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Abstract: Data envelopment analysis (DEA) has been widely applied to evaluate the performance of
banks, enterprises, governments, research institutions, hospitals, and other fields as a non-parametric
estimation method for evaluating the relative effectiveness of research objects. However, the composi-
tion of its effective frontier surface is based on the input-output data of existing decision units, which
makes it challenging to apply the method to predict the future performance level of other decision
units. In this paper, the Slack Based Measure (SBM) model in DEA method is used to measure the
relative efficiency values of decision units, and then, eleven machine learning models are used to
train the absolute efficient frontier to be applied to the performance prediction of new decisions
units. To further improve the prediction effect of the models, this paper proposes a training set under
the DEA classification method, starting from the training-set sample selection and input feature
indicators. In this paper, regression prediction of test set performance based on the training set under
different classification combinations is performed, and the prediction effects of proportional relative
indicators and absolute number indicators as machine-learning input features are explored. The
robustness of the effective frontier surface under the integrated model is verified. An integrated
models of DEA and machine learning with better prediction effects is proposed, taking China’s
regional carbon-dioxide emission (carbon emission) performance prediction as an example. The
novelty of this work is mainly as follows: firstly, the integrated model can achieve performance
prediction by constructing an effective frontier surface, and the empirical results show that this is a
feasible methodological technique. Secondly, two schemes to improve the prediction effectiveness of
integrated models are discussed in terms of training set partitioning and feature selection, and the
effectiveness of the schemes is demonstrated by using carbon-emission performance prediction as an
example. This study has some application value and is a complement to the existing literature.

Keywords: data envelopment analysis; machine learning; integrated models; performance prediction

MSC: 90B50

1. Introduction

As a non-parametric analysis method, DEA extends the concept of single input and
single output engineering efficiency to the efficiency evaluation of multi-input and multi-
output decision units. This method was first proposed by Charnes, Cooper, and Rhodes in
the United States in 1978 [1]. Due to its wide applicability, simple principle, and unique
advantages especially in analyzing multiple inputs and outputs, it has been widely applied
to the evaluation of performance of various organizations and regions in the past period. For
example, bank operation performance evaluation [2–6], company operation performance
evaluation [7–10] and regional carbon-emission performance evaluation [11–17]. However,
the method has some limitations. First, based on the input and output data of the existing
decision units, the effective frontier surface is determined, and the decision units on this
effective frontier surface are all efficient. In addition, the efficiency value of each decision
unit based on the distance of each unit to the effective frontier surface is determined.
The effective frontier surface will be changed when new units are added. Moreover, the
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performance evaluation of the new year’s decision unit needs to be based on the new
year’s effective frontier. If other decision units’ input and output data are not available,
the effective frontier cannot be constructed for performance evaluation. In addition, the
effective frontier of DEA is easily affected by statistical noise, which leads to frontier
bias [18]. Finally, the DEA method cannot realize the prediction of new decision units.

The absolute efficient frontier can be constructed for solving above limitations of DEA
by introducing machine learning methods. The efficiency values of new decision units
can be found without re-measuring the whole decision units when new decision units are
added. At the same time, it can predict the efficiency value of the new decision unit in the
same period and the future efficiency value of the decision unit by regression. Finally, the
presence of statistical noise can be overcome by repetitive training during the training with
the machine learning models. Based on the integrated model of DEA and machine learning,
to further improve the prediction effect of the integrated model, the following ideas are
proposed in this paper in terms of training-set sample selection and composition of input
feature indicators.

In terms of training-set sample selection, the DEA classification method is proposed
in this paper when considering how to make the training set contain as much important
feature information as possible. Based on the quartile method to classify the efficiency
values of the measures into intervals, different combination strategies are proposed to
verify which has more value, the more effective sample data or the relatively ineffective
sample data. In this paper, an empirical study is conducted on the example of regional
carbon-emission performance prediction in China.

In terms of the composition of input characteristic indicators, many current DEA appli-
cation studies use proportional relative indicators to construct the input-output evaluation
index system [19–23]. Theoretically, the production possibility set is a linear combination
of decision units. The DEA method is a linear programming method based on this possi-
bility set. The input and output indicators should be linearly additive. Otherwise, they
may produce the wrong production possibility set and thus obtain unreliable results [24].
More intuitively, if the output indicator is a proportional (rate) indicator, the DEA model
may measure an improvement target value greater than 100%, which is an illogical result.
Therefore, this paper does not focus on whether the proportional indicators are reasonable
in DEA, so we will not explore this issue. The use of proportional relative indicators as
input-output indicators in DEA is somewhat controversial. However, proportional relative
indicators are available as input feature variables in machine learning. The output char-
acteristic variable of the machine learning model is the efficiency value of DEA measure,
i.e., the ratio of weighted output to weighted input. If the proportional relative indicator is
used as the input feature variable, its prediction effect may be better than using the absolute
figure indicator. Based on this assumption, the empirical evidence will be developed later.

In summary, the contributions of this paper are mainly: (1) the use of an integrated
model based on a non-radial SBM model and eleven machine learning methods, which
is an extension of the existing methodological research. The SBM model uses a non-
radial approach to introduce the relaxation variables directly into the objective function.
Such an approach considers the full range of relaxation variables and allows for a more
accurate assessment of efficiency values than the radial DEA model. Eleven machine
learning models cover traditional and tree-based, and integrated machine learning models.
(2) A DEA classification is proposed for training subset partitioning, composing different
combinations of classifications for model training, and a comparative study on their specific
prediction results is conducted. (3) A comparative study of the prediction effects of models
with proportional relative indicators and absolute number indicators as machine-learning
input features is conducted. (4) The efficiency measure under the new integrated model can
be based on the absolute frontier surface, which can realize the measure of new decision
units at the same time, on the one hand, or complete the measure of new decision units in
future years. (5) The study of this performance prediction model increases the ideas and
methods in carbon-emission performance prediction.
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This paper is structured as follows. The second part introduces related studies. In the
third part, an introduction to the basic models and methods involved in this study is given.
In the fourth part, an empirical study and analysis are conducted on the example of regional
carbon-emission performance prediction in China. The fifth part contains the results and
discussion. Finally, the paper concludes with an outlook on future research directions.

2. Related Studies

By combing the literature of DEA methods and machine-learning integration methods,
we can notice that some scholars have explored the situation of combining DEA with neural
networks. Table 1 summarizes previous studies. Athanassopoulos and Curram [25] were
the first to try to introduce neural networks into DEA, which was the first exploration
in this area. The paper pointed out that DEA and neural networks, as non-parametric
models, have some similar characteristics, which to some extent justifies the combination
of DEA and neural networks. Wang [26] demonstrated that DEA can hardly be used to
predict the performance of new decision units, and one good approach is to combine
DEA and artificial neural networks (ANNs) which can help decision makers to construct a
stable efficient frontier. Santin et al. [27] reviewed the application of ANNs to efficiency
analysis, comparing efficiency techniques in nonlinear production functions comparison.
They demonstrated that ANNs and DEA methods are non-parametric methods with some
similarities, providing a basis for the subsequent combination of the two. A study by
Wu et al. [28] pointed out that DEA has difficulties in predicting the performance of other
decision units, and that problems in practice may exhibit great non-linearity. For example,
the performance between financial indicators and efficiency is often nonlinear in bank
efficiency analysis based on the performance characteristics of financial indicators. The
nonlinearity can be better handled by introducing a neural network approach. They
apply the combination of DEA and ANNs to the performance evaluation of Canadian
banks. The empirical study showed that the method facilitates the construction of a more
robust frontier surface and addresses the shortcomings of a purely linear DEA approach.
Azadeh et al. [29] found that combining DEA and ANNs is a good complement to help
in predicting efficiency. Emrouznejad and Shale [30] applied DEA and neural network
methods to measure efficiency of large-scale datasets and demonstrated through empirical
results that the integrated model can be a useful tool for measuring the efficiency of large
datasets. Samoilenko and Osei-Bryson [31] proposed that neural networks should be able to
assist DEA. Subsequently, a few scholars have explored somewhat in the field of integrated
models of DEA and neural networks [32–38].

Table 1. A summary of previous studies.

Authors/Year Research Findings

Athanassopoulos and Curram (1996) [25] For the first time, it is demonstrated that DEA and neural networks are justified as
non-parametric models with a combination. This is the first attempt in this field.

Wang (2003) [26] The combination of DEA and ANNs can help decision makers construct a stable
and effective boundary.

Santin et al. (2004) [27]
By comparing the application of DEA and ANNs in efficiency analysis, it is

demonstrated that the two methods have some similarity and provide a basis for
the combination of both.

Wu et al. (2006) [28]

The article applies a combination of DEA and ANNs to the performance
evaluation of Canadian banks. The empirical study shows that the method
facilitates the construction of a stronger frontier surface and addresses the

shortcomings of a purely linear DEA approach.

Azadeh et al. (2007) [29] Combining DEA and ANNs is a good complement to help in predicting efficiency.

Emrouznejad and Shale (2009) [30] The integrated model of DEA and neural network methods can be a useful tool for
measuring the efficiency of large datasets.
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Table 1. Cont.

Authors/Year Research Findings

Samoilenko and Osei-Bryson (2010) [31] This paper proposed that neural networks should be able to assist DEA.

Pendharkar (2011) [32] This paper propose a hybrid radial basis function network-DEA. The model shows
good results on the dichotomous classification problem.

Sreekumar and Mahapatra (2011) [33]

The main objective of this research is to formulate an integrated approach
combining DEA and neural network for assessing and predicting the performance

of B-schools in India for effective decision making as the errors and biases
generated as a result of human intervention in decision making would be

significantly reduced.

Tosun (2012) [34]
The article combines DEA and ANN methods and applies them to the efficiency

evaluation of hospitals. Results show that well-trained ANNs perform good
classification and even gives better solutions than DEA.

Liu et al. (2013) [35]

The study measured the technical efficiency of 29 semiconductor companies in
Taiwan using a three-stage radial DEA model combined with ANNs. According to

the empirical results, the ANNs approach yielded a more robust frontier and
identifies more efficient units since more good performance patterns are explored.

Kwon (2017) [36]

The study used DEA models to evaluate the efficiency of each decision unit. Based
on these efficiency results, the back propagation neural network in ANNs model
was subsequently used to predict the efficiency score and target output of each

decision unit. This is a new attempt to extend the back propagation neural
network model for purposes of best performance prediction.

Visbal-Cadavid et al. (2019) [37]

The paper presents the results of a study on the application of DEAs and ANNs to
data from Colombian higher education institutions and points out that in the
future different machine learning techniques should be used instead of just

neural networks.

Tsolas et al. (2020) [38]
Integration of DEA and ANNs to test the efficiency classification of Greek bank

branches. According to the empirical results, the integrated model shows a
satisfactory classification capability.

It can be seen that some relevant papers [25–38] have focused on the theoretical basis
of the integrated model composed of DEA and neural network and applied it to some
performance prediction problems. They have achieved good results through empirical
studies and verified the reasonableness and feasibility of the integrated model of DEA and
neural network. This provides valuable experience for further in-depth exploration. In any
case, the current results still have the following problems and research gaps.

1. They mostly use only DEA and a single neural network approach, especially ANNs in
neural networks. Exploration of the combination of other machine learning methods
is lacking.

2. The existing literature studies mainly use the CCR and BCC models in DEA meth-
ods. These two models use the radial distance function. So, these two models for
the measurement of the degree of inefficiency only include the part of all inputs
(outputs) equal proportional changes, and do not take into account the part of slack
improvement. Therefore, there are some shortcomings in the efficiency evaluation.

3. After constructing the integrated model, related studies did not further explore how
to improve performance prediction in terms of dataset composition and feature
index selection.

3. Description of the Methodology
3.1. Data Envelopment Analysis (DEA)

Data Envelopment Analysis (DEA) is a tool instrument used to evaluate the relative
effectiveness of work performance in the same type of organization. The principle of the
method is to determine the relative effectiveness of the production frontier by keeping the



Mathematics 2022, 10, 1776 5 of 23

inputs or outputs of the decision units constant with the help of mathematical planning and
statistical data. The model projects each decision unit onto the DEA production frontier
and evaluates their relative effectiveness by comparing how the decision units deviate from
the DEA effective frontier.

3.1.1. DEA Base Model

In 1978, Charnes, Cooper, and Rhodes [1] proposed the first DEA model, the CCR
model, which consists of the initials of three people’s last names. They extended the concept
of single-input, single-output engineering efficiency to multiple-input and multiple-output
relative efficiency evaluation. The CCR model has now become a familiar and essential
tool for performance evaluation, taking input orientation as an example, with a specific
planning equation as in Equation (1).

max

q
∑

r=1
uryrk

m
∑

i=1
vixik

s.t.

q
∑

r=1
uryrj

m
∑

i=1
vixij

6 1

v > 0; u > 0; i = 1, 2, · · · , m; k = 1, 2, · · · , s; r = 1, 2, · · · , q; j = 1, 2, · · · , n

(1)

In the formula, the full name of “s.t.” is “subject to”, and it is usually followed by a num-
ber of constraints. Each decision unit has m kinds of input, denoted as xi(i = 1, 2, · · · , m),
and the weight of the input is expressed as vi(i = 1, 2, · · · , m); each decision unit has q
kinds of output, denoted as yr(r = 1, 2, · · · , q), and the weight of the output is expressed as
ur(r = 1, 2, · · · , q). The efficiency values obtained using the above weights for all decision
units do not exceed 1. The detailed explanation of all parameters in all formulas is shown
in Table A6 of Appendix A.

This equation is nonlinear and it has an infinity of optimal solutions, it becomes a
problem when it comes to programming it. In practical applications, it is necessary to
convert it into a corresponding linear programming pairwise model, i.e., Equation (2).

minθ

s.t.
n
∑

j=1
λjxij 6 θxik

n
∑

j=1
λjyrj > yrk

(2)

0 < θ ≤ 1; λ > 0; i = 1, 2, · · · , m; r = 1, 2, · · · , q; j = 1, 2, · · · , n; k = 1, 2, · · · , s

In the dual model, λ is the linear combination coefficient of the decision unit, and the
optimal solution θ of the objective function of the model represents the efficiency value.

The CCR model assumes constant returns to scale, i.e., the input of a decision unit
increases to t times its original size, and its output also becomes t times its original size.
However, this assumption that all decision units are at the optimal production scale does
not match the actual situation of most decision units. Based on this, Banker, Charnes, and
Cooper [39] first proposed the BCC model (named after the initials of the three authors) to
determine whether the decision unit has achieved efficient production scale, measuring
both scale efficiency and technical efficiency. The BCC model adds constraints to the CCR

dual model
n
∑

j = 0
λj=(λ ≥ 0) to form Equation (3).
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minθ

s.t.
n
∑

j=1
λjxij 6 θxik

n
∑

j=1
λjyrj > yrk

n
∑

j=1
λj = 1

(3)

0 < θ ≤ 1; λ > 0; i = 1, 2, · · · , m; r = 1, 2, · · · , q; j = 1, 2, · · · , n; k = 1, 2, · · · , s

3.1.2. SBM Model and Non-Expected Output

Since the radial DEA models (CCR and BCC models) cannot measure the full range
of slack variables and their shortcomings in efficiency assessment, Tone [40] proposed the
SBM model for improvement reasons. This model considers the input-output slack and
makes the efficiency measurement results accurate. In order to solve the problem that the
SBM model cannot measure the efficiency of decision units with non-expected outputs,
Tone [41] further extended the SBM model and proposed an SBM model that considers
non-expected outputs and its planning equation is Equation (4). This equation is nonlinear
planning, which can be transformed linearly by Chames’s transformation approach for
linear transformation [42]. The model effectively solves the problem of efficiency evaluation
in non-desired output. In addition, the model belongs to the non-radial and non-angle-
oriented model of the DEA model, which avoids the bias and influence caused by the
difference between radial and angle selection.

ρ = min
1− 1

m

m
∑

i=1

s−i
xi0

1 + 1
s1+s2

( s1
∑

r=1

sg
r

yg
r0
+

s2
∑

r=1

sb
r

yb
r0

)
s.t. x0 = Xλ + s−

yg
0 = Ygλ− sg

yb
0 = Ybλ + sb

(4)

s− ≥ 0, sg ≥ 0, sb ≥ 0, λ ≥ 0

Each decision unit in the model has three variables, input x ∈ Rm, desired output
yg ∈ Rs1 , and non-desired output yb ∈ Rs2 . ρ is the objective function and is strictly
decreasing and satisfies 0 < ρ ≤ 1. s−, sg, sb are the input slack variable, desired output
slack variable, and non-desired output slack variable, respectively. For a particular decision
unit, the decision unit is valid when and only when ρ = 1 and s− = 0, sg = 0, sb = 0.
Conversely, the decision unit is relatively inefficient.

3.2. Machine Learning Models

Machine learning is the core of artificial intelligence and one of the fastest-growing
branches of artificial intelligence, and its theories and methods are widely used to solve
complex problems in engineering applications and scientific fields.

The primary classification of machine learning generally includes supervised, unsu-
pervised, and reinforcement learning. Among them, supervised learning is training optimal
prediction models from labeled data. Supervised learning mainly solves two problems:
classification and regression, which are considered the following primary differences. First,
the purpose is different, classification is mainly to find the decision boundary, and regres-
sion is to find the best fit. Secondly, the output types are different. Classification is discrete
data, while regression is continuous data. In terms of evaluation metrics, the classification
uses the correctness rate as the evaluation metric, while regression uses the coefficient of
determination R2. This study is based on the regression problem, and eleven mainstream
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machine learning models combined with DEA methods are selected for the integration
study. These models are traditional machine learning models, tree-based machine learning
models, and integrated machine learning models. This section briefly introduces the main
contents of the models.

3.2.1. Linear Regression (LR)

Linear regression mainly assumes that the target and eigenvalues are linearly corre-
lated, and the optimal parameters of the equation are solved using the corresponding loss
functions. The linear expressions x and f (x) are given in Equation (5), where w and b are
the parameter vectors. The parameters take constant values. We mainly seek whether the
model needs to calculate the intercept term when searching for the optimization of the grid.

f (x) = w>x + b (5)

3.2.2. Support Vector Regression (SVR)

Support vector machine (SVM) is a binary classification model and a linear classifier
that finds the partitioned hyperplane with the maximum interval. Its learning strategy is
interval maximization, which can eventually be translated into the solution of a convex
quadratic programming problem. Cortes and Vapnik first proposed Support vector machine
in 1995 [43]. It has shown many unique advantages in solving small samples, non-linear
and high-dimensional pattern recognition.

The SVR kernel trick is implemented in the same way as SVM, mapping the sample
data to a high-dimensional feature space, introducing a suitable kernel function, and
constructing an optimal hyperplane to process high-dimensional inputs quickly. While
both require finding a hyperplane, the difference is that SVM requires finding a spaced
maximum hyperplane. However, in SVR, a spacing band is created on both sides of the
linear function. SVR counts the loss function for all samples that fall outside the spacing
band and subsequently optimizes the model by minimizing the width of the spacing band
concerning the total loss.

Although the model function of the support vector regression model is also linear, it
differs from linear regression. It is mainly different in that the principle of calculating the
loss, the objective function, and the optimization algorithm.

In this paper, the radial basis kernel function is used and the penalty factor C and
gamma parameters are globally searched for. C is the tolerance to error. When C is higher,
it means the more intolerant to the occurrence of errors and easy to over-fit. The smaller
C is, the easier it is for the under-fitting situation. Therefore, a reasonable value of C
determines the generalization ability of the model. Gamma value determines the number
of support vectors, and the number of support vectors further affects the speed of training
and prediction.

3.2.3. Back Propagation Neural Network (BPNN)

BPNN was proposed in 1986 by Rumelhart et al. [44]. The BPNN consists of an
input layer, an implicit layer, and an output layer, which are trained by sample data. In
addition, the network weights and thresholds are continuously modified and iterated until
the minimum sum of squared errors of the network is reached, and the desired output is
approximated. The topology of the three-layer BPNN is shown in Figure 1.
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The input data are repeatedly fed into the neural network with feedback. Each time the
data are repeated, the model compares the output of the neural network with the desired
output and calculates the error. This error is back-propagated to the neural network and
used to adjust the weights so that the error is reduced each time. Such a BPNN can get
closer and closer to the desired output.

We perform global optimization for the cases containing one, two, and three hidden
layers, and the number of neurons per layer is as follows. One hidden layer contains
10 neurons. The first of the two hidden layers contains 10 neurons and the second contains
20 neurons. In addition, the three hidden layers have three cases with the composition
of neurons, and the number of neurons per layer is [10,10,10], [10,10,20], [10,20,30]. The
Rectified Linear Unit (ReLU) activation function is a common neural activation function
with sparsity. Therefore, this activation function is used in this paper to make the sparse
model better able to mine relevant features to fit the training data. Global optimization
is also performed for three optimizers which are mainly the limited memory Broyden–
Fletcher–Goldfarb–Shanno (LBFGS), stochastic gradient descent (SGD), and adaptive mo-
ment estimation (ADAM).

3.2.4. Decision Trees (DT) and Random Forests (RF)

The regression decision tree mainly refers to the CART (Classification and Regression
Tree) algorithm proposed by Breiman et al. in 1984 [45]. It mainly divides the feature space
into several non-overlapping regions, and each division cell has a specific output. We can
assign them to a cell according to the features and get the corresponding prediction value
for the test data. The predicted value is the arithmetic mean of the values taken from each
sample in the training set in that region.

RF is an integrated machine learning model consisting of several decision trees. When
dealing with regression problems, N trees will have N outputs for one input sample, and
the mean value of each decision tree output is the final output of the random forest.

In this paper, a global search is performed for the maximum depth of the tree and the
number of features to be considered as branching when we apply the DT algorithm. In
addition, the global search is performed for the number of base evaluators in the forest and
the maximum depth of the tree when applying the RF algorithm.
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3.2.5. Gradient Boosted Decision Tree (GBDT)

The GBDT algorithm, also called MART (Multiple Additive Regression Tree), is an
iterative decision tree algorithm. The GBDT algorithm can be viewed as an additive model
composed of M trees, and its corresponding equation is shown in Equation (6).

F(x, w) =
M

∑
m=0

αmhm(x, wm) =
M

∑
m=0

fm(x, wm) (6)

where x is the input sample, and w are the model parameters. h is the classification and
regression tree; α is the weight of each tree.

The main idea of the algorithm is as follows. Firstly, the first base learner is initialized.
Next, M base learners are created. The value of the negative gradient of the loss function
in the current model is calculated and used as an estimate of the residual. Then, a CART
regression tree is built to fit this residual, and a value that reduces the loss as much as
possible is found at the leaf nodes of the fitted tree. Finally, the learner is updated.

In this paper, the mean squared loss function is used, and the number of trees in the
parameters, the maximum depth as well as the learning rate are globally sought and tuned.

3.2.6. CatBoost, XGBoost, and LightGBM

CatBoost, XGBoost, and LightGBM can all be categorized into the family of gradient-
boosting decision tree algorithms, and we describe the characteristics of the three models.

CatBoost combines category features to construct new features, which enriches the
feature dimension and facilitates the model to find essential features.

XGBoost incorporates a regular term in the objective function to avoid the over-fitting
of the model. At the same time, the model supports training and prediction for data
containing missing values.

LightGBM takes GBDT as its core and makes essential improvements in many aspects,
including second-order Taylor expansion for objective function optimization, a histogram
algorithm, and an optimized leaf growth strategy. It makes the algorithm more efficient in
training and more adaptable to high-dimensional data.

Global parameter search is performed for learning rate, number of trees, maximum
depth, and sample rate in CatBoost, XGBoost, and LightGBM model parameters.

3.2.7. Adaboost and Bagging

Freund and Schapire proposed the Adaboost algorithm in 1997 [46]. The main idea
is to assign an initial weight value to each sample for the same sample and then update
the sample weight value by each iteration. The sample with a small error rate will have a
reduced weight value in the next iteration, and the sample with significant error rate will
boost the weight value in the next iteration. This algorithm belongs to a typical integrated
learning method.

Bagging is another class of integrated learning methods. The main difference with
Adaboost is that its training set is selected with put-back in the original set, and the
training sets selected from the original set are independent of each other for each round. In
addition, Adaboost determines the weight values based on the error rate situation, while
Bagging uses uniform sampling with equal weights for each sample. Finally, the individual
prediction functions of Bagging can be generated in parallel, while Adaboost can only
generate them sequentially because the latter model parameters require the results of the
previous model round.

In this paper, Adaboost uses decision trees as the weak evaluator, and the number of
trees and learning rate are tuned to the parameters. The maximum depth of Bagging is 7,
and the number of trees in the parameters is globally searched for.
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4. Empirical Analysis
4.1. Design of the Empirical Analysis Process

As shown in Figure 2, the steps of the empirical analysis based on the integrated DEA
and machine learning model are as follows.
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In the first step, based on the input and output indicators in the index system of
carbon-emission efficiency, the SBM model with non-expected outputs in the DEA method
is used to measure the efficiency values.

In the second step, the efficiency values obtained by the DEA model are classified into
four categories of datasets, including S1, S2, S3, and S4. The four categories are classified
using the quartile method, after which the prediction effects of the datasets under the three
combinations of S1, S2, S3, S4, S1, S2, S4, and S1, S3, S4 classifications are compared.
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In the third step, the efficiency values under the three combinations of classification
in the second step are used as output feature indicators. The original input and output
indicators are used as input feature indicators, and eleven machine learning methods are
used for regression to find the optimal model.

In the fourth step, the machine learning models trained based on the three training sets
under the DEA classification method are applied to the test set, to compare the prediction
results and arrive at the training set with the best prediction results.

In the fifth step, the prediction effects of absolute number indicators and proportional
relative indicators as machine learning input features are further analyzed.

4.2. Evaluation Index System Construction

The index system of carbon-emission efficiency evaluation is shown in Table 2. We
selected labor force, capital stock, and total energy consumption as the three input indicators.
The labor force indicator is the number of employed people in each province of China at the
end of the year, and the unit is 10,000 people. The capital stock is selected as the real GDP of
each year in each province of China, and the CPI data with 2006 as the base period is used to
eliminate the effect of price changes in billion yuan. The energy variable is the total energy
consumption of each province in China in a million tons of standard coal. GDP measures the
expected output indicator in billions of yuan, and the GDP deflator is used to calculate the
real GDP of each province in China excluding the effect of inflation. The non-desired output
indicator is selected as the CO2 emissions of each Chinese province in tons.

Table 2. The index system of carbon-emission efficiency evaluation.

Indicator Type Variables Unit

Input indicator 1 Workforce 10,000 people
Input indicator 2 Capital stock Billion
Input indicator 3 Energy Million tons of standard coal

Desired Output Indicators Gross regional product Billion
Non-desired output indicators Carbon dioxide emissions Ton

4.3. Decision Units and Data Description

We selected 30 provinces in China as the decision unit, and the data are from 2006 to
2019. The data were obtained from the China Statistical Yearbook, China Energy Statistical
Yearbook, China Provincial Statistical Yearbook, China Carbon Accounting Database, and
the website of the National Bureau of Statistics of China. The data distribution of each
input-output indicator is shown in Table 3.

Table 3. Data distribution of variables in 30 Chinese provinces.

Variables Average Value Standard Deviation Minimum Value Maximum Value

Labor force (10,000 people) 35,043.40 29,119.78 1711.90 158,345.80
Capital stock (billion yuan) 2649.41 1736.99 294.19 6995.00

Energy (million tons of
standard coal) 13,636.75 8569.33 920.45 41,390.00

Gross regional product
(billion yuan) 14,625.58 13,309.65 560.83 78,346.04

Carbon dioxide
emissions (ton) 331.45 272.61 14.61 1700.04

4.4. Decision Unit Efficiency Value Measurement

In this paper, we use the Matlab software to construct a non-expectation and non-
oriented SBM model to measure the carbon emission efficiency of thirty Chinese provinces,
and the measurement results are shown in Table A1 of Appendix A. When the measurement
result is equal to 1, the carbon emission is effective. Additionally, the smaller the value
means, the lower the carbon emission efficiency of the province.
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4.5. Evaluation Indicators of the Prediction Effect

We choose the coefficient of the wellness of the coefficient of determination (R2), Root
Mean Squared Error (RMSE), and Mean Absolute Error (MAE) as the indicators to evaluate
the prediction effect of the model.

R2 denotes the ratio of the explained sum of squares of deviations to the total sum of
squares in the model, and the formula is expressed as Equation (7). yi is the actual value, ŷi
denotes the predicted value, ∑

i
(ŷi − yi)

2 is the error from prediction, and ∑
i
(y − yi)

2 is the

error from the mean. The above parameters take constant values.

R2 = 1−
∑
i
(ŷi − yi)

2

∑
i
(y − yi)

2 (7)

The RMSE is the square root of the sum of squares deviations of the observed values
from the true values to the ratio of the number of observations m. The formula is expressed
as Equation (8), yi representing the actual value and ŷi representing the predicted value.
The above parameters take constant values.

RMSE =

√
1
m

m

∑
i=1

(yi − ŷi)
2 (8)

MAE is the average absolute value of the error between the observed and true values,
and the formula is expressed as Equation (9), yi representing the actual value and ŷi
representing the predicted value. The above parameters take constant values.

MAE =
1
m

m

∑
i=1
|y1 − ŷi| (9)

Machine learning models with higher R2 and relatively lower RMSE as well as MAE
means having better prediction results among the evaluation metrics.

For regression algorithms, R2 is the best measure of predictive effectiveness. This is
because both RMSE and MAE have no upper and lower bounds. When our prediction
model does not have any error, R2 will attain the maximum value of 1. When our model is
equal to the benchmark model, R2 = 0. When R2 < 0, it means that the model we learned is
not as good as the benchmark model.

The combined use of RMSE and MAE allows for the determination of anomalies in
forecast errors. Specifically, MAE is a direct calculation of the mean value of the error. The
MAE metric is not susceptible to extreme forecast values. The MAE focuses more on those
forecast values that are close to the true value. The RMSE, on the other hand, indicates
the degree of sample dispersion, which is sensitive to extreme errors. The extreme errors
will make the value of RMSE much higher than the value of MAE. For instance, there are
two datasets.

First set of data: True values [2, 4, 6, 8], predicted values [4, 6, 8, 10], MAE = 2.0, RMSE = 2.0.
Second set of data: True values [2, 4, 6, 8], predicted values [4, 6, 8, 12], MAE = 2.5,

RMSE = 2.65.
From the results of both datasets, it can be observed that the RMSE is more sensitive

than the MAE for the last predicted value. Usually, the RMSE is greater than or equal to the
MAE. The only case where the RMSE is equal to the MAE is when all errors are equal or
all are zero, such as the one shown in the first set. This case can be used as a reference for
model users. If a model with smooth prediction errors is desired, then, a model with an
RMSE that is closer to the MAE at a larger R2 can be chosen.
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4.6. Performance Prediction Based on DEA and Machine Learning Models

This paper plans to include input-output indicators of Chinese provinces from 2006
to 2018 as input feature indicators and efficiency values as output feature indicators in
the training set to learn them using eleven machine learning models. Then, we select
the efficiency values of each Chinese province in 2019 as the prediction object to test the
prediction effect.

Before prediction, we normalize the input characteristic index data. Since the output
index is the efficiency value which falls within the interval of 0 to 1, no normalization
is required.

In the hyperparameter selection, we search for the optimal hyperparameters by grid
search and use multiple hyperparameters for simultaneous optimization. Currently, some
individual hyperparameters are tuned, and other hyperparameters will take default values.
It ignores the combined effect of multiple hyperparameters on the model. Therefore, this
paper uses multiple hyperparameters for simultaneous optimization. In order to avoid
the over-fitting of hyperparameters, each group of hyperparameters is evaluated using
cross-validation combined with five-fold cross-validation. Finally, hyperparameters with
the best cross-validation performance are selected to fit a new model, and the model
hyperparameter search and prediction process is shown in Figure 3.
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Based on the training set of all sample data from 30 Chinese provinces from 2006 to
2018, the prediction results of the test set using the 30 Chinese province samples in 2019
were derived as shown in Table A2 of Appendix A. According to the results, the average
R2, RMSE, and MAE are 0.8409, 0.1348, and 0.0941, respectively. Sorting by R2, we can find
that the five models with the best prediction results are BPNN, CatBoost, XGBoost, GBDT,
and LightGBM. By calculating the ratio of RMSE to MAE, it can be found that the ratio
of GBDT is the highest among the five models at 1.7165. This indicates that its prediction
error is most prone to abnormal values. The models with poor prediction results mainly
include linear regression model and decision tree model and AdaBoost, and their R2 is less
than 0.8.
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4.7. Results of the Empirical Study Based on the Training Subset of DEA Classification Method

After using the full sample data for training, the authors of this paper pose a research
question: which of the more valid sample data or relatively invalid sample data can be
more effective in improving the prediction? So, we proposed the DEA classification method.
This paper uses the quartile method to classify the efficiency values based on the measured
efficiency values. Based on this, this paper further classifies the efficiency value intervals
S1[0.6284, 1], S2[0.4309, 0.6284), S3[0.3541, 0.4309), and S4[0, 0.3541). It is empirically
known that S1 and S4 intervals are the most effective interval and the least effective interval,
respectively, which will provide the most feature information for model training. Then, as
the more effective sample dataset S2 and the relatively ineffective sample dataset S3, one
can ask: which one contributes more? This paper compares the prediction effects of S1, S2,
and S4 as training sets and S1, S3, and S4 as training sets. The detailed results are shown in
Tables A3 and A4 of Appendix A.

The five models with the best prediction results based on the S1, S2, and S4 training
sets are BPNN, XGBoost, CatBoost, LightGBM, and GBDT. The five models with the best
prediction results based on the S1, S3, and S4 training sets are CatBoost, BPNN, XGBoost,
LightGBM, and SVR. The average R2, RMSE, and MAE of S1, S2, and S4 training sets are
0.8461, 0.1355, and 0.0980, respectively. The average R2, RMSE, and MAE of S1, S3, and S4
training sets are 0.8150, 0.1496, and 0.1054, respectively. It can be seen that S1, S2, and S4
training sets have better results than S1, S3, and S4 training sets in terms of R2, RMSE, and
MAE. Therefore, the S1, S2, and S4 training sets are significantly better than the S1, S3, and
S4 training sets. Additionally, it can be inferred that the more effective sample data have
more excellent value and will provide more feature information for model training, thus
effectively improving the prediction effect of the model.

Among the machine learning models based on S1, S2, and S4 training sets, only
LightGBM and Bagging are less effective than the models based on S1, S3, and S4 training
sets in terms of prediction effects. The difference between the prediction results of the
LightGBM model on S1, S2, S4 and S1, S3, S4 training sets is small. And this is also the case
for the Bagging model. The prediction effect of Linear Regression and SVR is the same.
Seven models have significantly higher prediction effects in S1, S2, and S4 training sets than
in S1, S3, and S4 training sets when comparing R2, RMSE, and MAE evaluation metrics.
This would further prove the robustness of the conclusions drawn by the authors.

4.8. Results of the Empirical Study of Proportional Relative and Absolute Number Indicators

In this paper, the authors consider that the output characteristics are efficiency values
under the DEA method, i.e., the ratio of weighted outputs to weighted inputs. If the
input characteristic variables are transformed into the ratio of output indicators to input
indicators, their predictive effects may be better than absolute number indicators. Based on
this assumption, this paper further verified it.

First, based on the results of the empirical study based on the training subsets of the
DEA classification method, the training sets S1, S2, and S4 with the best prediction results
were selected and used for further research.

Further, the input characteristics indicators are adjusted to GDP/labor, GDP/capital
stock, GDP/energy, (1/CO2 emissions)/labor, (1/CO2 emissions)/capital stock, and (1/CO2
emissions)/energy. In addition, CO2 emissions are taken as the reciprocal as a non-desired
output indicator, which is more consistent with the definition of efficiency values under the
DEA approach than the upper input indicators.

The prediction effect based on proportional relative index of the eleven machine
learning models are shown in Table A5 of Appendix A. The average R2, average RMSE, and
average MAE of the eleven machine learning models significantly improve the prediction
performance compared to the absolute number of indicators in Table A3 of Appendix A.
Nine of the models outperformed the absolute number indicators based on proportional
relative indicators. The R2 of XGBoost is 0.9721, and the values of RMSE and MAE are
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0.0553 and 0.0409, respectively. The authors’ hypothesis that the proportional relative
indicators have a better prediction effect than the absolute number indicators was proved.

Based on Sections 4.6 and 4.7, ranking the R2 metrics in three different datasets for
each machine learning model by taking the mean value, or by taking the mean value for
each ranking, we can get the same results. The results showed that the five models with the
best prediction results were ranked as BPNN, CatBoost, XGBoost, LightGBM, and GBDT.
Figure 4 shows the detailed prediction of the five models under the proportional relative
index and absolute number index. GBDT represents the GBDT model under the absolute
number metric, GBDT-PRI represents the GBDT model under the relative proportional
metric, and the other four models are also labeled in the same way. To show the results
more intuitively, R2 is shown as 100 times the original value, the average RMSE is shown
as 1000 times the original value, and the average MAE is shown as 1000 times the original
value in the pictures. Based on the histogram comparison, it can be more clearly seen that
the model prediction based on proportional relative indicators outperforms the model
prediction based on absolute number indicators.

Mathematics 2022, 10, x FOR PEER REVIEW 16 of 25 
 

 

and average MAE of the eleven machine learning models significantly improve the 
prediction performance compared to the absolute number of indicators in Table A3 of 
Appendix A. Nine of the models outperformed the absolute number indicators based on 
proportional relative indicators. The R2 of XGBoost is 0.9721, and the values of RMSE and 
MAE are 0.0553 and 0.0409, respectively. The authors’ hypothesis that the proportional 
relative indicators have a better prediction effect than the absolute number indicators was 
proved. 

Based on Sections 4.6 and 4.7, ranking the R2 metrics in three different datasets for 
each machine learning model by taking the mean value, or by taking the mean value for 
each ranking, we can get the same results. The results showed that the five models with 
the best prediction results were ranked as BPNN, CatBoost, XGBoost, LightGBM, and 
GBDT. Figure 4 shows the detailed prediction of the five models under the proportional 
relative index and absolute number index. GBDT represents the GBDT model under the 
absolute number metric, GBDT-PRI represents the GBDT model under the relative 
proportional metric, and the other four models are also labeled in the same way. To show 
the results more intuitively, R2 is shown as 100 times the original value, the average RMSE 
is shown as 1000 times the original value, and the average MAE is shown as 1000 times 
the original value in the pictures. Based on the histogram comparison, it can be more 
clearly seen that the model prediction based on proportional relative indicators 
outperforms the model prediction based on absolute number indicators. 

 
Figure 4. Prediction effect of machine learning model based on proportional relative and absolute 
number indicators. 

4.9. Analysis of Errors 
This section ranks each model by calculating the average R2 of the eleven models over 

the four predictions. We selected the model ranked first, the model ranked in the middle 
(sixth place), and the model ranked last. They are the BPNN model, the SVR model, and 
the LR model, respectively. We plotted the prediction errors of the above three models for 
the four predictions. The figure is shown in Figure A1 of Appendix A, and is combined 
with empirical data for further error analysis. 

We first perform a comparative analysis of the performance of the BPNN, SVR, and 
LR models in each of the four predictions. Subsequently, we perform a comparative 
analysis based on the performance of different models in the same prediction. We found 
that the BPNN model has higher R2 based on absolute number index and proportional 
relative index in S1, S2, and S4 training sets with 0.9630 and 0.9638, respectively. The 

Figure 4. Prediction effect of machine learning model based on proportional relative and absolute
number indicators.

4.9. Analysis of Errors

This section ranks each model by calculating the average R2 of the eleven models over
the four predictions. We selected the model ranked first, the model ranked in the middle
(sixth place), and the model ranked last. They are the BPNN model, the SVR model, and
the LR model, respectively. We plotted the prediction errors of the above three models for
the four predictions. The figure is shown in Figure A1 of Appendix A, and is combined
with empirical data for further error analysis.

We first perform a comparative analysis of the performance of the BPNN, SVR, and LR
models in each of the four predictions. Subsequently, we perform a comparative analysis
based on the performance of different models in the same prediction. We found that the
BPNN model has higher R2 based on absolute number index and proportional relative
index in S1, S2, and S4 training sets with 0.9630 and 0.9638, respectively. The absolute
minimum prediction errors are 0.0007 and 0.0003, and the absolute maximum prediction
errors are 0.1583 and 0.2059. Although the absolute minimum prediction errors are similar,
the absolute maximum prediction errors are much different. The model with higher R2

has a larger absolute maximum prediction error. We further compare the predicted and
actual values in the test set. It is found that the main reason for this phenomenon is that the
BPNN model has abnormal prediction error values in S1, S2, and S4 training sets based on
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the proportional relative index. Its mean error value is smaller than the mean error value
of BPNN model in absolute number index, and 66.67% of the errors are smaller than the
mean error value, which is 6.67% higher than the latter. It can also be concluded from the
ratio of RMSE and MAE that the former ratio is greater than the latter. This indicates that
the presence of anomalous prediction error values leads to an increase in the ratio, because
the RMSE has a more sensitive reflection of the anomalous prediction error values.

The R2 of the SVR model was similar in three of the four predictions, 0.8743, 0.8658,
and 0.8658, respectively, and the RMSE and MAE ratios of these three predictions were
1.1611 to 1.1621. The mean prediction error, the absolute minimum prediction error, and
the absolute maximum prediction error were also similar. The worst prediction result
was compared with the three good prediction results, and the average prediction error
of 0.1143 was only 0.0039 higher than that of the lowest average prediction error, but the
absolute maximum prediction error was 0.4286, which was much higher than the other
three. This leads to a decrease in the fit of the model, and the ratio of RMSE to MAE helps
us to confirm this.

The LR model, as the worst prediction model, has the maximum value of absolute
maximum prediction error exceeding 0.5 in all four predictions. The prediction error
diagram reveals that its error distribution based on proportional relative index on S1, S2,
and S4 training sets is significantly different from the other three times. The main reason is
that the average prediction error reaches 0.3357 for the samples with actual output value
of 1. There are four sample points with prediction values between 0.4 and 0.6, which are
significantly more than the other three predictions. Therefore, it has the lowest R2 among
the four predictions, and the ratio of RMSE and MAE is also greater than the other three.

In addition, the average prediction error, absolute maximum prediction error and
absolute minimum prediction error of the BPNN model are better than those of the SVR
and LR models in the four predictions. The average prediction error and the absolute
maximum prediction error of the SVR model were also better than those of the LR model in
the four predictions. The absolute number index-based absolute minimum prediction error
on S1, S2, and S4 training sets and S1, S3, and S4 training sets showed higher prediction
error for the SVR model though, which was 0.0002 and 0.0004 higher than that of the LR
model, respectively. In the case that the average prediction error and the absolute maximum
prediction error are significantly better than those of the LR model, there is no excessive
effect on the overall prediction effect of the SVR model.

5. Results and Discussion

As a result of the empirical study, we have achieved the following three results.

(1) In this paper, the absolute efficient frontier is constructed and applied to the perfor-
mance prediction of a new decision unit. It can break through the limitations of the
DEA method, which is based on the input-output index data of the decision unit to
constitute the production frontier surface. This frontier surface is relative, and changes
as new decision units are added to the frontier surface. The application of the new
method allows the addition of new decision units at any time without changing the
effective frontier surface and completes a comparative study of the old and new deci-
sion units. In addition, the radial or non-radial DEA model measures the efficiency
values of each decision unit for each year based on cross-sectional data. Technical
efficiency changes and technological progress mainly dominate the variation of effi-
ciency values between years. The radial or non-radial DEA model cannot compare
the technical efficiency changes in different years. Using the absolute efficient frontier,
the cross-sectional limitation can be broken, and the technical efficiency situation of
each decision unit in each year can be compared.

(2) Based on the efficiency scores measured by the DEA method, the efficiency scores are
classified by the quartiles method, and then, the different categories are combined
and used to train a variety of machine learning models. The trained machine learning
models can be used to predict the efficiency scores of new decision units, and the
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analysis combined with the fitting effect can lead to two conclusions: (i) more effective
sample data provide more important feature information; (ii) relatively ineffective
sample data will bring the noise to the model learning.

(3) Based on the results of the empirical study of the training subset of the DEA classifica-
tion method, the training subset with the best prediction effect was selected and used
to study further the prediction effect of proportional relative indicators and absolute
number indicators. After the empirical study, it was found that the proportional
relative index has a better prediction effect compared with the absolute number index.

Of course, we need to know that performance prediction can be improved by feature
engineering. This paper does not discuss several methodological techniques for the data
preparation as well as investigate the effect of different taxonomies of datasets on prediction
effectiveness, which are subject to further development.

6. Conclusions

In this paper, we propose a performance prediction method based on the SBM model in
the DEA method combined with eleven machine learning models. To verify the rationality
of the model approach, we forecast the carbon emission efficiency of 30 Chinese provinces in
2019 to compare the results with the DEA calculation. Good prediction results are achieved
and the performance prediction of new decision units without changing the leading edge is
achieved. The situation that DEA cannot predict the performance of new decision units is
solved. Based on the performance prediction achieved by the integrated model of DEA and
machine learning, we further propose improving the model’s prediction accuracy in terms
of training set sample selection and input feature indicators. Through empirical research,
we found that “valid” data in DEA can provide more important characteristic information
than “invalid” data. In addition, the use of proportional relative indicators gained more
accurate prediction values than absolute number indicators.

In summary, the relationship between efficiency values and input-output variables
is complex and nonlinear. Moreover, machine learning models have unique advantages
for solving nonlinear problems. The proposed integrated model of data envelopment
analysis and machine learning provides a new idea for the feasibility study for performance
evaluation and prediction. This paper takes carbon emission performance prediction as an
example and achieves good prediction results. Currently, our study has some limitations
for further research in the future. These include: (1) only the discriminative effect of the
integrated model of DEA and machine learning on the regression problem is considered,
and the classification problem is not explored. (2) This paper integrates eleven machine
learning models and SBM models commonly used in DEA methods, and further expansion
of the base models in this integrated model is needed. (3) It should be extended to a wider
range of applications. (4) The running time of the algorithm is long, how to further simplify
the complexity of the model and improve the running efficiency of the model is the future
research direction.
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Appendix A

Table A1. Results of carbon emission efficiency in 30 Chinese provinces from 2006 to 2019.

Provincial Area 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Anhui 0.52 0.51 0.47 0.45 0.45 0.44 0.43 0.41 0.40 0.40 0.40 0.41 0.41 0.41
Beijing 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Chongqing 0.50 0.51 0.48 0.48 0.50 0.50 0.52 0.56 0.56 0.57 0.57 0.61 0.60 0.59
Fujian 0.63 0.59 0.58 0.54 0.53 0.51 0.52 0.53 0.52 0.51 0.52 0.56 0.55 0.54
Gansu 0.40 0.40 0.39 0.39 0.39 0.40 0.41 0.41 0.42 0.43 0.43 0.43 0.44 0.44
Guangdong 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Guangxi 0.49 0.47 0.22 0.44 0.39 0.31 0.31 0.32 0.32 0.32 0.32 0.32 0.35 0.31
Guizhou 0.29 0.31 0.32 0.32 0.32 0.32 0.32 0.32 0.33 0.33 0.33 0.33 0.33 0.32
Hainan 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Hebei 0.37 0.25 0.28 0.28 0.28 0.28 0.28 0.29 0.29 0.30 0.31 0.28 0.35 0.28
Henan 0.46 0.44 0.44 0.41 0.39 0.38 0.39 0.31 0.39 0.40 0.40 0.43 0.44 0.47
Heilongjiang 0.44 0.42 0.41 0.38 0.37 0.29 0.37 0.36 0.37 0.35 0.35 0.37 0.37 0.38
Hubei 0.41 0.40 0.27 0.40 0.40 0.39 0.39 0.40 0.42 0.43 0.43 0.44 0.44 0.44
Hunan 0.47 0.45 0.44 0.43 0.41 0.40 0.41 0.42 0.43 0.44 0.44 0.46 0.35 0.49
Jilin 0.21 0.37 0.29 0.29 0.30 0.30 0.30 0.31 0.32 0.32 0.32 0.34 0.35 0.35
Jiangsu 0.71 0.72 0.74 0.78 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Jiangxi 0.52 0.52 0.52 0.51 0.50 0.49 0.51 0.48 0.49 0.48 0.47 0.48 0.47 0.47
Liaoning 0.41 0.39 0.36 0.31 0.31 0.31 0.32 0.32 0.32 0.32 0.33 0.33 0.34 0.33
Inner Mongolia 0.40 0.38 0.37 0.35 0.31 0.32 0.32 0.32 0.33 0.33 0.34 0.34 0.34 0.35
Ningxia 0.64 0.63 1.00 0.59 0.59 0.59 0.61 0.48 0.49 0.48 0.47 0.45 0.46 0.46
Qinghai 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Shandong 0.44 0.43 0.42 0.42 0.41 0.42 0.42 0.44 0.44 0.43 0.44 0.46 0.46 0.47
Shanxi 0.40 0.39 0.28 0.28 0.29 0.29 0.29 0.30 0.30 0.30 0.31 0.29 0.35 0.30
Shaanxi 0.41 0.40 0.27 0.39 0.38 0.37 0.36 0.36 0.35 0.35 0.35 0.35 0.35 0.35
Shanghai 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Sichuan 0.43 0.40 0.38 0.38 0.39 0.41 0.42 0.43 0.43 0.45 0.45 0.48 0.48 0.48
Tianjin 0.66 0.63 0.63 0.61 0.55 0.54 0.54 0.52 0.52 0.53 0.53 0.45 0.45 0.45
Xinjiang 0.41 0.42 0.42 0.41 0.40 0.39 0.38 0.36 0.32 0.32 0.33 0.32 0.35 0.32
Yunnan 0.40 0.23 0.39 0.39 0.38 0.36 0.32 0.33 0.33 0.34 0.34 0.32 0.35 0.32
Zhejiang 0.70 0.68 0.69 0.70 0.71 0.72 0.73 0.72 0.74 0.74 0.74 0.76 1.00 1.00

Table A2. Prediction effect of the test set based on the training set of all sample data.

R2 RMSE MAE Ranking

Linear Regression 0.6203 0.2231 0.1704 10
GBDT 0.9157 0.1051 0.0612 4

XGBoost 0.9396 0.0890 0.0630 3
LightGBM 0.9021 0.1133 0.0812 5
CatBoost 0.9479 0.0826 0.0611 2
AdaBoost 0.7598 0.1774 0.1534 9

SVR 0.8743 0.1283 0.1104 7
BPNN 0.9601 0.0723 0.0483 1

Decision Trees 0.5877 0.2324 0.0976 11
Random Forest 0.8875 0.1214 0.0882 6

Bagging 0.8549 0.1379 0.1007 8
Average Value 0.8409 0.1348 0.0941

Table A3. Prediction effect of test set based on S1, S2, and S4 training sets.

R2 RMSE MAE Ranking

Linear Regression 0.6145 0.2248 0.1754 11
GBDT 0.8696 0.1307 0.0782 5

XGBoost 0.9401 0.0886 0.0643 2
LightGBM 0.8738 0.1286 0.0886 4
CatBoost 0.9401 0.0886 0.0653 3
AdaBoost 0.7328 0.1871 0.1609 10

SVR 0.8658 0.1326 0.1142 6
BPNN 0.9630 0.0697 0.0550 1

Decision Trees 0.8459 0.1421 0.0598 7
Random Forest 0.8365 0.1464 0.1051 8

Bagging 0.8248 0.1515 0.1110 9
Average Value 0.8461 0.1355 0.0980
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Table A4. Prediction effect of test set based on S1, S3, and S4 training sets.

R2 RMSE MAE Ranking

Linear Regression 0.6145 0.2248 0.1754 11
GBDT 0.8561 0.1373 0.0728 6

XGBoost 0.9121 0.1073 0.0761 3
LightGBM 0.8828 0.1239 0.0837 4
CatBoost 0.9377 0.0903 0.0638 1
AdaBoost 0.6692 0.2082 0.1568 10

SVR 0.8658 0.1326 0.1142 5
BPNN 0.9148 0.1057 0.0833 2

Decision Trees 0.6810 0.2045 0.1129 9
Random Forest 0.8050 0.1599 0.1105 8

Bagging 0.8257 0.1511 0.1104 7
Average Value 0.8150 0.1496 0.1054

Table A5. Prediction effects based on proportional relative indicators.

R2 RMSE MAE

Linear Regression 0.5836 0.2336 0.1673
GBDT 0.9359 0.0917 0.0573

XGBoost 0.9721 0.0553 0.0409
LightGBM 0.9616 0.0709 0.0491
CatBoost 0.9674 0.0654 0.0449
AdaBoost 0.9246 0.0994 0.0684

SVR 0.8394 0.1450 0.1143
BPNN 0.9638 0.0688 0.0438

Decision Trees 0.9324 0.0941 0.0640
Random Forest 0.8875 0.1214 0.0882

Bagging 0.9020 0.1133 0.0792
Average Value 0.8973 0.1054 0.0743

Table A6. Explanation of parameters contained in formulas.

Parameter Affiliation
Formula

Formula Belongs
to the Model

Parameter
Description Range of Values

xi(i = 1, 2, · · · , m)
Equation (1)
Equation (2)
Equation (3)

CCR model
BCC model

Each decision unit has
m kind of input xi 6= 0

yr(r = 1, 2, · · · , q)
Equation (1)
Equation (2)
Equation (3)

CCR model
BCC model

Each decision unit has
q kind of output R

vi(i = 1, 2, · · · , m) Equation (1) CCR model The weight of the input vi > 0

ur(r = 1, 2, · · · , q) Equation (1) CCR model The weight of the
output ur > 0

θ
Equation (2)
Equation (3)

CCR model
BCC model Efficiency value 0 < θ ≤ 1

λ
Equation (2)
Equation (3)

CCR model
BCC model

The linear combination
coefficient of the

decision unit
λ > 0

ρ Equation (4) SBM model Objective function 0 < ρ ≤ 1

s− Equation (4) SBM model Input slack variable s− ≥ 0

sg Equation (4) SBM model Desired output slack
variable sg ≥ 0

sb Equation (4) SBM model Non-desired output
slack variable sb ≥ 0

x Equation (5) Linear Regression Input vector R

f (x) Equation (5) Linear Regression Output vector R

w Equation (5) Linear Regression
Linear mapping from

input x to output
f (x)(Weight matrix)

R

b Equation (5) Linear Regression Offset items C
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Table A6. Cont.

Parameter Affiliation
Formula

Formula Belongs
to the Model

Parameter
Description Range of Values

x Equation (6) GBDT model Input sample R

w Equation (6) GBDT model Weighting factor R

M Equation (6) GBDT model The dataset is divided
into M cells M ≥ 0

hm(x, wm) Equation (6) GBDT model CART regression tree
function R

α Equation (6) GBDT model Weighting factor for
each regression tree 0 ≤ α ≤ 1

R2 Equation (7)
Predictive

effectiveness
evaluation model

Coefficient of
determination R2 ≤ 1

yi

Equation (7)
Equation (8)
Equation (9)

Predictive
effectiveness

evaluation model
Actual value R

ŷi

Equation (7)
Equation (8)
Equation (9)

Predictive
effectiveness

evaluation model
Predicted value R

m Equation (8)
Equation (9)

Predictive
effectiveness

evaluation model

The number of
observations m = 1, 2, · · · , n
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Figure A1. (a–c) Prediction error diagram of BPNN model based on absolute number index on S1, 
S2, S3, S4 training set, S1, S2, S4 training set, S1, S3, S4 training set; (d) prediction error diagram of 
linear regression model based on proportional relative index on S1, S2, S4 training sets; (e–g) 
prediction error diagram of SVR model based on absolute number index on S1, S2, S3, S4 training 
sets, S1, S2, S4 training sets, S1, S3, S4 training sets; (h) prediction error diagram of SVR model based 
on proportional relative index on S1, S2, S4 training sets; (i–k) prediction error diagram of LR model 
based on absolute number index on S1, S2, S3, S4 training sets, S1, S2, S4 training sets, S1, S3, S4 
training sets; (l) prediction error diagram of LR model based on proportional relative index on S1, 
S2, S4 training set. 
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