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Abstract: Normality testing remains an important issue for researchers, despite many solutions that
have been published and in use for a long time. There is a need for testing normality in many areas
of research and application, among them in Quality control, or more precisely, in the investigation of
Shewhart-type control charts. We modified some of our previous results concerning control charts
by using the empirical distribution function, proper choice of quantiles and a zone function that
quantifies the discrepancy from a normal distribution. That was our approach in constructing a new
normality test that we present in this paper. Our results show that our test is more powerful than any
other known normality test, even in the case of alternatives with small departures from normality
and for small sample sizes. Additionally, many test statistics are sensitive to outliers when testing
normality, but that is not the case with our test statistic. We provide a detailed distribution of the test
statistic for the presented test and comparable power analysis with highly illustrative graphics. The
discussion covers both the cases for known and for estimated parameters.
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1. Introduction

It is well known that even though many methods for preliminarily checking the
normality of distribution, such as box plot, quantile–quantile (Q–Q) plot, histogram or
observing the values of empirical skewness and kurtosis, are available. However, the
results of those methods are inconclusive or not precise enough [1–3]. Considering the
importance of the level of certainty with which we can claim the normal distribution of
the sample’s characteristic X, the most formal and precise methods are needed. Normality
tests are shown to yield the best results, based on which one can, with a certain level of
significance, determine not only if the sample elements fit the normal distribution at all but
can also determine the measure of concordance with normal distribution [1,4–9]. Because
of those properties, a wide range of normality tests was developed [1,3–17].

The next challenge was determining which test satisfies as many of the criteria for
statistical tests as possible. For instance, a test primarily has to be powerful. Usually,
the power of the test is calculated only through simulations [2,5,6,9–16]. Often, so is the
distribution of the test statistic [2,5,9]. That is due to conditions for the weak law of large
numbers or the central limit theorem not being satisfied. Hence, the problem of determining
the distribution of the test statistic remains unsolved [2,9,18–20]. The next challenge is
knowing the correct amount of simulations [20–22]. Additionally, the power of the test
variates for different groups of alternative distributions (symmetric, asymmetric) and
different sample sizes [9–16].

On certain occasions, some of the normality tests are more powerful than the other tests,
yet, their application seems to be much slower and hard to implement. That diminishes
their contribution importance [1,3,6,10,11,17]. Another issue is that many tests seem to have
the power that differs for symmetric and asymmetric alternative distributions. We also
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need to consider some generally less powerful tests because some (such as the Jarque–Bera
test or D’Agostino test) are useful [10,11]. For instance, overcoming mentioned problems
can cause overcoming many other issues.

Currently, the most used normality tests are the Kolmogorov–Smirnov test and the Chi-
squared test, followed by the Shapiro–Wilk test and the Anderson–Darling test [1,2,10–16],
even though some other tests are more powerful [10]. That indicates how important the
simplicity of implementation and fast performance are, even for low power tests [5,10].

In this paper, our goal is to contribute to this topic by developing a new normality test
based on the 3σ rule. We define a new zone function that quantifies the deviation of the
empirical distribution function (EDF) from the cumulative distribution function (CDF) for
the obtained sample’s characteristic. The test statistic is the mean of the values of the zone
function with sample elements as arguments.

In [23,24], we developed new Shewhart-type control charts [25,26] based on the 3σ rule.
The basic idea is to use the empirical distribution function for the means of all the samples
to be controlled. We form control lines by using quantiles of those means for normal
N
(

µ, σ2

n

)
distribution. That is due to a normal distribution N

(
µ, σ2) being assumed and

used in quality control and central limit theorem [24,26].
Using the same principle in individual analyzing samples, the same control chart is

used for a preliminary analysis of the normality of the referent sample distribution. Here
the variance of the distribution is σ2 Defining the proper statistic through adequate function
for quantifying the level of sample deviation from the normal distribution based on the
control chart zones enables us to do the above-mentioned [23].

These were our first steps in the subject that brought us to the idea of developing a
new test of normality. That consists of modifying some ideas in [23,24].

In this paper, we define the zone function given in [23] with a modification that will
be applicable in the case where the sample is not “in a control” state since in normality
testing, unlike in quality control, some outliers do not essentially mean rejection of the
null hypothesis. The outliers do not affect significant change in our test statistic value
unless there are many of them. In many other tests, the opposite happens, which causes
the rejection of the null hypothesis even when it should not be.

Finally, we provide some main characteristics of the test statistic’s distribution and
table for various probabilities and sample sizes and the power analysis with a simulation
study. We discuss both cases for known or estimated parameters. We use the sample mean
and corrected sample variance, and both are unbiased, reliable, etc. [2,5]. Conclusions that
make the test statistic better than others rely on our results obtained through Monte Carlo
simulations and the results and comparative analysis available for other tests in [5,6,9–16].

An important notion is that multivariate normality testing is a topic that is still in
need of research because of the problems of identifying the proper test in certain circum-
stances [1,27,28]. Even though many results were obtained [1,27], new approaches are
being developed and improved [27–30]. The test we developed in this paper can be a solid
background for continuing the research in multivariate normality testing by extending our
solution or investigating some new ones based on similar principles.

2. Quantile-Zone Based Approach to Normality Testing for Known Parameters
2.1. The Test Statistic and Basic Properties

Let X1, X2, . . . , Xn; n ∈ N be the simple random sample of characteristic X :
N
(
µ, σ2),

F(x) =
x∫

−∞

1√
2πσ

e−
(x−µ)2

2σ2 dx; x ∈ R

its CDF, Fµ±iσ(x); x ∈ R; i = 1, 2, 3 are CDFs for normal distribution N(µ± iσ) and

F∗n (x) =
1
n

n

∑
i=1

I(Xi ≤ x); x ∈ R
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sample’s EDF (I is the event indicator; it is equal to 1 if the argument event is the realized
one and 0 otherwise). Normal distribution variates are distributed by the 3σ rule, hence the
sample elements will be approximately distributed by it. The 3σ rule is interpretable as per
Figure 1.
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Hence, since F∗n (x)→ F(x)(n→ +∞) [18], we have that:

• Fµ+σ(Xi) ≤ F∗n (Xi) < F(Xi), i.e., F(Xi) < F∗n (Xi) ≤ Fµ−σ(Xi), is true for 34.13% of
sample elements

• Fµ+2σ(Xi) ≤ F∗n (Xi) < Fµ+σ(Xi), i.e., Fµ−σ(Xi) < F∗n (Xi) ≤ Fµ−2σ(Xi), is true for
13.59% of sample elements

• Fµ+3σ(Xi) ≤ F∗n (Xi) < Fµ+2σ(Xi), i.e., Fµ−2σ(Xi) < F∗n (Xi) ≤ Fµ−3σ(Xi), is true for
2.15% of sample elements

• F∗n (Xi) < Fµ+3σ(Xi), i.e., F∗n (Xi) > Fµ−3σ(Xi), is true for 0.13% of sample elements

where i = 1, n.
We define a function

zone(x) =


1; Fµ+σ(x) ≤ F∗n (x) < F(x) ∨ F(x) < F∗n (x) ≤ Fµ−σ(x)
2; Fµ+2σ(x) ≤ F∗n (x) < Fµ+σ(x) ∨ Fµ−σ(x) < F∗n (x) ≤ Fµ−2σ(x)
3; Fµ+3σ(x) ≤ F∗n (x) < Fµ+2σ(x) ∨ Fµ−2σ(x) < F∗n (x) ≤ Fµ−3σ(x)

3.1947; F∗n (x)<Fµ+3σ(x) ∨ F∗n (x)>Fµ−3σ(x)

; x ∈ R . (1)

The definition of the zone function is shown in Figure 2.
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Let Y1, Y2, . . . , Yn be ordered sample X1, X2, . . . , Xn in the order from the smallest to
the largest value, and

nmax =
n

∑
i=1

I

(
Xi = max

j=1,n
Xj

)
.

The distribution of statistic zone(Yi); i = 1, nmax − 1 is given with the

zone(Yi) :
(

1 2 3 3.1947
0.6826 0.2718 0.0430 0.0026

)
,

and we have E(zone(Yi)) = 1.3635 and Var(zone(Yi)) = 0.3242, while the standard devia-
tion is σzone(Yi)

= 0.5694. For Yk, k = nmax, n we have P(zone(Yk) = 3.1947) = 1. The choice
of the value 3.1947 is explained by the expressions

F−1

 F(3) + lim
x→+∞

F(x)

2

 = 3.1947

and

F−1

 lim
x→+∞

F(x) + F(−3)

2

 = −3.1947.

Though any other value can be taken as well, this way we ensure the analogy with the
3σ rule that we started with.

Now we define the statistic

Vn =
1
n

n

∑
i=1

zone(Xi). (2)

To calculate the expectation E and variance (dispersion) Var of Vn correctly we need to con-

sider that F∗n (Yn) = F∗n

(
max
j=1,n

Xj

)
= 1, which leads to zone(Yn) = zone

(
max
j=1,n

Xj

)
= 3.1947.

Then we achieve:

E
(
Vn
)
= E

(
1
n

n

∑
i=1

zone(Xi)

)
=

1
n

(
n

∑
i=1

E

(
zone(Xi)

∣∣∣∣∣Xi 6= max
j=1,n

Xj

)
+ nmaxE

(
max
j=1,n

Xj

))

=
(n− nmax)·1.3635 + nmax·3.1947

n
,

as well as:

Var
(
Vn
)
= E

(
V2

n

)
−
(
E
(
Vn
))2

= E

( 1
n

n

∑
i=1

zone(Xi)

)2
−( (n− nmax)·1.3635 + nmax·3.1947

n

)2

= E

( 1
n

n

∑
i=1

zone(Yi)

)2
−( (n− nmax)·1.3635 + nmax·3.1947

n

)2
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= 1
n2

(
n−nmax

∑
i=1

E
(

zone(Yi)
2
)
+

n
∑

i=n−nmax+1
E
(

zone(Yi)
2
)

+2


n−nmax

∑
i=1

n−nmax
∑

k = 1
k 6= i

E(zone(Yi)·zone(Yk)) + 2
n−nmax

∑
i=1

n
∑

k=n−nmax+1
E(zone(Yi)·zone(Yk))

+
n
∑

i=n−nmax+1

n
∑

k = n− nmax + 1
k 6= i

E(zone(Yi)·zone(Yk))


)
−
(
(n−nmax)1.3635+nmax3.1947

n

)2

= 1
n2

(
(n− nmax)2.1833 + nmax3.19472 + 2

((
n− nmax

2

)
1.36352 + 2nmax(n− nmax)1.3635·3.1947

)
+

(
nmax

2

)
3.19472

)
−
(
(n−nmax)1.3635+nmax3.1947

n

)2

= 1
n2 ((n− nmax)2.1833 + nmax3.19472 + (n− nmax)(n− nmax − 1)1.36352 + 4nmax(n− nmax)1.3635·3.1947

+nmax(nmax − 1)3.19472 − (n− nmax)
21.36352 − 2nmax(n− nmax)1.3635·3.1947

−n2
max·3.19472)

= 1
n2

(
(n− nmax)2.1833 + nmax3.19472 − (n− nmax)1.36352 + 2nmax(n− nmax)1.3635·3.1947− nmax3.19472)

= (n−nmax)(0.3243+nmax8.7119)
n2 .

Since the normal distribution of the sample is assumed, the frequency of the maximal
value is most often 1. In that case, we have

E
(
Vn
)
=

(n− 1)1.3635 + 3.1947
n

and

Var
(
Vn
)
=

(n− 1)(0.3242 + 8.7119)
n2 =

(n− 1)9.0361
n2 .

2.2. Distribution of the Test Statistic and the Testing Procedure

The expectation and variance of the statistic Vn; n ∈ N are finite, hence, based on the
weak law of large numbers statistic, Vn converges to its expectation [2,19], i.e.,

Vn =
1
n

n

∑
i=1

zone(Xi)→
1
n

n

∑
i=1

E(zone(Xi)) =
(n− nmax)·1.3635 + nmax·3.1947

n
→ 1.3635 (n→ +∞).

The empirical distribution function, i.e., its value for sample elements as arguments,
depends on the sample size and frequency of each sample element less than or equal
to the referent one. This means that the sample F∗n (X1), F∗n (X2), . . . , F∗n (Xn); n ∈ N has
mutually dependent random variables as elements. Hence, the same goes for the sample
zone(X1), zone(X2), . . . , zone(Xn); n ∈ N. In that case, the central limit theorem does not
apply to our statistic Vn [2] and its distribution is determinable only via simulations.

In the following table, we offer the distribution table of statistic Vn, i.e., the values q
obtained from

P
(

Vn ≤ q
∣∣∣∣X : N

(
µ, σ2

))
= p.

Here, n is the size of the sample. It is impossible to simulate the critical values for
every sample size. For the sample sizes, or values p and q, that are not available in the table,
a convenient approximation should be used, for example, the bisection method. We used
100,000 Monte Carlo simulations for each sample size in Table 1.
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Table 1. FVn
(q) = P

(
Vn ≤ q

)
= p—Known parameters.

n
p

0.01 0.025 0.05 0.1 0.15 0.2 0.5 0.8 0.85 0.9 0.95 0.975 0.99

10 1.0028 1.0070 1.0140 1.0280 1.0421 1.0561 1.1402 1.2315 1.2657 1.2999 1.3709 1.4480 1.5656
20 1.0013 1.0031 1.0062 1.0125 1.0187 1.0249 1.0624 1.0998 1.1061 1.1208 1.1473 1.1636 1.2048
30 1.0008 1.0020 1.0040 1.0080 1.0120 1.0160 1.0402 1.0643 1.0683 1.0723 1.0910 1.1023 1.1223
50 1.0005 1.0012 1.0024 1.0047 1.0071 1.0094 1.0235 1.0376 1.0399 1.0423 1.0495 1.0583 1.0635

100 1.0002 1.0006 1.0012 1.0023 1.0035 1.0046 1.0115 1.0185 1.0196 1.0208 1.0219 1.0275 1.0308
200 1.0001 1.0003 1.0006 1.0012 1.0017 1.0023 1.0057 1.0091 1.0096 1.0102 1.0108 1.0126 1.0148
300 1.0001 1.0002 1.0004 1.0008 1.0011 1.0015 1.0038 1.0060 1.0064 1.0068 1.0072 1.0082 1.0098
500 1.0000 1.0001 1.0002 1.0004 1.0007 1.0009 1.0022 1.0036 1.0039 1.0041 1.0043 1.0047 1.0058

1000 1.0000 1.0000 1.0001 1.0002 1.0003 1.0004 1.0011 1.0018 1.0019 1.0020 1.0022 1.0022 1.0028
1500 1.0000 1.0000 1.0000 1.0001 1.0002 1.0003 1.0008 1.0012 1.0012 1.0013 1.0014 1.0014 1.0018
2000 1.0000 1.0000 1.0000 1.0001 1.0002 1.0002 1.0006 1.0009 1.0009 1.0010 1.0011 1.0011 1.0013

The critical region for testing the null hypothesis H0
(
X : N

(
µ, σ2)) is given with the

interval W = [1, c1]
⋃
[c2, 3, 1947], where c1 and c2 are determined from the condition

P
(

Vn ≤ c1|H0

)
= P

(
Vn ≥ c2|H0

)
=

α

2
,

where α is the level of significance. That is due to the test statistic relying on the 3σ rule
properties. Namely, we have a two-tailed critical region because of the “perfect fit” case. In
that case, certain uniform alternative distributions yield the sample such that its EDF will
be entirely inside the band

[
Fµ+σ(x), Fµ−σ(x)

]
; x ∈ R. However, the distribution is not the

normal one.
For instance, if we observe the sample

µ +

(
−3.5 +

7k
n

)
σ; n ∈ N, k = 0, n (3)

its EDF will be

F∗n (x) =

{
0; x < µ− 3.5σ
j
n ; µ +

(
−3.5 + 7(j−1)

n

)
σ ≤ x < µ +

(
−3.5 + 7j

n

)
σ; j = 1, n

.

In this case, for any positive integer n, EDF is inside the band
[
Fµ+σ(x), Fµ−σ(x)

]
; for

any x ∈ R. However, the sampling distribution is the uniform one, and as such, it should
cause hypothesis rejection [30]. We can also say that any sampling distribution does not
significantly differ from the distribution given with (3), as long as its EDF is inside the band[
Fµ+σ(x), Fµ−σ(x)

]
; for any x ∈ R.

If the empirical value vn of test-statistic Vn is inside the critical region W, we reject the
null hypothesis H0

(
X : N

(
µ, σ2)).

The p-value for this test is calculated by

p = 2min
{

P
(
Vn ≤ vn

∣∣H0
)
, P
(
Vn ≥ vn

∣∣H0
)}

and then compared to the level of significance α. If p ≤ α the null hypothesis is rejected.
Ad hoc, this way of testing the normality hypothesis indicates many of its advantages.

The method of its construction gives tools for checking the frequency of sample elements
inside some interval we observe. It checks out if the range of the sample is concordant
with the one in the theoretical model. On some level, it is even sensitive to outliers because
more of them will increase the likelihood of the hypothesis rejection, and a few of them
(especially for large-sized samples) will not affect the decision-making. That is important
since, in theory, normal variates absolute values can be as high as any positive number [31].
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To be more precise, we note that our test statistic is invariant to minor changes such as
increasing or decreasing some sample element’s value in a manner that its order statistic
remains the same. On the other hand, the test statistic identifies essential changes (the best
indicated by the order statistics realized values changes) as a significant or insignificant
violator of the normality of distribution. The test statistic is also sensitive to the sample
elements’ dependence anomalies since it does not examine only the position of each sample
element but also its correspondence to other sample elements. The fact that the EDF
values are determined through the order statistics of the sample elements, as well as their
frequency in the observed sample [1], substantiates these conclusions. Additionally, the
zone function ensures proper discrepancy measurement, i.e., the test statistic registers the
density of the sample elements inside the intervals defined by the zone function (3σ rule).

2.3. Power Analysis

In this section, we offer power analysis results obtained through Monte Carlo simula-
tions of the distribution of statistic Vn with 10,000 runs (samples) for various sample sizes
and alternative distributions. The null distribution is N(0, 1). Simulations are performed
using MATLAB with the random number generation algorithms and modeling methods
implemented in it. Many of the distributions can be modeled in MATLAB with the special
command (“normrnd”, “chi2rnd”, “betarnd” etc.), however, not all the distributions are
available [32]. In that case, we used the inverse function method [21,22,31].

As usual, symmetric and asymmetric alternative distributions are observed separately
and empirical powers are calculated for different sample sizes. The choice of parameters is
such that these distributions overlap with the normal distribution as much as possible [31],
even though in other papers, for a lot of chosen alternative distributions (or their parame-
ters), some of the preliminary analysis methods would serve the purpose [10,11,13,14].

Calculating the power values for a chosen alternative distribution is performed in the
following way:

1. Modeling the sample x1, x2, . . . , xn of chosen alternative distribution for the observed
sample size n;

2. Determining the EDF F∗n (x) for obtained sample, and then calculating the values
zone(x1), zone(x2), . . . , zone(xn) and finally, we calculate:

vn = 1
n

n
∑

i=1
zone(xi);

3. Repeating previous steps 10,000 times gives us the sample vn;1, vn;2, . . . , vn;10,000;
4. Determining the new sample EDF F∗10,000(x);

5. Power = F∗10,000(c1) +
(

1− F∗10,000(c2)
)

where c1 and c2 are critical values for the
level of significance α = 0.05.

Note that the number of simulations is not higher since we simulated the distribution
of the test statistics (for null distribution of X) for both 10,000 and 100,000 simulations,
and the results are asymptotically identical. Though the same does not necessarily hold
for other distributions, 10,000 Monte Carlo simulations are proven to be satisfactory [20]
(pp. 97–116).

Note that the Quantile-Zone test has a smaller power value for the normal alternative
distributions, though its power is still high enough in most cases. Additionally, lower
variance in normal alternative distributions causes its power value to be lower. That does
not mean our test should not be used in the mentioned cases since its power value is still
better than any other known normality test [5,6,9–16].

Positive kurtosis does not affect the power value of the test, as can be seen in Figure 3
and Table 2. Namely, the Laplace (0, 1) distribution has a higher kurtosis than N(0, 1), but
its power value is high.
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Figure 3. PDFs of symmetric alternative distributions compared to the PDF of null
N(0, 1) distribution.

Table 2. Empirical powers of statistic Vn for symmetric alternative distributions for the level of
significance α = 0.05.

Distribution
n

10 20 30 50 100 200

N
(
0, 0.52) 0.0001 0.0826 0.3059 0.6623 0.9553 0.9994

N
(
0, 1.52) 0.3017 0.5388 0.7154 0.8363 0.9140 0.9702

t2 0.3206 0.6786 0.8479 0.9544 0.9975 1
Logistic (0, 1) 0.4657 0.7966 0.9193 0.9838 0.9990 1
Cauchy (0, 1) 0.5801 0.9328 0.9875 0.9995 1 1
Tukey (0.14) 0.7503 0.9693 0.9934 0.9995 1 1
Laplace (0, 1) 0.5181 0.8364 1 1 1 1
U(−3.5, 3.5) 1 1 1 1 1 1

Average 0.4921 0.7294 0.8462 0.9295 0.9832 0.9962

For asymmetric alternative distributions, our test has the lowest power value (com-
pared to other asymmetric alternative distributions) for Gumbel (0, 1) distribution and
N(1, 1) distribution (Figure 4). For small sample sizes, the test performs better in the case
of normal distribution than in the case of Gumbel distribution, but for n > 200, it is the
opposite. It is important to note that for n > 200, the power of the Quantile-Zone test is
asymptotically close to 1 in both cases (Table 3).
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Table 3. Empirical powers of statistic Vn for asymmetric alternative distributions for the level of
significance α = 0.05.

Distribution
n

10 20 30 50 100 200

Gumbel (0, 1) 0.1257 0.3573 0.5581 0.7349 0.9236 0.9939
N(1, 1) 0.4930 0.8026 0.8724 0.9255 0.9668 0.9851

Lognormal (0, 1) 0.7928 0.9993 1 1 1 1
Pareto (0.0001, 1) 0 1 1 1 1 1

χ2
1 0.9209 1 1 1 1 1

Gamma (2, 1) 0.9946 1 1 1 1 1
Beta (2, 1.5) 0.1900 1 1 1 1 1

Weibull (1, 2) 0.5884 1 1 1 1 1
Burr (3, 1) 1 1 1 1 1 1

Average 0.5673 0.9066 0.9367 0.9623 0.9878 0.9977

The results (Tables 2 and 3) show that statistic Vn performs very well. Namely, based
on the results obtained in [5,6,9–16], it has higher power values than the usually used
normality tests or any other discussed test for most of the known alternative distribution.
The conclusion holds even for small sample sizes. Though the comparison is difficult to
perform due to the variety of observed alternative distributions, sample sizes and the used
number of simulations (in some cases, the level of significance is not 0.05 [11]), it is still
easy to see the advantage of our test.

3. Quantile-Zone-Based Approach to Normality Testing for Estimated Parameters
3.1. Distribution and Properties of the Test-Statistic

Theoretically, when we estimate parameters µ and σ2 with

Xn =
1
n

n

∑
i=1

Xi

and

S̃2
n =

1
n− 1

n

∑
i=1

(
Xi − Xn

)2,

respectively, the distribution of statistic Vn, as well as its basic properties, remains the same.
However, empirically, that never happens. Namely, even though the sample is the sample of
the characteristic X : N

(
µ, σ2), we shall (almost) always have Xn = µ± ε1 and S̃2

n = σ2± ε2.
Errors ε1 and ε2 are then cumulated while calculating the values zone(Xi); i = 1, . . . , n, i.e.,
the empirical value of Vn. Hence, the distribution of Vn is slightly changed. Monte Carlo
simulations give us the results in Table 4.

We can see that the values are smaller when the zone function is defined with estimated
parameters because, for empirically obtained samples, most often the sample mean Xn
and variance S̃2

n are better indicators of the expected value and the dispersion of obtained
sample elements than values µ and σ2 that are used for sample modeling. The difference
in the distribution is smaller for larger sample sizes. For n > 500 the distributions are
identical. A graphical representation of both variants is given in Figure 5.

3.2. Power Analysis

When parameters are estimated, smaller values of the statistic Vn indicate higher
values of power function for any alternative distribution. That can be seen in the following
tables and figures.

Usually, the small sample size (n < 30) affects the power of the test to be lower. That
is due to small samples not giving enough information about the characteristic X [33]. That
is also the case for our Quantile-Zone test statistic. However, its power is still high for most
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alternative distributions and even for n = 10. The exceptions are normal N
(
0, 0.52) and

Pareto (0.0001, 1) distributions. In Table 5, we can see that the Quantile-Zone test identifies
the N

(
0, 0.52) distribution as N(0, 1) for n = 10. With the increase in the sample size,

that is not the case. The same holds for the Pareto distribution, where we can say that the
sample of the size n = 10 is too small since, for n = 20, the empirical power is 1.

Table 4. FVn
(q) = P

(
Vn ≤ q

)
= p—Estimated parameters.

n
p

0.01 0.025 0.05 0.1 0.15 0.2 0.5 0.8 0.85 0.9 0.95 0.975 0.99

10 1.0023 1.0057 1.0113 1.0226 1.0339 1.0452 1.1130 1.1807 1.1920 1.2033 1.2146 1.2316 1.2844
20 1.0012 1.0029 1.0057 1.0114 1.0171 1.0227 1.0568 1.0910 1.0966 1.1023 1.1080 1.1236 1.1453
30 1.0008 1.0019 1.0038 1.0076 1.0114 1.0152 1.0379 1.0607 1.0645 1.0683 1.0720 1.0823 1.0974
50 1.0005 1.0012 1.0023 1.0046 1.0068 1.0091 1.0228 1.0364 1.0387 1.0409 1.0433 1.0500 1.0586

100 1.0002 1.0006 1.0012 1.0023 1.0034 1.0045 1.0114 1.0181 1.0193 1.0204 1.0216 1.0246 1.0293
200 1.0001 1.0003 1.0006 1.0012 1.0017 1.0023 1.0056 1.0090 1.0096 1.0102 1.0108 1.0117 1.0145
300 1.0001 1.0002 1.0004 1.0008 1.0011 1.0015 1.0037 1.0060 1.0064 1.0068 1.0071 1.0076 1.0095
500 1.0000 1.0001 1.0002 1.0004 1.0007 1.0009 1.0022 1.0036 1.0039 1.0041 1.0043 1.0044 1.0058

1000 1.0000 1.0000 1.0001 1.0002 1.0003 1.0004 1.0011 1.0018 1.0019 1.0020 1.0022 1.0022 1.0028
1500 1.0000 1.0000 1.0000 1.0001 1.0002 1.0003 1.0008 1.0012 1.0012 1.0013 1.0014 1.0014 1.0018
2000 1.0000 1.0000 1.0000 1.0001 1.0002 1.0002 1.0006 1.0009 1.0009 1.0010 1.0011 1.0011 1.0013
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Table 5. Empirical power of statistic Vn where parameters are estimated, for various sample sizes
with the level of significance α = 0.05—Symmetric alternative distributions.

Distribution
n

10 20 30 50 100 200

N
(
0, 0.52) 0.1898 0.3859 0.5728 0.7942 0.9731 0.9996

N
(
0, 1.52) 0.6464 0.7257 0.7756 0.8367 0.9141 0.9704

t2 0.6607 0.7926 0.8831 0.9613 0.9980 1
Logistic (0, 1) 0.7884 0.8943 0.9406 0.9847 0.9989 1
Cauchy (0, 1) 0.8406 0.9627 0.9902 0.9996 1 1
Tukey (0.14) 0.9361 0.9863 0.9934 0.9959 1 1
Laplace (0, 1) 0.7851 0.9442 1 1 1 1
U(−3.5, 3.5) 1 1 1 1 1 1

Average 0.7309 0.8365 0.8945 0.9466 0.9855 0.9962

When we estimate parameters, the problem is by far smaller. Namely, we can see
a noticeable increase in the power for both mentioned alternative distributions (Tables 5
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and 6, Figures 6 and 7). The difference in the values of test statistics in the case of estimated
parameters as appose to one of the known values of parameters is smaller for larger sample
sizes. The same holds for the power functions. The following tables illustrate this.

Table 6. Empirical power of statistic Vn where parameters are estimated for various sample sizes
with the level of significance α = 0.05 —Asymmetric alternative distributions.

Distribution
n

10 20 30 50 100 200

Gumbel (0, 1) 0.3508 0.5029 0.6116 0.7601 0.9262 0.9942
N(1, 1) 0.7593 0.8616 0.9112 0.9378 0.9669 0.9864

Lognormal (0, 1) 0.9833 1 1 1 1 1
Pareto (0.0001, 1) 0.9999 1 1 1 1 1

χ2
1 0.9927 1 1 1 1 1

Gamma (2, 1) 0.9997 1 1 1 1 1
Beta (2, 1.5) 1 1 1 1 1 1

Weibull (1, 2) 1 1 1 1 1 1
Burr (3, 1) 1 1 1 1 1 1

Average 0.8984 0.9294 0.9470 0.9664 0.9881 0.9978
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The increase in power that occurs with the estimation of parameters is more intensive
for asymmetric alternative distribution.

4. Comparative Analysis

In this section, we compare the power values of our test to the most used normality
tests. We provide average power values for various alternative distributions and sample
sizes for mentioned tests and our Quantile-Zone test. Alternative distributions listed in
Tables 2 and 3 are the ones for which we calculated the average power values of our test.

The tests we compared our test to are: the Kolmogorov–Smirnov test [4] with its
variant for estimated parameters (Lilliefors test) [5], Chi-square test [8], Shapiro–Wilk
test [9] and Anderson–Darling test [7]. We discuss our test in both variants of given and
estimated parameters.

We use the results for other tests approximated by the bisection method based on the
ones obtained in [10]. Note that in [10], more alternative distributions were being used but
were not separated. Instead, the authors provided the average power values. Additionally,
we avoided using many alternative distributions that differ from the null distribution so
that the histogram would be sufficient for a hypothesis rejection. That could cause an
increase in power values for all the discussed tests, i.e., the results improved with big
data [34]. If the identical alternative distributions were in use, the advantage of our test
would be even better.

This way, we can see that though our results are not as thorough and precise (in [10],
there were 1,000,000 simulations performed for every alternative distribution), they are still
accurate and reliable enough.

We also note that the standard deviation of the power values is smaller than 0.3 for
n = 10 in all the exposed cases, for n = 30 smaller than 0.2, and n = 200 smaller than
0.01. Hence, in most cases, changing the alternative distribution will not have a significant
effect on the variation of the average power value, especially considering the choice of the
alternative distributions and rare exceptions where the empirical power is lower (see the
second paragraph of Section 2.2 and the tables in Section 2.3—power analysis).

The following tables and figures show the results of the comparison.
As we can see, in both cases of estimated and known parameters, and symmetric and

asymmetric alternative distributions, the Quantile-Zone test is the most powerful, even for
n = 10 (Tables 7 and 8).

Table 7. Average empirical power values of statistic Vn and some other normality test statistics for
various sample sizes with the level of significance α = 0.05—Symmetric alternative distributions.

Test
n

10 20 30 50 100 200

Quantile-Zone (EP 1) 0.7309 0.8365 0.8945 0.9466 0.9855 0.9962
Quantile-Zone (KP 2) 0.4921 0.7294 0.8462 0.9295 0.9832 0.9962

Shapiro–Wilk 0.2244 0.4488 0.6732 0.7687 0.8452 0.8994
Anderson–Darling 0.2231 0.4462 0.6694 0.7618 0.8350 0.8889

χ2 0.2072 0.4144 0.6216 0.7277 0.8140 0.8657
Lilliefors 0.2091 0.4182 0.6272 0.7191 0.7974 0.8590

Kolmogorov–
Smirnov 0.1828 0.3657 0.5485 0.6687 0.7602 0.8155

1 Estimated parameters. 2 Known parameters.
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Table 8. Average empirical power values of statistic Vn and some other normality test statistics for
various sample sizes with the level of significance α = 0.05—Asymmetric alternative distributions.

Test
n

10 20 30 50 100 200

Quantile-Zone (EP 1) 0.8984 0.9294 0.9470 0.9664 0.9881 0.9978
Quantile-Zone (KP 2) 0.5673 0.9066 0.9367 0.9623 0.9878 0.9977

Shapiro–Wilk 0.2354 0.4707 0.7060 0.8127 0.8962 0.9442
Anderson–Darling 0.2279 0.4557 0.6835 0.7887 0.8761 0.9311

χ2 0.2016 0.4032 0.6047 0.7317 0.8364 0.9108
Lilliefors 0.2097 0.4194 0.6291 0.7357 0.8344 0.9041

Kolmogorov–
Smirnov 0.1819 0.3638 0.5457 0.6627 0.7777 0.8398

1 Estimated parameters. 2 Known parameters.

For large samples (n > 200), the Quantile-Zone test has the same power for both
variants of known and estimated parameters.

The average powers for other tests are similar, therefore, choosing the right one could
depend on the alternative distribution or the sample size only. In other words, other tests
we mentioned could be considered equally powerful.

Therefore, the Quantile-Zone test is the best for normality testing in any circumstance.
All the figures and tables in the power analysis subsections, Tables 7 and 8 and

Figure 8, indicate no consistency issues in our test. Moreover, our test has better consistency
properties than other most used tests since the slope of our test’s power function curve
approximation is steeper than for the other tests (Figure 8). Even if that is not the case,
higher average power values of our test would be the reason for surpassing the consistency
issues.
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5. Real Data Example

To control the quantity of protein in milk, we take 48,100 g packages from the produc-
tion line. Measurements have yielded the results: 3.04, 3.12, 3.12, 3.22, 3.09, 3.13, 3.21, 3.18,
3.10, 3.18, 3.21, 3.18, 3.04, 3.11, 3.17, 3.06, 3.13, 3.12, 3.11, 3.07, 3.15, 3.05, 3.14, 3.18, 3.11, 3.21,
3.22, 3.13, 3.06, 3.07, 3.17, 3.22, 3.05, 3.19, 3.18, 3.20, 3.08, 3.20, 3.21, 3.09, 3.05, 3.14, 3.22, 3.08,
3.19, 3.18, 3.21, 3.06 (in %). The concentration of the protein in milk is usually between
three and four percent. We take two examples.
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5.1. Known Parameters Case

We assume that the milk packages meet the standard if the protein concentration is
distributed by the normal N

(
3.15, 0.062) distribution. We shall test this using the Quantile-

Zone test.
Calculating the EDF of this sample and plotting the points

(
xi, F∗48(xi)

)
; i = 1, 48, we

obtained the results shown in Figure 9.
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Figure 9. Zones and points
(

xi, F∗48(xi)
)
; i = 1, 48 for obtained data—Known parameters.

Using the results given in Figure 9 and Formula (2), we achieve v48 = 1.2454.
For the level of significance α = 0.05 the critical region is W = [1, 1.0013]∪ [1.0627, 3.1947]

(Table 1). Since v48 ∈W we reject the null hypothesis, i.e., the protein concentration in milk
is not distributed by the normal N

(
3.16, 0.052) distribution.

5.2. Estimated Parameters Case

We assume that the milk packages meet the standard if the protein concentration is
distributed by the normal N

(
x48, s̃2

48
)
∼ N

(
3.14, 0.062) distribution. We shall test this

using the Quantile-Zone test.
Calculating the EDF of this sample and plotting the points

(
xi, F∗48(xi)

)
; i = 1, 48, we

obtained the results shown in Figure 10.
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Using the results given in Figure 10 and Formula (2), we achieve v48 = 1.1829.
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For the level of significance α = 0.05 the critical region is W = [1, 1.0013]∪ [1.0532, 3.1947]
(Table 4). Since v48 ∈W we reject the null hypothesis, i.e., the protein concentration in milk
is not distributed by the normal distribution.

Even though here the EDF is essentially located well, the normality of distribution is
not confirmed. That is due to nmax = 4, i.e., 8.3% of the sample elements equals 3.22, which
does not satisfy the basic normality properties.

6. Conclusions and Future Work

In this paper, we:

1. Defined a new normality test statistic based on the “3-sigma” rule and basic properties
of CDF and EDF;

2. Provided some basic properties of the test statistic with its distribution tables for both
cases of known and estimated parameters obtained through 100,000 Monte Carlo
simulations;

3. Elaborated on the choice of the two-tailed critical region;
4. Elaborated on the advantage of our test statistics when it comes to outliers and the

simplicity of implementation;
5. Provided detailed power analysis for various sample sizes and symmetric and asym-

metric alternative distribution for the level of significance of 0.05;
6. Discussed both cases of known and estimated parameters of the null distribution as

well as the power calculating process through 10,000 Monte Carlo simulations;
7. Performed comparative analysis of our test power performance and the other most

used normality tests and thus proved that our test is the best choice when testing
normality;

8. Provided tabular and graphical representations of all the results.

The future work will consist of researching some additional properties of the test
statistic and, if possible, functional characteristics of its distribution. If it turns out as
needed, more detailed power analysis and comparative analyses are possibilities.

Other ideas are expanding the Quantile-Zone approach to the general goodness-of-
fit testing and some new approaches to the same problem. We are also considering the
possibility of extending this solution principle to multivariate normality testing.
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