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Abstract: We consider the wholesale electricity market prices in England and Wales during its
complete history, where price-cap regulation and divestment series were introduced at different
points in time. We compare the impact of these regulatory reforms on the dynamics of electricity
prices. For this purpose, we apply flexible distributions that account for asymmetry, heavy tails, and
excess kurtosis usually observed in data or model residuals. The application of skew generalized
error distribution is appropriate for our case study. We find that after the second series of divestments,
price level and volatility are lower than during price-cap regulation and after the first series of
divestments. This finding implies that a sufficient horizontal restructuring through divestment series
may be superior to price-cap regulation. The conclusion could be interesting to other countries
because the England and Wales electricity market served as the benchmark model for liberalizing
energy markets worldwide.
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1. Introduction

Volatility of electricity prices arises largely due to nonstorability of electricity and
fluctuations in demand for electricity. Understanding volatility dynamics of electricity
markets is essential in evaluating the deregulation experience, in forecasting, and in pricing
electricity futures and other energy derivatives [1]. As highlighted in [2], prices of electricity
futures usually depend on forecast prices and volatility. Therefore, correctly modeling the
dynamics of electricity prices and volatility is of primary interest for investors, producers,
and policymakers.

Motivation for this paper stems from recent frequent applications of normal or Stu-
dent’s t distribution (e.g., [3–11]), even if the empirical distribution of data or model
residuals did not follow an assumed theoretical distribution. First, the empirical distribu-
tion is usually asymmetric and has a peak higher than in the fitted normal distribution.
These features are found in [12] for the U.S. electricity markets and in [13] for the electricity
markets in Argentina, Australia, New Zealand, Spain, and the Nord Pool. Second, the
empirical distribution usually has more extreme values than the fitted normal distribution.
This is called that empirical distribution has a feature of heavy (or fat) tails. Deviations
from normal distribution due to asymmetry, heavy tails, and a higher peak are found in [14]
for prices from three major U.S. electricity markets. Ref. [15] shows that carbon prices have
positive skewness and excess kurtosis (i.e., kurtosis above three), which suggests that data
do not obey the normal distribution.

We consider the autoregressive and autoregressive conditional heteroscedasticity
(AR–ARCH) model with four flexible distributions that account for asymmetry, heavy tails,
excess kurtosis, and a peak higher than in normal distribution. The flexible distributions are
skew generalized error distribution (SGED), skew Student’s t distribution (SST), generalized
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hyperbolic distribution (GHYP), and Johnson’s SU distribution (JSU). An appropriate
distributional assumption in the maximum likelihood method is necessary for the correct
model specification and unbiased estimation. Necessary distributional assumptions have
rarely been verified or sometimes have been violated (e.g., [5,16–18]).

As a case study, we consider prices from the peak-demand period over days of the
England and Wales wholesale electricity market during 1 April 1990–26 March 2001. We
pursue two research goals. First, determine which flexible distribution is appropriate
for modeling the dynamics of our electricity price data. Second, evaluate the impact
of regulatory reforms (price-cap regulation and divestment series) on price level and
volatility. The results should be of interest to other countries, which created their energy
markets similar to the design of the Electricity Pool in England and Wales. Privatization,
restructuring, market design, and regulatory reforms pursued in England and Wales are
characterized as the international gold standard for energy market liberalization [19].

Electricity prices from this market were previously studied in [16,20–22]. Using
nonparametric techniques for weekly average prices during December 1990–March 1996,
the authors of [20] found that after the expiry of coal contracts in 1993 and during price-cap
regulation, price volatility increased. The authors of [16] analyzed monthly Lerner indices
starting from April 1996, which depended on the Herfindahl index and other explanatory
variables. The research applies a generalized least squares method to account for serial
correlation, even if the Durbin–Watson test suggested no serial correlation problem. The
research presented in [21] analyzes daily average prices during 1990–2001 and the research
presented in [22] analyzes prices from the peak-demand period depending on market
shares during 1993–2000. In this research, we analyze prices from the peak-demand period
during the complete history of 1990–2001. Market shares are not considered due to data
limitations. Generally, market shares have rarely been considered in the literature.

The paper is structured as follows. First, we review the related literature assuming
various distributions. Then, we present volatility modeling, which is followed by our
estimation results and discussion. Finally, we outline the importance of a correct distri-
butional assumption for volatility modeling. Based on the correctly estimated model,
we provide conclusions on the impact of regulatory reforms on the England and Wales
electricity market.

2. Literature Review

The research presented in [23] is the seminal research, which introduces an autoregres-
sive conditional heteroscedasticity (ARCH) model for estimating the means and variances
of inflation in the UK. Since then, many modifications of this ARCH model have been
considered. These, in particular, include a generalized autoregressive conditional het-
eroscedasticity (GARCH) model proposed in [24]. Later, the author of [25] introduced an
exponential ARCH model to overcome the shortcoming of the GARCH-type volatility mod-
els. The authors of [26] presented a GJR-GARCH model taking into account asymmetries in
the volatility process. The authors of [27] list other ARCH-type models and [28] list various
papers assuming normal or Student’s t distribution in the analysis of energy price data.

The authors of [29] use normal distribution in volatility modeling even if the analyzed
log-return series of contracts is asymmetric and has excess kurtosis. The authors of [30]
assume normal distribution for log-returns of oil prices in order to compare various ARCH-
type models in terms of accuracy of volatility forecasting. The normality assumption again
contradicts the presented results of the Jarque–Bera test [31]. The authors of [32] find that
the issues of asymmetry and excess kurtosis in oil returns are slightly reduced when the
model accounts for structural breaks. There is, however, ample evidence that data do not
follow normal distribution [15,33,34].

The next popular distribution is Student’s t, which is presented in Figure 1a. There are
two kinds of Student’s t distribution. The first kind has a variance greater than one and is
usually applied in regression analysis and finance. It has noticeable heavy tails and excess
kurtosis, but its peak is lower than in normal distribution. If the distributional assumption
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is needed for standardized residuals with zero mean and unit variance, then one can
apply the second kind of Student’s t distribution, which has unit variance, less noticeable
heavy tails, excess kurtosis, and a peak higher than in normal distribution. Student’s t
distribution is applied in [17] for modeling log of daily average prices of the European
electricity markets. The authors of [35] considered normal and Student’s t distributions for
volatility modeling. Student’s t distribution is similarly applied in [5] for modeling crude
oil price volatility and [11] for modeling crude oil and natural gas spot and futures returns.

Standard Normal

Student’s

Standardized Student’s t

t

(µ = 0, σ = 1)

(µ = 0, σ > 1, β = 7)

(µ = 0, σ = 1, β = 7)
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Figure 1. Standard normal, Student’s t, standardized Student’s t, and generalized error distributions.
Author’s calculations. Notes: (a) Student’s t distribution was introduced in [36]. Density of Student’s
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(in black), where x ∈ R, µ = 0, σ = 1, and

β > 0. The shape parameter β in Student’s t distribution is also known as the number of degrees of
freedom. We consider β = 7 in this illustration. As β→ +∞, both kinds of Student’s t distributions
approach the normal distribution (in red). (b) Generalized error distribution (GED) was introduced

in [37]. Density of GED is defined as fX(x; µ, σ, β) =
β
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( 3

β

)−1/2. When the shape parameter β is equal to two, then
GED coincides with the normal distribution (in red).

Generalized error distribution (GED), which is presented in Figure 1b, can also allow
for heavy tails, excess kurtosis, and a higher peak than in normal distribution. GED is
also called exponential power distribution [38]. This distribution has not been used as
often as normal or Student’s t distribution, although tails under GED could be heavier than
under Student’s t distribution with unit variance. The author of [25] states that because
of heavy tails, results based on GED are more encouraging. Another difference is related
to the shape of the peak. In GED the peak is acute and in Student’s t distribution the
peak is smooth. The authors of [39] showed that assuming GED may allow achieving a
higher value of the maximum likelihood function. In the paper, the authors concluded
that models assuming a leptokurtic distribution (i.e., GED with a shape parameter below
two reflecting a higher peak and heavy tails) seem most appropriate. Ref. [21] applies this
distribution in estimating volatility of daily average prices from the England and Wales
electricity market. The authors of [3] model crude oil prices using normal distribution,



Mathematics 2022, 10, 1757 4 of 15

Student’s t distribution, and GED to evaluate out-of-sample forecasting performance. The
research finds that Student’s t distribution is superior because of the high kurtosis in the oil
return volatility.

Normal, Student’s t, and GED share one common drawback: they all impose symmetry.
This drawback is resolved by introducing the asymmetry parameter χ (also known as a
skewness parameter). The authors of [40] introduced skew generalized error distribution
(SGED), the author of [41] introduced skew Student’s t distribution with unit variance (SST),
the author of [42] introduced generalized hyperbolic distribution (GHYP), and the author
of [43] introduced Johnson’s SU distribution (JSU). These flexible distributions include
normal distribution and several other distributions as a special or limiting case. They allow
taking into account asymmetry, heavy tails, and excess kurtosis usually observed in data or
model residuals.

SGED, SST, GHYP, and JSU distributions have been applied in various areas. The
authors of [44] found that forecasts of returns of the US Real Estate Investment Trust based
on SGED are more accurate than those based on normal and Student’s t distributions. The
author of [45] compares the value at risk model under normal distribution, GED, and SGED
and found that SGED provides the best forecast performance. SGED was also used in [46]
for modeling European call option prices, in [22,47] for modeling electricity prices, and
in [48] for modeling daily returns of carbon prices.

The study [41] is the seminal study applying SST for volatility modeling. The author
explains the ignorance of higher-order moments of the conditional distribution in other
studies by the possible significant excitement that the conditional mean and variance al-
ready generate. The lack of excitement should not imply that higher-order moments can be
completely ignored because they may be necessary for efficient estimation of parameters
and accurate prediction. The authors of [49] show that even if assuming SST in volatility
modeling is theoretically more appealing, SST does not necessarily deliver improved predic-
tion when compared with normal distribution. We explain the discrepancy of conclusions
in [41,49] by a possibility that the time series data studied in [49] could have been modeled
by applying other flexible distributions like SGED or GHYP.

GHYP distribution is applied in [42] for modeling grain size distributions of wind
blown sands and in [50] for returns of daily prices of shares. According to [51], hyperbolic
distributions are much better for modeling skewness and kurtosis observed in data. Normal
inverse Gaussian distribution representing a special case of GHYP is applied in [52] for
modeling log returns of financial contracts traded in the Nordic electricity market. Normal,
Student’s t, and GHYP distributions for modeling and forecasting volatility of petroleum
futures were considered in [6].

JSU distribution has the advantage that it can be used when the empirical distribution
has long tails [43]. This distribution is applied in [53] for American option pricing. The
authors of [18] considered several distributions for modeling and forecasting intra-day
price spreads on the German electricity market. Based on the Akaike information criterion
(AIC), the research concludes that JSU is not the distribution of best fit. This result is
questionable because the AIC is used for model selection and not for the distributional
goodness of fit test.

3. Methodology

First, we describe the volatility model introduced in [23] and then present suggested
modifications. Let us consider time series yt representing in our research the log of the
wholesale electricity price (i.e., system marginal price (SMP)) of the peak-demand period
during day t, that is, lsmpt. If ψt−1 is the information set at time t− 1 and xt is an exogenous
variable, then [23] defines yt = E(xt|ψt−1)+ εt, where E denotes the conditional expectation
operator, ψt−1 is used in the expectation operator to denote expected value conditional
on past information (e.g., conditional on past prices), and εt is the disturbance term such
that εt|ψt−1 follows N (0, ht). Here, ht denotes volatility defined as a linear function of past



Mathematics 2022, 10, 1757 5 of 15

squared residuals in the following way: ht = α0 + α1ε2
t−1 + · · ·+ αpε2

t−p. The latter is called
an autoregressive conditional heteroscedasticity process of order p denoted as ARCH(p).

We consider two modifications to the original volatility model introduced in [23]. First,
we suggest that both yt and ht may depend on exogenous variables. This modification is
common in the literature. Second, we suggest replacing normal distribution with SGED,
SST, GHYP, or JSU. They nest normal distribution and several other distributions as a
special or limiting case. The second modification is relatively new and reflects the fact
that the model residuals usually tend to have an empirical distribution different from
normal distribution because of asymmetry, heavy tails, or excess kurtosis. The correctness
of the assumed theoretical distribution for model residuals is crucial for the validity of the
maximum likelihood method.

Therefore, we consider the following autoregressive and autoregressive conditional
heteroscedasticity (AR–ARCH) model:

Mean equation: lsmpt = a0 +
P

∑
i=1

ai lsmpt−i + w′t · b + εt (1)

Volatility equation: ht = α0 +
p

∑
i=1

αi ε2
t−i + γ1 · ε2

t−1 · It−1 + z′t · δ (2)

Distributional assumption: νt =
εt√
ht

is i.i.d. SGED, SST, GHYP, or JSU. (3)

The first equation is called the mean equation and is analyzed using an autoregressive
process with lag order P, that is, AR(P). In this equation, the dependent variable lsmpt
represents the log of the system marginal price (SMP) of the peak-demand period during
day t. The motivation of a logarithmic transformation is related to the fact that the influ-
ence of outliers is mitigated (as described in Figure 2) and that log prices tend to have a
distribution closer to normal distribution (as described in Figure 3).

50

100
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200

SMP log(SMP)

SMP

2

3

4

5

log(SMP)

0

Figure 2. Box plot for SMP and log(SMP). Author’s calculations. Notes: The construction of the box
plot for detecting outliers does not require any distributional assumption. The box plot with whiskers
is constructed using the interquartile range. Points beyond the whiskers correspond to outliers. We
do not use the rule of three sigmas for detecting outliers because the empirical distribution of data
did not conform to the fitted normal distribution.

A logarithmic transformation is consistent with the methodology in [34], which ana-
lyzes total costs of distribution system operators depending on the number of subscribers,
number of transformer substations, kilometers of high voltage grid, and the number of
registered battery electric vehicles. As a case study, the authors analyze Norway, which has
the highest share of electric vehicles. Because raw data are skewed to the right, ref. [34]
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applies log transformation in order to obtain data that have an empirical distribution closer
to the normal distribution.
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Figure 3. Distribution of SMP in (a) and distribution of log(SMP) in (b) of the peak-demand period
over trading days (1 April 1990–26 March 2001). Author’s calculations. Notes: The empirical
distribution (in blue) does not match the fitted normal distribution (in red), which is also confirmed
by the χ2 goodness of fit test rejecting the null hypothesis of normal distribution. We also find that the
empirical distribution is skewed to the right (because skewness is positive) and has excess kurtosis
(because kurtosis is above three). For the normal distribution, the values of skewness and kurtosis
are zero and three, respectively.

The dependent variable lsmpt is stationary, which allows applying the time and
frequency domain analyses. The time domain analysis allows identifying statistically
significant lags for the AR process. This analysis is performed using a correlogram that
is presented in Figure 4. Statistically significant lags are needed for modeling the partial
adjustment effects and periodicity pattern in electricity prices.
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Figure 4. Correlogram of log(SMP), that is, lsmp of the peak-demand period over trading days
(1 April 1990–26 March 2001). Author’s calculations. Notes: The ACF plot in (a) describes cycles at
lag orders 7, 14, . . . and 364, 728, . . ., which correspond to weekly and annual periodicities, respectively.
The PACF plot in (b) describes other statistically significant lags surpassing the red boundaries of the
confidence interval. These lags can be useful for modeling the dependence structure of the data.
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The frequency domain analysis presented in Figure 5 allows identifying frequencies in
periodic functions. The inclusion of periodic functions as explanatory variables rules out
the necessity to use some of the lags suggested by Figure 4 and the necessity to use the day
of the week dummy variables for modeling weekly periodicity.

0
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300

400
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|F
(i
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(S
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Figure 5. Periodogram for log(SMP). Author’s calculations. Notes: The periodogram plot for lsmpt

is based on the Fourier transform, which is defined as F(i ω) =
T∫
0

lsmp(t) · e−iωt dt and can be

approximated as F(i ωk) ≈
T−1
∑

t=0
lsmpt · e−iωkt =

T−1
∑

t=0
lsmpt · (cos ωkt− i sin ωkt) = (lsmpt, cos ωkt)−

i(lsmpt, sin ωkt), where ωk = k
N−1 · 2π, k = 0, 1, 2, . . . , N − 1 , and N determines the grid. The

expressions in parentheses represent scalar products, which in statistical terms measure covariation
between lsmpt and cosine or sine functions for different values of ωk. In this optimization problem,
our task is to find such values of ωk that would explain a large portion of variation in lsmpt. The
Fourier transform suggests that frequencies 2π/7, 4π/7, and 6π/7 with cosine and sine functions
allow maximizing |F(i ωk)|. We do not consider sin(6πt/7) because correlation between sin(6πt/7)
and lsmpt is statistically insignificant.

We use dummy variables for denoting regime periods in order to analyze the impact
of regulatory reforms. The next explanatory variable included in vector wt in the mean
Equation (1) is forecast demand for the peak-demand period of day t. Based on market
rules in the England and Wales wholesale electricity market, forecast demand has been
considered exogenous in determining the SMP. We do not include fuel prices because
they are available only as quarterly average prices. We do not consider renewable energy
sources either because they were not widely used during the analyzed period [54]. Finally,
εt is the disturbance term such that E(εt|ψt−1) = 0.

The volatility Equation (2) based on an ARCH(p) process is used for modeling het-
eroscedasticity in the disturbance term. This equation is augmented by a vector of explana-
tory variables zt including periodic functions and regime dummy variables. Following [26],
we include the term ε2

t−1 · It−1, where It−1 is an indicator function equal to 1 if εt−1 < 0
and 0 otherwise. The latter allows taking into account the asymmetric effect of positive and
negative shocks from the previous day on volatility.

The mean Equation (1) and volatility Equation (2) are jointly called an AR(P)–ARCH(p)
model, which we extended by external regressors wt and zt, respectively. To estimate these
two equations jointly, we must make a distributional assumption for standardized residuals
νt defined in Equation (3). We assume that νt are independent and identically distributed
(i.i.d.) and follow SGED, SST, GHYP, or JSU. In the next section, we determine which flexible
distribution is appropriate for our case study. The volatility model with all distributional
assumptions satisfied allows analyzing the impact of regulatory reforms on price dynamics.
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4. Estimation Results

We consider the SMP of the peak-demand period over trading days on the England and
Wales electricity market. We concentrate on the analysis of prices from the peak-demand
period over days because, as documented in the literature, firms usually tend to exercise
market power namely during the peak-demand period, when even small changes in supply
or demand may sometimes largely affect prices on the market. Various papers focused on
the peak-demand period or specific weekday as well in order to analyze the market.

Table 1 presents summary statistics of SMP across regulatory regime periods. A de-
tailed description of introduced regulatory changes is provided in [55].

Table 1. Summary statistics of SMP of the peak-demand period during 1 April 1990–26 March 2001.

Price

Regime 1 Regime 2 Regime 3 Pre-Regime 4 Regime 4 Regime 5

Apr 90–Mar 93 Apr 93–Mar 94 Apr 94–Mar 96 Apr 96–July 96 July 96–July 99 July 99–Mar 01
Coal Contracts Price-Cap Reg Divestment 1 Divestment 2

Mean 25.66 32.90 37.22 35.25 41.99 35.91
Min 14.78 14.94 7.88 17.17 14.54 12.15
Max 62.97 55.95 211.24 76.74 105.09 77.89

St Dev 4.69 6.52 17.64 11.39 19.29 11.95
Coef of Var (%) 18.26 19.81 47.40 32.30 45.95 33.28

Obs 1096 365 731 91 1114 616

Sources: Office of Gas and Electricity Markets and [56]. Author’s calculations.

After coal contracts expired on 31 March 1993, price level and variance increased.
During 1 April 1994–31 March 1996, price-cap regulation was introduced. It is interesting
to observe a high level and a high variance of prices during the price-cap regulation period.

Later, divestment series were introduced in order to improve competition and reduce
the influence of incumbent electricity producers. After the second series of divestments, the
level and variance of prices declined. These observations motivate to model the dynamics
of electricity prices.

The methodology for volatility modeling was described in Section 3. For estimating
the parameters of the volatility model, we apply the maximum likelihood method, which
besides data requires two more inputs. First, we must make a distributional assumption
because, a priori, the correct distribution for standardized residuals defined in Equation (3)
is unknown. We consider four flexible distributions (SGED, SST, GHYP, and JSU), which
can take into account asymmetry or heavy tails instead of relying on their special cases that,
for example, impose symmetry (like normal or Student’s t distributions).

Second, we must choose starting values for all parameters of the volatility model to
avoid a failure of inverting the Hessian matrix or a failure of achieving convergence of
the likelihood function. The starting values were chosen sequentially, where we began
by estimating the simplest AR(1)–ARCH(1) model specification including regime dummy
variables. Then, the AR(1) part was extended to include lags of the dependent variable and
periodic functions that had a statistically significant correlation with the dependent variable
lsmp. The estimation results for the final model specification satisfying the distributional
assumption are presented in Table 2.

The distributional assumptions of SGED, SST, GHYP, and JSU for standardized residu-
als ν̂t are not rejected by the goodness of fit test. Figure 6 depicts a good fit between the
empirical distribution of standardized residuals and assumed theoretical distribution in
all four volatility models. The Kullback–Leibler distance introduced in [57] can be used
in evaluating the fit between the empirical and chosen theoretical distributions. In our
research, this approach was inconclusive because only for certain choices of the number of
values in the nearest neighbor search algorithm was the Kullback–Leibler distance between
the empirical distribution of standardized residuals and fitted SGED smaller than under
fitted SST, GHYP, and JSU distributions.
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Table 2. Estimation results based on the maximum likelihood method when assuming skew gen-
eralized error distribution, skew Student’s t distribution, generalized hyperbolic distribution, and
Johnson’s SU distribution.

Assumed Distribution
Intercepts

and Variables

SGED (µ, σ, β, χ) SST (µ, σ, β, χ) GHYP (µ, σ, β, χ, λ) JSU (µ, σ, β, χ)

Coef Std Err Coef Std Err Coef Std Err Coef Std Err

M
ea

n
Eq

ua
ti

on

â0 −0.3728 *** 0.0147 −0.4892 *** 0.0872 −0.4976 *** 0.0936 −0.4792 *** 0.0803
lsmpt−1 0.3110 *** 0.0091 0.3066 *** 0.0069 0.3061 *** 0.0107 0.3069 *** 0.0019
lsmpt−2 0.1388 *** 0.0060 0.1422 *** 0.0195 0.1417 * 0.0730 0.1413 *** 0.0306
lsmpt−3 0.0362 *** 0.0022 0.0381 0.0258 0.0380 0.0278 0.0382 ** 0.0186
lsmpt−4 0.0577 *** 0.0119 0.0569 *** 0.0214 0.0573 *** 0.0165 0.0572 *** 0.0165
lsmpt−6 0.1306 *** 0.0051 0.1304 *** 0.0192 0.1303 *** 0.0258 0.1303 *** 0.0270
lsmpt−7 0.1759 *** 0.0061 0.1705 *** 0.0308 0.1708 *** 0.0082 0.1713 *** 0.0192
lsmpt−9 −0.0486 *** 0.0096 −0.0468 0.0310 −0.0468 * 0.0282 −0.0472 ** 0.0193
lsmpt−12 −0.0484 *** 0.0065 −0.0445 ** 0.0217 −0.0441 ** 0.0175 −0.0446 *** 0.0172
lsmpt−14 0.1320 *** 0.0052 0.1275 *** 0.0179 0.1276 *** 0.0204 0.1281 *** 0.0206
lsmpt−16 −0.0421 *** 0.0076 −0.0422 * 0.0248 −0.0421 ** 0.0198 −0.0421 ** 0.0165
lsmpt−21 0.0988 *** 0.0043 0.1020 *** 0.0168 0.1022 *** 0.0185 0.1017 *** 0.0186
lsmpt−22 −0.0534 *** 0.0063 −0.0546 *** 0.0191 −0.0550 *** 0.0162 −0.0551 *** 0.0163
lsmpt−51 −0.0449 *** 0.0090 −0.0435 *** 0.0151 −0.0438 *** 0.0131 −0.0437 *** 0.0127
lsmpt−56 0.0372 *** 0.0040 0.0386 ** 0.0151 0.0390 *** 0.0129 0.0388 *** 0.0121
lsmpt−164 −0.0286 *** 0.0048 −0.0264 ** 0.0123 −0.0265 0.0177 −0.0267 *** 0.0065
lsmpt−364 0.0669 *** 0.0107 0.0655 *** 0.0111 0.0655 *** 0.0112 0.0654 *** 0.0102
ldemandt 0.0616 *** 0.0015 0.0723 *** 0.0028 0.0731 *** 0.0051 0.0714 *** 0.0006
Regime 2 0.0206 *** 0.0055 0.0201 ** 0.0082 0.0203 0.0144 0.0202 *** 0.0056
Regime 3 0.0353 *** 0.0097 0.0344 *** 0.0114 0.0354 * 0.0196 0.0352 *** 0.0087

Pre-Regime 4 0.0246 0.0325 0.0273 0.0334 0.0287 0.0377 0.0277 0.0321
Regime 4 0.0315 *** 0.0087 0.0286 ** 0.0127 0.0294 0.0237 0.0295 *** 0.0060
Regime 5 −0.0037 0.0097 −0.0023 0.0121 −0.0019 0.0187 −0.0020 0.0084

sin(2πt/7) 0.0080 ** 0.0033 0.0079 ** 0.0039 0.0079 * 0.0043 0.0079 ** 0.0040
cos(2πt/7) −0.0136 *** 0.0021 −0.0141 *** 0.0040 −0.0138 *** 0.0040 −0.0139 *** 0.0040
sin(4πt/7) −0.0111 *** 0.0029 −0.0117 *** 0.0037 −0.0115 *** 0.0036 −0.0114 *** 0.0036
cos(4πt/7) −0.0117 *** 0.0033 −0.0115 *** 0.0035 −0.0114 *** 0.0036 −0.0115 *** 0.0036
cos(6πt/7) 0.0105 *** 0.0033 0.0105 *** 0.0035 0.0106 *** 0.0034 0.0104 *** 0.0034

V
ol

at
il

it
y

Eq
ua

ti
on

α̂0 0.0037 *** 0.0005 0.0037 *** 0.0006 0.0037 *** 0.0005 0.0036 *** 0.0005
ε2

t−1 0.1571 *** 0.0367 0.1653 *** 0.0386 0.1674 *** 0.0395 0.1646 *** 0.0383
ε2

t−2 0.0810 *** 0.0205 0.0903 *** 0.0219 0.0900 *** 0.0216 0.0888 *** 0.0215
ε2

t−4 0.0314 ** 0.0156 0.0229 0.0166 0.0218 0.0164 0.0242 0.0162
ε2

t−5 0.0412 ** 0.0194 0.0378 * 0.0195 0.0388 * 0.0208 0.0385 ** 0.0193
ε2

t−6 0.0761 *** 0.0244 0.0776 *** 0.0245 0.0785 *** 0.0246 0.0780 *** 0.0246
ε2

t−7 0.0903 *** 0.0247 0.1091 *** 0.0271 0.1101 *** 0.0280 0.1066 *** 0.0261
ε2

t−9 0.0961 *** 0.0224 0.0941 *** 0.0226 0.0922 *** 0.0225 0.0933 *** 0.0223
ε2

t−1 · It−1 0.0802 0.0522 0.0882 0.0539 0.0829 0.0540 0.0845 0.0534
Regime 2 0.0038 *** 0.0011 0.0041 *** 0.0012 0.0041 *** 0.0012 0.0040 *** 0.0012
Regime 3 0.0287 *** 0.0038 0.0277 *** 0.0040 0.0283 *** 0.0040 0.0280 *** 0.0040

Pre-Regime 4 0.0547 *** 0.0179 0.0559 *** 0.0183 0.0570 *** 0.0184 0.0559 *** 0.0182
Regime 4 0.0336 *** 0.0042 0.0324 *** 0.0043 0.0326 *** 0.0044 0.0325 *** 0.0043
Regime 5 0.0280 *** 0.0043 0.0275 *** 0.0045 0.0279 *** 0.0045 0.0275 *** 0.0044

sin(2πt/7) 0.0031 *** 0.0006 0.0034 *** 0.0006 0.0033 *** 0.0007 0.0033 *** 0.0006

β̂ 1.4254 *** 0.0459 6.8967 *** 0.7803 0.0290 ** 0.0130 1.9448 *** 0.1241
χ̂ 1.0539 *** 0.0225 1.0431 *** 0.0253 0.9946 *** 0.0007 0.1625 ** 0.0759
λ̂ −3.4734 *** 0.3959

Notes: We take into account the asymmetries in the volatility process by introducing the term ε2
t−1 · It−1. Even if

this term’s p-value is slightly above 0.10 in the estimated model based on SGED, it was necessary to keep this term
in order to satisfy the sign bias test. *, **, and *** stand for the 10%, 5%, and 1% significance levels, respectively.

Residuals from any model must be random, more precisely, independent and identi-
cally distributed (i.i.d). This can be verified using the BDS-test further developed in [58].
We perform the BDS-test of i.i.d. for ν̂t and ν̂2

t from each of the volatility models based on
SGED, SST, GHYP, and JSU distributions. When ν̂t is i.i.d, then ν̂t is not serially correlated.
Similarly, when ν̂2

t is i.i.d, then ν̂t is not heteroscedastic. The results are presented in Table 3.
The p-value of the BDS-test for standardized residuals ν̂t is frequently below 0.10

when assuming SST, GHYP, and JSU distributions. The result suggests that ν̂t is not i.i.d. in
the volatility models based on the SST, GHYP, and JSU distributions. We also find a similar
result for ν̂2

t .
Skewness and kurtosis represent the third and fourth standardized moments, respec-

tively. That is why we additionally test if ν̂3
t and ν̂4

t are i.i.d., which is partly consistent with
the suggestion in [41]. The BDS-test suggests that ν̂3

t are not i.i.d. in the volatility models
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assuming SST, GHYP, and JSU distributions. This could be related to the violation of the
i.i.d. assumption for standardized residuals ν̂t in those volatility models.

0 4−4
Standardized Residuals

ν̂t (based on SGED)

Mean −0.03
Min −5.10
Max 5.65

Std Dev 1.00

Skewness 0.25

Kurtosis 4.92

JB-test 600

p-value 0

Obs 3649

Fitted SGED

Fitted Normal

0.2

0.4

0.6

0

(a)

0.2
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0.6

0
0 4−4

Standardized Residuals
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Kurtosis 5.12
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TFitted SST
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0 4−4
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0 4−4
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Figure 6. Empirical, fitted theoretical, and fitted normal distributions of standardized residuals ν̂t.
Notes: Based on the estimated distributional parameters presented in Table 2, we plot the fitted
theoretical SGED in (a), SST in (b), GHYP in (c), and JSU in (d) to compare with the empirical
distribution of standardized residuals ν̂t from each volatility model. For plotting the fitted normal
distribution, we use estimates of mean and standard deviation from summary statistics of ν̂t. In all
four volatility models based on SGED, SST, GHYP, and JSU, we find that the empirical distributions
of ν̂t are skewed to the right (because skewness is statistically greater than zero) and have excess
kurtosis (because kurtosis is statistically greater than three). For the normal distribution, the values
of skewness and kurtosis are zero and three, respectively. The Jarque–Bera test (JB-test) rejects the
null hypothesis of normal distribution.

Table 3. p-values of the BDS-test for ν̂t, ν̂2
t , ν̂3

t , and ν̂4
t .

SGED SST GHYP JSU

ν̂t ν̂2
t ν̂3

t ν̂4
t ν̂t ν̂2

t ν̂3
t ν̂4

t ν̂t ν̂2
t ν̂3

t ν̂4
t ν̂t ν̂2

t ν̂3
t ν̂4

t

D
im

en
si

on

2 0.46 0.13 0.15 0.23 0.30 0.09 0.09 0.11 0.31 0.09 0.09 0.15 0.32 0.10 0.10 0.15
3 0.30 0.15 0.12 0.17 0.13 0.08 0.06 0.07 0.15 0.08 0.06 0.11 0.15 0.09 0.06 0.10
4 0.12 0.18 0.12 0.20 0.04 0.08 0.06 0.10 0.04 0.09 0.06 0.13 0.05 0.10 0.07 0.13
5 0.07 0.32 0.17 0.32 0.03 0.18 0.10 0.19 0.03 0.21 0.10 0.24 0.03 0.22 0.11 0.23
6 0.10 0.68 0.40 0.71 0.05 0.46 0.30 0.52 0.06 0.51 0.30 0.57 0.05 0.52 0.32 0.55
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Last, we perform the sign bias test, where the null hypothesis states that the volatility
model is correctly specified. The results are presented in Table 4.

Table 4. Test values of the sign bias test for standardized residuals ν̂t.

Assumed Theoretical Distribution

SGED SST GHYP JSU

Sign Bias 0.45 0.12 0.13 0.14
Negative Sign Bias 1.28 1.35 1.33 1.33
Positive Sign Bias 1.55 1.91 * 1.90 * 1.88 *
Joint Effect 4.68 5.75 5.70 5.62

Notes: * stands for p-values between 0.05 and 0.10. The positive sign bias test rejects the null hypothesis stating
that the volatility model is correctly specified when SST, GHYP, and JSU distributions are assumed.

The null hypothesis is rejected when assuming SST, GHYP, and JSU distributions
because the p-value for the positive sign bias test is less than 0.10. Hence, based on the
BDS-test and sign bias test, we conclude that assuming SGED for volatility modeling is
appropriate in our case study.

5. Discussion

For volatility modeling, we verified the distributional assumption, i.i.d. assumption,
and correctness of the specified volatility model. The distributional assumption states that
model residuals follow a particular theoretical distribution. The empirical and assumed
theoretical distributions can be analyzed using distribution plots or, more formally, using
the goodness of fit test. The goodness of fit test suggested that SGED, SST, GHYP, and JSU
distributions provided a good fit for the empirical distribution of standardized residuals.

Not always is the distributional assumption satisfied. The author of [59] addressed
the model misspecification problem related to the wrong distributional assumption and
proposed a quasi maximum likelihood method for robust statistical inference. This method
is applied in [60] for modeling the dynamics of electricity prices from various countries. The
research assumed a normal distribution, even if prices are asymmetric and have platykurtic
and leptokurtic distributions. We believe that estimation results may be biased due to
the wrong distributional assumption. In some cases, the distributional tests were applied
incorrectly. For example, the authors of [18] relied on the AIC for choosing the appropriate
distributional assumption.

We suggest assuming flexible distributions when the empirical distribution of data or
model residuals has the features of asymmetry, heavy tails, or excess kurtosis that may lead
to a parsimonious model. Using more complex volatility models with normal or Student’s
t distribution assumed may not be fully correct (e.g., [7,61]).

After the distributional assumption, we must verify if model residuals are random,
that is, independent and identically distributed (i.i.d.), which suggests that residuals do
not have serial correlation and heteroscedasticity problems. However, some papers do not
discuss whether model residuals are serially correlated or heteroscedastic. For example,
residuals from most of GARCH-type estimated models presented in Tables 3–6 in [5] had a
serial correlation and heteroscedasticity problems. In such cases, the estimates are biased
and we cannot apply hypothesis testing.

Based on the BDS-test and sign bias test, we find that SGED is the appropriate distri-
bution for volatility modeling in our case study. Based on the correctly estimated volatility
model, we can analyze the effect of demand and reforms. We estimate that a 1% increase in
forecast demand is expected to increase the electricity price by 0.06%.

The effect of reforms is analyzed using regime dummy variables. High coefficient
estimates in front of the Regime 2 dummy variable in the mean and volatility equations
presented in Table 2 suggest that after the coal contracts expired in March 1993, price level
and volatility increased. Later, price level and volatility increased further during price-cap
regulation (i.e., during Regime 3). Higher price volatility during price-cap regulation may
stem from different bidding strategies during the peak-demand period over weekdays and
weekends. A similar finding was already described in [21] but based on daily average prices.
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Focusing on prices of the peak-demand period over days is sometimes more important
than analyzing average prices because firms may be more inclined to exercise market
power namely during the peak-demand period. Another approach to account for this
possible strategy is to analyze demand weighted average prices (e.g., in [62]). However,
this approach may not always be feasible due to limitations or incompleteness of data on
demand for electricity.

As presented in Table 2, coefficient estimates in front of the Regime 5 dummy variable
in the mean and volatility equations are lower than coefficient estimates in front of the
Regime 3 and Regime 4 dummy variables. The result suggests that price level and volatility
declined after the second series of divestments. Hence, the second series of divestments
was more successful at lowering price level and volatility than the price-cap regulation and
the first series of divestments.

6. Conclusions and Policy Implications

Modeling energy prices has been of interest to investors, producers, and market regu-
lators. We suggest using flexible distributions that account for such features as asymmetry,
heavy tails, or excess kurtosis. A correct distributional assumption is necessary when
using the maximum likelihood method. The advantage of using flexible distributions, for
example, even for symmetric data or errors, is that the estimate of the skewness parameter
of the flexible distribution will confirm symmetry without loss of generality. The appli-
cation of flexible distributions may lead to a simpler and parsimonious model allowing
for more precise forecasts, economic evaluation, planning, and policy recommendations.
The authors of [32] highlighted the importance of correct modeling of price volatility for
building accurate pricing models, for forecasting future price volatility, and for enriching
our understanding of the broader financial markets, the energy industry, and the overall
economy. The presented volatility model can be adapted or extended for analyzing other
energy markets. For this purpose, one may include new exogenous variables accounting
for fuel prices, renewable energy sources, various events like the COVID-19 pandemic, etc.

We find that after the second series of divestments, price level and volatility reduced
compared to the price-cap regulation period and the first series of divestments. Therefore,
we conclude that a sufficient horizontal restructuring through divestment series may indeed
be successful at lowering prices and volatility on the market. On the one hand, lower prices
for goods and services of general interest are essential for consumers. On the other hand,
lower price volatility may be preferred by producers willing to minimize the uncertainty
about their revenues or profits, which could motivate producers to increase investments.

Generally, a horizontal restructuring through divestment series may allow reducing the
ability of dominant producers to affect prices. In particular, dominant producers may decide
to withhold part of their production capacity in order to increase prices and subsequently
achieve higher profits [54]. For example, the European Commission investigated the E.ON
AG producer for abusing its dominant position to withhold available production facilities
on the German electricity market in order to raise prices [63]. Later, it was agreed that
the producer would divest about 20% of its generation capacity in Germany. However,
not in all countries is it possible to introduce divestment series. For example, Australia
is planning to introduce amendments to the Competition and Consumer Act 2010 [64].
The amendments will allow the introduction of divestments in order to force electricity
wholesalers to sell a business or asset if they engage in certain pricing breaches.

A horizontal restructuring through divestment series may be preferred to price-cap
regulation because the latter is associated with monitoring costs. This reasoning probably
explains why the European Commission decided to choose divestments and Australia
decided to introduce amendments to the Act. Our research confirms that divestment series
may indeed be successful at lowering prices without any need for further monitoring that
the price-cap regulation would have required.
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Nomenclature
µ Mean parameter
σ Standard deviation parameter
β Shape parameter
χ Skewness parameter
λ Peakedness parameter

Γ(β) Gamma function defined as Γ(β) =
+∞∫
0

zβ−1e−z dz

R Set of real numbers
χ2-test Goodness of fit test
p-value Probability value of a test statistic

(if p-value is less than 0.10, then the null hypothesis is rejected)
lsmpt Natural logarithm of SMP from the peak-demand period of day t
εt Residuals from the mean equation (not standardized)
ht Conditional variance or volatility (based on notation in [23])
N (0, ht) Normal distribution with zero mean and conditional variance ht
ψt−1 Information set at time t− 1 (based on notation in [23])
It−1 The indicator function equal to 1 if εt−1 < 0 and 0 otherwise
νt Standardized residuals

Abbreviations

The following abbreviations are used in this manuscript:

AIC Akaike Information Criterion
AR Autoregressive
ARCH Autoregressive Conditional Heteroscedasticity
BDS-test Brock–Dechert–Scheinkman test of i.i.d.
Coef of Var Coefficient of Variation
COVID-19 Corona Virus Disease 2019
GARCH Generalized Autoregressive Conditional Heteroscedasticity
GED Generalized Error Distribution
GHYP Generalized Hyperbolic Distribution
i.i.d. independent and identically distributed
JB-test Jarque–Bera normality test [31]
JSU Johnson’s SU distribution
Obs Number of Observations
Regime 1 April 1990–March 1993 (Coal contracts), Reference period
Regime 2 April 1993–March 1994
Regime 3 April 1994–March 1996 (Price-cap regulation)
Pre-Regime 4 April 1996–July 1996
Regime 4 July 1996–July 1999 (Divestment 1 introduced on 1 July 1996)
Regime 5 July 1999–March 2001 (Divestment 2 introduced on 20 July 1999)
SGED Skew Generalized Error Distribution
SMP System Marginal Price
SST Skew Student’s t distribution
St Dev Standard Deviation
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