RMS
with 2038 genes. The observed test statistic of PB is TPB = 14.19842 with p-value ≈ 0,
indicating a serious deviation from the null hypothesis.

5. Conclusions

In this article, we explore the potential for the posterior Bayes factor to be a statistic
for testing the mean equality of two high dimensional populations. A closed form of the
posterior Bayes factor is obtained with simple priors for the model parameters. Asymp-
totic normality of the posterior Bayes factor is established, and the corresponding test is
constructed. Numerical studies and a real-life example show the superiority of the test.
Therefore, we recommend the posterior Bayes factor as a test statistic for hypothesis testing
in high dimensional settings.
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Appendix A. Proof

The Proof of (16).

(m + 2n)A2
1√

2tr(BΣ)2
=

4(m + 2n)
[ n1n2

n (X̄− Ȳ)T(V−1 + 2(S1 + S2))
−1(X̄− Ȳ)

]2√
2tr(BΣ)2

Substituting kIp for V in B,

B =2(m + 2n)(
1
k

Ip + 2(S1 + S2))
−1 − (m + n)(

1
k

Ip + S1 + S2)
−1

=k
[
2(m + 2n)(Ip + 2k(S1 + S2))

−1 − (m + n)(Ip + k(S1 + S2))
−1
]

=k(m + 3n)×
[
2(m + 2n)(Ip + 2k(S1 + S2))

−1 − (m + n)(Ip + k(S1 + S2))
−1]

m + 3n
.

https://file.biolab.si/biolab/supp/bi-cancer/projections/info/SRBCT.html
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Let

C =
1

m + 3n

[
2(m + 2n)(Ip + 2k(S1 + S2))

−1 − (m + n)(Ip + k(S1 + S2))
−1
]
,

then
B = k(m + 3n)C, (A1)

(m + 2n)A2
1√

2tr(BΣ)2
=

4(m + 2n)k2[ n1n2
n (X̄− Ȳ)T(Ip + 2k(S1 + S2))

−1(X̄− Ȳ)
]2

(m + 3n)k
√

2tr((CΣ)2)

≤
4k(m + 2n)

[ n1n2
n (X̄− Ȳ)T(X̄− Ȳ)

]2
√

2(m + 3n)
√

tr((CΣ)2)

(A2)

tr(CΣ)2

trΣ2 =
tr(Σ + (C− Ip)Σ)2

trΣ2

=
trΣ2 + 2tr[(C− Ip)Σ2] + tr[(C− Ip)Σ]2

trΣ2

= 1 +
2tr[(C− Ip)Σ2]

trΣ2 +
tr[(C− Ip)Σ]2

trΣ2

C ≥ 1
m + 3n

[
(m + 2n)(Ip + k(S1 + S2))

−1 − (m + n)(Ip + k(S1 + S2))
−1
]

=
n

m + 3n
(Ip + k(S1 + S2))

−1

>0,

and

C ≤ 1
m + 3n

[
2(m + 2n)(Ip + k(S1 + S2))

−1 − (m + n)(Ip + k(S1 + S2))
−1
]

= (Ip + k(S1 + S2))
−1

≤ Ip.

Hence

Ip − C =
1

m + 3n

{
2(m + 2n)[Ip − (Ip + 2k(S1 + S2))

−1]− (m + n)[Ip − (Ip + k(S1 + S2))
−1]
}

=
1

m + 3n

{
2(m + 2n)2k(S1 + S2)(Ip + 2k(S1 + S2))

−1 − (m + n)k(S1 + S2)(Ip + k(S1 + S2))
−1
}

≤ 1
m + 3n

[
(3m + 7n1 + 7n2)k(S1 + S2)(Ip + k(S1 + S2))

−1
]

≤3k(S1 + S2)(Ip + k(S1 + S2))
−1.

Because k = εn/[npλ1(S1 + S2)], we have k(S1 + S2) ≤ εn/(np)Ip. Hence,

0 ≤ Ip − C ≤ 3εn

np
Ip. (A3)

It follows that ∣∣∣∣∣ tr[(C− Ip)Σ2]

trΣ2

∣∣∣∣∣ ≤
3εn
np trΣ2

trΣ2 =
3εn

np
→0,

and
tr[(C− Ip)Σ]2

trΣ2 ≤ 9ε2
n

n2 p2→0.
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Consequently,
tr(CΣ)2

trΣ2
P→ 1. (A4)

Therefore,

(m + 2n)A2
1√

2tr(BΣ)2
≤

4k(m + 2n)
[ n1n2

n (X̄− Ȳ)T(X̄− Ȳ)
]2Op(1)√

2(m + 3n)
√

trΣ2
=

4(m + 2n)εn
[ n1n2

n (X̄− Ȳ)T(X̄− Ȳ)
]2Op(1)√

2np(m + 3n)(n− 2)
√

trΣ2λ1(Sn)
. (A5)

Sn can be written as

Sn =
∑n−2

i=1 Σ1/2zizT
i Σ1/2

n− 2
,

where zi, i ∈ (1, . . . , n− 2) are independently distributed according to the normal distribu-
tion Np(0p, Ip). It follows that

Var(trSn) =
∑n−2

i=1 Var(zT
i Σzi)

(n− 2)2 .

By elementary calculation, we have

E(zT
i Σzi)

2 = 2trΣ2 + (trΣ)2.

Since
E[zT

i Σzi] = trΣ,

it follows that,

Var(trSn) =
2trΣ2

n− 2
.

Hence,

trSn = trΣ

{
1 + Op

[ √
2trΣ2

√
n− 2trΣ

]}
. (A6)

By (A6), we have

1
λ1(Sn)

≤ n− 2
trSn

=
n− 2

trΣ
{

1 + Op

[ √
2trΣ2√

n−2trΣ

]} .

Because √
2trΣ2

√
n− 2trΣ

= o(1),

then (A5) becomes

(m + 2n)A2
1√

2tr(BΣ)2
≤

4(m + 2n)εn
[ n1n2

n (X̄− Ȳ)T(X̄− Ȳ)
]2Op(1)√

2np(m + 3n)
√

trΣ2trΣ
{

1 + op(1)
} . (A7)

Under the null hypothesis,√
n1n2

n
(X̄− Ȳ) ∼ Np(0p, Σ).

By elementary calculation, we have

E
[n1n2

n
(X̄− Ȳ)T(X̄− Ȳ)

]2
= 2trΣ2 + (trΣ)2.
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Therefore,

(m + 2n)A2
1√

2tr(BΣ)2
≤

4(m + 2n)εn

(
2
√

trΣ2/trΣ + trΣ/
√

trΣ2
)

Op(1)
√

2np(m + 3n)
{

1 + op(1)
} .

Because
1 ≤ trΣ√

trΣ2
≤ √p, (A8)

we can obtain

4(m + 2n)εn

(
2
√

trΣ2/trΣ + trΣ/
√

trΣ2
)

Op(1)
√

2np(m + 3n)
{

1 + op(1)
} ≤

4(m + 2n)εn
(
2 +
√

p
)
Op(1)√

2np(m + 3n)
{

1 + op(1)
} P→ 0 (A9)

as εn
P→ 0.

We can conclude
(m + 2n)A2

1√
2tr(BΣ)2

P→ 0.

Because A∗1 ∈ (0, A1), we have

(m + 2n)A2
1

2(1 + A∗1)
2
√

2tr(BΣ)2
P→ 0.

Similarly, we can prove that

(m + n)A2
2

2(1 + A∗2)
2
√

2tr(BΣ)2
P→ 0.

Under the alternative hypothesis,

E
[n1n2

n
(X̄− Ȳ)T(X̄− Ȳ)

]2
= 2trΣ2 + (trΣ)2 + 4

n1n2

n
δTΣδ + (

n1n2

n
δTδ)2 +

2n1n2

n
(trΣ)δTδ.

(A7) becomes

(m + 2n)A2
1√

2tr(BΣ)2
≤

4(m + 2n)εn

[
2trΣ2 + (trΣ)2 + 4 n1n2

n δTΣδ + ( n1n2
n δTδ)2 + 2n1n2

n (trΣ)δTδ
]
Op(1)

√
2np(m + 3n)

√
trΣ2trΣ

{
1 + op(1)

} (A10)

By (A9),

4(m + 2n)εn

[
2trΣ2 + (trΣ)2 + 4 n1n2

n δTΣδ + ( n1n2
n δTδ)2 + 2n1n2

n (trΣ)δTδ
]
Op(1)

√
2np(m + 3n)

√
trΣ2trΣ

{
1 + op(1)

}
−

4(m + 2n)εn

[
4 n1n2

n
δTΣδ√

trΣ2(trΣ)
+

(
n1n2

n δTδ)2
√

trΣ2(trΣ)
+

2n1n2
n δTδ√

trΣ2

]
Op(1)

√
2np(m + 3n)

{
1 + op(1)

} P→ 0

Together with (A8) and (A10) becomes

(m + 2n)A2
1√

2tr(BΣ)2
≤

4(m + 2n)εn

[
4 n1n2

n
δTΣδ
trΣ2 + (

n1n2
n δTδ√

trΣ2 )2 + 2
n1n2

n δTδ√
trΣ2

]
Op(1)

√
2np(m + 3n)

{
1 + op(1)

}
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Under the assumption (14),

(m + 2n)A2
1√

2tr(BΣ)2
≤

4(m + 2n)εn

[
(

n1n2
n δTδ√

trΣ2 )2 + 2
n1n2

n δTδ√
trΣ2

]
Op(1)

√
2np(m + 3n)

{
1 + op(1)

}
Additionally, with assumption (15),

(m + 2n)A2
1

2(1 + A∗1)
2
√

2tr(BΣ)2
P→ 0

holds as εn
P→ 0. Similarly,

(m + n)A2
2

2(1 + A∗2)
2
√

2tr(BΣ)2
P→ 0.

Proof of Lemma 2. By (A1) and (A4), we need only show that

tr(CSn)− tr(CΣ)√
trΣ2

P→ 0.

tr(CSn)− tr(CΣ)√
trΣ2

=
tr(Sn − Σ + (C− Ip)(Sn − Σ))

√
trΣ2

=

Op

[√
2trΣ2

n−2

]
+ tr((C− Ip)(Sn − Σ))
√

trΣ2

=
1√

n− 2
Op(1) +

tr((C− Ip)(Sn − Σ))
√

trΣ2
,

where the second equality follows from (A6).
By Cauchy–Schwarz inequality and (A3),

∣∣tr((C− Ip)(Sn − Σ))
∣∣

√
trΣ2

≤

√
tr(C− Ip)2

√
tr(Sn − Σ)2

√
trΣ2

≤
3εn
np (n− 2)

√
p
√

tr(Sn − Σ)2

√
trΣ2

.

We know that

E[tr(Sn − Σ)2] = E[trS2
n + trΣ2 − 2tr(SnΣ)],

where

E[trS2
n] =

1
(n− 2)2

n−2

∑
i,j=1

E[zT
i ΣzizT

j Σzj]

=
1

(n− 2)2

[
n−2

∑
i=1

E(zT
i Σzi)

2 + ∑
i 6=j

E[zT
i ΣzizT

j Σzj]

]

=
1

(n− 2)2

{
(n− 2)[2trΣ2 + (trΣ)2] + [(n− 2)2 − (n− 2)](trΣ)2

}
=

2
n− 2

trΣ2 + (trΣ)2.
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Therefore,

Etr(Sn − Σ)2 =
2trΣ2

n− 2
.

Hence √
tr(Sn − Σ)2
√

trΣ2
=

1√
n− 2

Op(1).

0 ≤
|tr(Ip − C)(Sn − Σ)|

√
trΣ2

≤ 3
√

p
√

n− 2
εn

np
Op(1).

We conclude
|tr(Ip − C)(Sn − Σ)|

√
trΣ2

P→ 0.

The Lemma is proved.

Proof of Theorem 1. From (18),

1√
2tr(BΣ)2

[
2 ln(PB) + p ln 2− t̂r(BΣ)

]
− ∑

p
i=1 ai(ξ

2
i − 1)√

2 ∑
p
i=1 a2

i

P→ 0.

Under the null hypothesis, we know that

ξ ∼ Np(0p, Ip).

Hence,
Eξ2

i = 1 and Var(ξ2
i ) = 2.

We know that
max

1≤i≤p
ai = λ1(A) = λ1(BΣ),

and
p

∑
i=1

a2
i = trA2 = tr(BΣ)2.

As

B ≤ (m + 2n1 + 2n2 −
m + n1 + n2

2
)(V−1 + S1 + S2)

−1 ≤ (
m + 3n1 + 3n2

2
)V,

and

B ≥ (m + 2n1 + 2n2)(2V−1 + 2S1 + 2S2)
−1 − m + n1 + n2

2
(V−1 + S1 + S2)

−1

=
n1 + n2

2
(V−1 + S1 + S2)

−1

=
n1 + n2

2
(

1
k

Ip + S1 + S2)
−1

≥ n1 + n2

2
1

λ1(
1
k Ip + S1 + S2)

Ip,

we have
max1≤i≤p |ai|√

∑
p
i=1 a2

i

≤
m+3n1+3n2

2 kλ1(Σ)λ1(
1
k Ip + S1 + S2)

n1+n2
2

√
trΣ2

=
λ1(Σ)√

trΣ2

m+3n1+3n2
2 k

n1+n2
2

λ1(
1
k

Ip + S1 + S2)

=
λ1(Σ)√

trΣ2

m + 3n1 + 3n2

n1 + n2
λ1(Ip + kS1 + kS2).
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Because
k =

εn

npλ1(S1 + S2)
, εn→0,

we have

λ1(Ip + kS1 + kS2) ≤ kλ1(S1 + S2) + λ1(Ip) =
εn

np
+ λ1(Ip) = O(1).

By conditions (12) and (13), we have

max1≤i≤p |ai|√
∑

p
i=1 a2

i

P→ 0.

By Lemma 1,
∑

p
i=1 ai(ξ

2
i − 1)√

2 ∑
p
i=1 a2

i

→N(0, 1) as p→ ∞.

Therefore,

1√
2tr(BΣ)2

[
2 ln(PB) + p ln 2− t̂r(BΣ)

]
d→ N(0, 1).

By now, (1) in Theorem 1 has been proved.
Under the alternative hypothesis, we have√

n1n2

n
Σ−

1
2 (X̄− Ȳ) ∼ Np(

√
n1n2

n
Σ−

1
2 δ, Ip).

Let

η =

√
n1n2

n
Σ−

1
2 (X̄− Ȳ), η0 = η −

√
n1n2

n
Σ−

1
2 δ,

p

∑
i=1

aiξ
2
i =

[
η0 +

√
n1n2

n
Σ−

1
2 δ

]T

Σ
1
2 BΣ

1
2

[
η0 +

√
n1n2

n
Σ−

1
2 δ

]
= ηT

0 Σ
1
2 BΣ

1
2 η0 +

n1n2

n
δT Bδ + 2

√
n1n2

n
δT BΣ

1
2 η0.

Since
η0 ∼ Np(0p, Ip),

E


√

n1n2
n δT BΣ

1
2 η0√

2tr(BΣ)2

∣∣∣∣∣∣Sn

 = 0, and Var


√

n1n2
n δT BΣ

1
2 η0√

2tr(BΣ)2

∣∣∣∣∣∣Sn

 =
n1n2

n δT BΣBδ

2tr(BΣ)2 .

By (22), (A1) and (A4),

Var


√

n1n2
n δT BΣ

1
2 η0√

2tr(BΣ)2

∣∣∣∣∣∣Sn

− n1n2
n δTCΣCδ

2trΣ2
P→ 0.

n1n2

n
δTCΣCδ

trΣ2 =
n1n2

n
δT(C− Ip + Ip)Σ(C− Ip + Ip)δ

trΣ2

≤ 2
n1n2

n
δTΣδ

trΣ2 + 2
n1n2

n
δT(Ip − C)Σ(Ip − C)δ

trΣ2
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With (A3), we have

n1n2

n
δT(Ip − C)Σ(Ip − C)δ

trΣ2 ≤ n1n2

n
9εn

2δTΣδ

n2 p2trΣ2 .

0 ≤ n1n2

n
δTCΣCδ

trΣ2 ≤ n1n2

n
δTΣδ

trΣ2 +
n1n2

n

9( εn
np )

2δTΣδ

trΣ2 .

Because n1n2δTΣδ/(ntrΣ2)→0,

Var


√

n1n2
n δT BΣ

1
2 η0√

̂tr(BΣ)2

∣∣∣∣∣∣Sn

 P→ 0.

Hence, we can conclude that √
n1n2

n δT BΣ
1
2 η0√

2tr(BΣ)2
P→ 0,

1√
2tr(BΣ)2

[
p

∑
i=1

aiξ
2
i −

n1n2

n
δT Bδ− ηT

0 Σ
1
2 BΣ

1
2 η0

]
P→ 0.

With (17) and (18), we have

1√
2tr(BΣ)2

[
2 ln(PB) + p ln 2− n1n2

n
δT Bδ− ηT

0 Σ
1
2 BΣ

1
2 η0

]
P→ 0.

In the proof of Theorem 1, we proved that

1√
2tr(BΣ)2

[
ψTΣ

1
2 BΣ

1
2 ψ− t̂r(BΣ)

]
d→ N(0, 1),

where ψ is a random vector distributed according to Np(0p, Ip). Hence, we have

1√
2tr(BΣ)2

[
ηT

0 Σ
1
2 BΣ

1
2 η0 − t̂r(BΣ)

]
d→ N(0, 1).

Therefore,

1√
2tr(BΣ)2

[
2 ln(PB) + p ln 2− t̂r(BΣ)− n1n2

n
δT Bδ

]
d→ N(0, 1).

(2) in Theorem 1 has been proved.

Proof of Theorem 2. Denote the spectral decomposition of Sn by PDPT , where D =
diag[d1, d2, . . . , dp]. We can rewrite C as

C =
1

m + 3n

[
2(m + 2n)(Ip + 2k(n− 2)PDPT)−1 − (m + n)(Ip + k(n− 2)PDPT)−1

]
,PHPT ,

where H = diag[h1, h2, . . . , hp] and

hi =
1

m + 3n

[
2(m + 2n)

1 + 2k(n− 2)di
− m + n

1 + k(n− 2)di

]
, i ∈ {1, . . . , p}.
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1− hi =
k(n− 2)di

m + 3n

[
4(m + 2n)

1 + 2k(n− 2)di
− m + n

1 + k(n− 2)di

]
≤ 3k(n− 2)di

1 + k(n− 2)di

Now substitute the expression of k into the inequality,

1− hi ≤ 3(n− 2)
εn

np
P→ 0. (A11)

tr(CSn)
2 − 1

n− 2
(tr(CSn))

2

=
p

∑
i=1

(dihi)
2 − 1

n− 2

(
p

∑
i=1

dihi

)2

=
p

∑
i=1

[di(1 + hi − 1)]2 − 1
n− 2

[
p

∑
i=1

di(1 + hi − 1)

]2

=
p

∑
i=1

d2
i − 2

p

∑
i=1

(1− hi)d2
i +

p

∑
i=1

(1− hi)
2d2

i −
1

n− 2

(
p

∑
i=1

di −
p

∑
i=1

(1− hi)di

)2

=
p

∑
i=1

d2
i − 2

p

∑
i=1

(1− hi)d2
i +

p

∑
i=1

(1− hi)
2d2

i −
1

n− 2

(
p

∑
i=1

di

)2

+
2

n− 2

p

∑
i=1

di

p

∑
i=1

(1− hi)di −
1

n− 2

(
p

∑
i=1

(1− hi)di

)2

=
p

∑
i=1

d2
i −

1
n− 2

(
p

∑
i=1

di

)2

− 2
p

∑
i=1

(1− hi)d2
i +

2
n− 2

p

∑
i=1

di

p

∑
i=1

(1− hi)di +
p

∑
i=1

(1− hi)
2d2

i −
1

n− 2

(
p

∑
i=1

(1− hi)di

)2

.

By [1], we know that

trS2
n =

n
n− 2

trΣ2 +
n

(n− 2)2 (trΣ)2 + op(trΣ2),

and
1

n− 2
(trSn)

2 =
n

(n− 2)2 (trΣ)2 + op(trΣ2).

Noting that p/n ∈ (0, ∞), by

trΣ ≤
√

trI2
ptrΣ2 =

√
p
√

trΣ2,

we have
trΣ√

n
≤
√

p
n

√
trΣ2 = O(

√
trΣ2).

Hence
trS2

n
trΣ2 = Op(1),

and
1

n− 2
trS2

n
(trΣ)2 = Op(1).

With (A11),

0 ≤
p

∑
i=1

(1− hi)d2
i ≤ 3(n− 2)

εn

np
trS2

n = 3(n− 2)
εn

np
Op(trΣ2).
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Similarly, we have

0 ≤ 2
n− 2

p

∑
i=1

di

p

∑
i=1

(1− hi)di ≤
εn

np
(trSn)

2,

therefore
2 ∑

p
i=1 di ∑

p
i=1(1− hi)di

(n− 2)trΣ2 ≤ (n− 2)
εn

np
Op(1).

As εn→0,
∑

p
i=1(1− hi)d2

i
trΣ2

P→ 0,

and
2 ∑

p
i=1 di ∑

p
i=1(1− hi)di

(n− 2)trΣ2
P→ 0.

Therefore, with (A11),

tr(CSn)
2 − 1

n− 2
(tr(CSn))

2 = (1 + op(1))

 p

∑
i=1

d2
i −

1
n− 2

(
p

∑
i=1

di

)2


= (1 + op(1))
[

trS2
n −

1
n− 2

(trSn)
2
]

.

Then,
tr(CSn)2 − 1

n−2 (tr(CSn))2

trS2
n − 1

n−2 (trSn)2
P→ 1. (A12)

The authors of [1] have proved that

trS2
n − 1

n−2 (trSn)2

trΣ2
P→ 1.

Thus, by the above and (A4) and (A12), we have

tr(CSn)2 − 1
n−2 (tr(CSn))2

tr(CΣ)2
P→ 1,

which implies (22) holds.

Proof of Corollary 1. The power of the proposed test is

β(δ) =Pr(TPB ≥ z1−α)

=Pr

 1√
2 ̂tr(BΣ)2

[
2 ln(PB) + p ln 2− t̂r(BΣ)

]
≥ z1−α


=EΣ

Pr

 1√
2 ̂tr(BΣ)2

[
2 ln(PB) + p ln 2− t̂r(BΣ)− n1n2

n
δT Bδ

]
≥ z1−α −

n1n2

n
δT Bδ√

2 ̂tr(BΣ)2

∣∣∣∣∣∣Sn


By (20) and (22), we have

β(δ)− EΣ

Φ

 n1n2
n δT Bδ√
̂tr(BΣ)2

− z1−α

 P→ 0.
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Appendix B. R code

rm(list = ls(all = TRUE))
library(MASS)
library(Matrix)
#install.packages("lava")
library(lava)
n1=70
n2=70
n=n1+n2
p=1000
M=1000
m=2*p
mu1=rep(0,p)
#Sigma 1
Sigma1=diag(1,p)
#Sigma 2
#ro=0.4
#Sigma2_0=matrix(1,p,p)
#for (i in 1:p) {
# for (j in 1:p) {
# k<-abs(j-i)
# Sigma2_0[i,j]=ro^{k}
# }
#}
#Sigma2<-Sigma2_0
#Sigma 3
#Sigma3_1=diag(0.85,25)+matrix(0.15,25,25)
#list2 <- NULL
#for (i in 1:(p/25)){
# list2[[i]] <- Sigma3_1
#}
#Sigma3<-as.matrix(bdiag(list2))
Sigma=Sigma1
delta=0.975
t1=proc.time()
p0=delta*p
mu20=mvrnorm(1,rep(1,p),diag(rep(1, p)))
mu20_xiabiao=sort(sample(1:p,p0))
for (i in 1:p0){mu20[mu20_xiabiao[i]]=0}
#alternative 1
scal=sqrt((t(mu20)%*%solve(Sigma)%*%(mu20))/2)
#alternative 2
#scal=sqrt(t(mu20)%*%(mu20)/sqrt(tr(t(Sigma)%*%Sigma))/0.1)
mu2=mu20/rep(scal,p)

c=0
T_BF=rep(0,M)
for (q in 1:M) {
xi<-mvrnorm(n1,mu1,Sigma)
yi<-mvrnorm(n2,mu2,Sigma)
x_mean<-rep(0,p)
for(i in 1:p){
x_mean[i]=mean(xi[,i])
}
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y_mean<-rep(0,p)
for(i in 1:p){
y_mean[i]=mean(yi[,i])
}
z1=matrix(0,n1,p)
for (l in 1:n1) {
z1[l,]=x_mean
}
z2=matrix(0,n2,p)
for (l in 1:n2) {
z2[l,]=y_mean
}
A<-t(xi-z1)%*%(xi-z1)+t(yi-z2)%*%(yi-z2)
k<-1/log10(n)/(eigen(A)$values[1])/(p)
V<-k*diag(rep(1, p))
B=((m+2*(n))*solve(solve(V)+2*(A))-(m+n)/2*solve(solve(V)+A))
T=n1*n2/(n)*(t(x_mean-y_mean)%*%B%*%(x_mean-y_mean))

S_n<-A/(n-2)
mu_T=tr(B%*%S_n)
sigma_T<-tr((B%*%S_n)%*%(B%*%S_n))-1/(n-2)*(tr(B%*%S_n))^2

T_BF[q]=(T-mu_T)/sqrt(2*sigma_T)
if(T_BF[q]>=qnorm(0.95)){c=c+1}
}
t2=proc.time()
t=t2-t1
cat("power =", c/M,"time",t[3][[1]],"s","\n")
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