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Abstract: In this paper, we propose a new algorithm for constructing an integral model of a nonlinear
dynamic system of the “input–output” type in the form of a quadratic segment of the Volterra integro-
power series (polynomial). We consider nonparametric identification of models using physically
realizable piecewise linear test signals in the time domain. The advantage of the presented approach is
to obtain explicit formulas for calculating the transient responses (Volterra kernels), which determine
the unique solution of the Volterra integral equations of the first kind with two variable integration
limits. The numerical method proposed in the paper for solving the corresponding equations includes
the use of smoothing splines. An important result is that the constructed identification algorithm has
a low methodological error.
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1. Introduction

The development of the theory of dynamical systems, taking into account the specifics
of applied problems, aims to create new mathematical methods. This paper is devoted to
the develop mathematical tools for studying inverse problems in the theory of dynamical
systems. The work aims to develop a methodology and algorithms for identifying Volterra
polynomials (finite segments of Volterra series) [1].

y(t) =
N

∑
n=1

t∫
0

. . .
t∫

0

Kn(t, s1, . . . , sn)
n

∏
k

x(sk)dsk, t ∈ [0, T]. (1)

The Volterra integro-power series is well known in the theory of mathematical mod-
eling of nonlinear dynamic systems of the “input–output” type. However, modern and
classical studies in this area do not provide a universal mathematical apparatus for studying
problems with restrictions on the dynamic characteristics of systems.

Reference [2] contains an extensive list of references on methods for identifying non-
linear objects using Volterra integral equations. References [3–7] are devoted to methods
for constructing dynamic models using Volterra polynomials. Models based on the Volterra
theory are used to describe stochastic systems [8], as well as for the structural identifi-
cation of nonlinear dynamic systems [9]. A systematic approach to modeling nonlinear
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dynamic systems by formalizing the relationship between input x(t) and output y(t) was
first implemented by Norbert Wiener [10]. He applied the Volterra series in the analysis of
nonlinear electronic circuits. He developed efficient identification algorithms for the case
of an input signal in the form of Gaussian white noise. Wiener’s research was continued
in the works of Marmarelis, Schetzen, Rugh, and other researchers (see, for example, the
reviews in [11,12]). The system responses to test signals in the form of ideal white noise are
used to identify the Wiener kernels. In practice, the implementation of such input actions is
carried out with inevitable errors, which are compensated by choosing the optimal range
in test disturbances [13]. When solving inverse quantum mechanical problems, researchers
use wave functions [14] to construct Volterra integral models. The identification of Volterra
kernels is based on minimizing the root-mean-square error from the response of the dy-
namic system tested. This approach is associated with the extreme complexity of practical
implementation [15].

In this regard, they strive to achieve a simplification of the methods (see, for exam-
ple, [16–19]). In particular, the authors of [18] implemented the case where Volterra kernels
are assumed to be separable,

Ki(s1, . . . , si) =
i

∏
n=1

g(sn), i = 1, 3, (2)

as well as the satisfiability of a priori conditions,

Kn(s1, . . . , sn) = 0, n > 3. (3)

Reference [16] considered a modified discrete analog of the cubic Volterra polynomial.

y(ti) =
N1−1

∑
m1=0

K1(tm1)x(ti−m1) +
N2−1

∑
m1=0

N2−1
∑

m2=m1

K2(tm1 , tm2)x(ti−m1)x(ti−m2)+

+
N3−1

∑
m1=0

N3−1
∑

m2=m1

N3−1
∑

m3=m2

K3(tm1 , tm2 , tm3)x(ti−m1)x(ti−m2)x(ti−m3),
(4)

where the symmetric kernels K2 and K3 are defined only on one of the subdomains
0 ≤ m1 ≤ m2 ≤ N2 − 1 and 0 ≤ m1 ≤ m2 ≤ m3 ≤ N3 − 1, respectively. To re-
duce computational costs, the authors of [16] proposed a transition from (4) to relations

y(ti) =
N1−1

∑
m1=0

K1(tm1)x
(
ti−m1

)
+

N2−1

∑
m1=0

N2−1

∑
m2=m1

K2(tm1 , tm2)x
(
ti−m1

)
x
(
ti−m2

)
+

N3−1

∑
m=0

K̃3(tm)x3(ti−m) (5)

or

y(ti) =
N1−1

∑
m1=0

K1(tm1)x
(
ti−m1

)
+

N2−1

∑
m=0

K̃2(tm)x2(ti−m) +
N3−1

∑
m=0

K̃3(tm)x3(ti−m). (6)

It depends on the statistical properties of the input signals. In this case, they solve the
problem of restoring the functions K̃n of one variable instead of the problem of determining
in (4) the functions Kn, n = 2, 3, of many variables in (5) and (6). Moreover, instead of search-
ing for Kn(t, s1, . . . , sn) on the entire domain of definition 0 ≤ s1, . . . , sn ≤ t ≤ T, researchers
confine themselves to the values of the function at fixed values s1 = s2 = . . . = sn = t,
t ∈ [0, T]. In particular, this approach was applied in [20] (p. 1387) and [21] (p. 1078). The
critical review of [22] (pp. 178–179) explained the difference between these problems in
detail using the approaches described in [23,24] as an example.

As noted in [25], “for the presentation of information in the time domain, the ex-
pediency of using pulsed and stepped test signals is obvious”. A method based on the
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δ-functions use was proposed in [26] and developed later in [27]. It suggests using the
(n− 1)-parametric family,

xω1,...,ωn−1(t) =
n−1

∑
j=0

δ
(
t−ωj

)
, ω0 = 0, ωj ≥ 0,

n−1

∑
j=0

ωj ≤ t ≤ T, (7)

where δ(s) is the Dirac δ-function,

δ(s) =
{

0, s 6= 0,
∞, s = 0,

as test actions for identifying the Kn(s1, . . . , sn).
A discrete analog of this approach is the numerical algorithm proposed in [28]. Note

that the technique based on (6) has a limited scope. An explanation for this can be found
in [29] (p. 142): “ . . . this simple idea is impulse-response analysis. Its basic weakness is
that many physical processes do not allow pulse inputs . . . Moreover, such input could
make the system exhibit nonlinear effect that would disturb the linearized behavior we
have set out to model”. Readers can find a detailed review of identification methods based
on impulse disturbances [27,30].

Let us now turn to methods based on the application of Heaviside functions e(t).
Reference [31] considered an approach related to approximating on [0, T] a periodic test
signal by discretely given stepwise one with a constant quantization step. It is assumed
the initial continuous input signal has a constant period T. This technique was further
developed in [32,33], in which

xω1,...,ωn−1(t) =
n

∑
j=1

Cωj αe
(
t−ωj

)
, ωj ≥ 0,

n

∑
j=1

ωj ≤ t ≤ T,

was used as the test signal for identifying Kn, n ≥ 2, where α is the signal amplitude
(height), and Cωj is a logical variable equal to zero if

ωj = 0.

In [34], a modification was made for a dynamical system with two inputs. Here, the
identification process included a heuristic algorithm for dividing the system response
y(t) into components due to the influence of a separate integral term of the quadratic
Volterra model.

In this paper, we consider dynamic systems, the transient characteristics of which
are presented in the time domain. The possibility of scaling in time makes it possible to
study fast processes that are typical for many technical (energy) systems. The method of
finding the transient characteristics of the system is deterministic. Fewer data are required
to formalize the mathematical model in comparison with the probabilistic method. The
collection of initial data occurs during the execution of an active experiment, which implies
the possibility of influencing the system with test input signals. In comparison with a
passive experiment (observation), this method allows one to reduce the time for collecting
initial data and specify the type of test signal.

Reference [3] presented a method for identifying Volterra kernels using a combination
of Heaviside functions with a deviating argument as test signals. Its advantage lies in
the transition from the original problem to the solution of such special multidimensional
Volterra equations of the first kind with variable upper and lower integration limits, which
have explicit inversion formulas. The scope of this technique for modeling the dynamics of
real-life technical objects is limited by the complexity of the formation of piecewise constant
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test signals. Reference [35] considered the possibility of using test signals of a piecewise
linear form,

x(t) ≡ xν(t) =


0, t ≤ 0,
t
ν , 0 < t ≤ ν,
1, t > ν,

(8)

in the problem of identifying a two-dimensional continuum of unknowns from a linear
Volterra equation of the first kind with a nonstationary kernel. Figure 1 shows the form of
the input signal (8).

Figure 1. The form of the input signal (8).

The chosen modification of the input signals simplifies their formation in practice,
and the distinguished Volterra integral equations of the first kind, as before, have a unique
solution in the class of continuous functions.

The identification method was developed to further apply it for numerical modeling
the process of automatic simulation of the nonlinear dynamics of heat and electric power
industry objects based on Volterra polynomials with a vector input.

The purpose of this work is, firstly, to use the reserve for increasing the accuracy of
constructing an integral model, presented as a modified quadratic Volterra polynomial,
through the use of piecewise linear signals close to real-life dynamic systems, and secondly,
to develop measurement noise-resistant algorithms for identifying functions two variables.

The paper is organized as follows: Section 2 describes the technique for building an
integral model using piecewise linear test signals. It also presents an example illustrating
the effect of increasing the accuracy of modeling the linear term by applying piecewise linear
signals. Section 3 contains a numerical algorithm for identifying the quadratic term of the
Volterra series based on smoothing cubic splines. Section 4 considers the implementation
of the numerical solution algorithm using the quadrature method. Section 5 suggests
directions for future work. Section 6 contains the main results.

2. Method for Constructing a Quadratic Volterra Polynomial

Let us consider a quadratic model containing a linear nonstationary component,

y(t) =
t∫

0

K1(t, s)x(s)ds +
t∫

0

t∫
0

K2(s1, s2)x(t− s1)x(t− s2)ds1ds2, t ∈ [0, T]. (9)

To identify the Volterra kernels K1(t, s), 0 ≤ s ≤ t ≤ T, K2(s1, s2), 0 ≤ s1, s2 ≤ t ≤ T,
the authors of [36] used test signals

x(t) ≡ xα1,2
ν (t) = α1,2(e(t)− e(t− ν)), 0 ≤ ν ≤ t ≤ T, (10)

where α1 6= α2. Figure 2 shows the form of the input signal (10) when the signal amplitude
is equal to 1.
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Figure 2. The form of the input signal (10).

Substituting (10) in (9) leads to the following system:

α1

ν∫
0

K1(t, s)ds + α2
1

t∫
t−ν

t∫
t−ν

K2(s1, s2)ds1ds2 = yα1(t, ν),

α2

ν∫
0

K1(t, s)ds + α2
2

t∫
t−ν

t∫
t−ν

K2(s1, s2)ds1ds2 = yα2(t, ν),
(11)

where α1 6= α2, 0 ≤ ν ≤ t ≤ T, which implies that

K1(t, ν) = f ′1ν(t, ν), (12)

K2(t, t− ν) =
1
2

(
f ′′2tν(t, ν) + f ′′2ν2(t, ν)

)
, (13)

where

f1(t, ν) =
α2

2yα1(t, ν)− α2
1yα2(t, ν)

α1α2(α2 − α1)
, (14)

f2(t, ν) =
α1yα2(t, ν)− α2yα1(t, ν)

α1α2(α2 − α1)
. (15)

Let us carry out the procedure for identifying the Volterra kernel K2(s1, s2) symmetric
in variables s1, s2, using Equations (13) and (15). Then the problem of identifying K1(t, s)
from (9) reduces to solving

t∫
0

K1(t, s)x(s)ds = q(t),

q(t) = y(t)−
t∫

0

t∫
0

K2(s1, s2)x(t− s1)x(t− s2)ds1ds2,
(16)

where K2(s1, s2) is known. Applying test signals (8) in addition to (10), we obtain
Equation (16), where

q(t) ≡ qν(t) =
{

0, t = 0, ν = 0,
g(t, ν), 0 < ν ≤ t,

which can be represented in the form

ν∫
0

K1(t, s)
s
ν

ds +
t∫

ν

K1(t, s)ds = q(t, ν), (17)

q(t, ν) = g(t, ν)−
t∫

t−ν

t∫
t−ν

K2(s1, s2)
t−s1

ν
t−s2

ν ds1ds2−

−2
t∫

t−ν

ds1

t−ν∫
0

K2(s1, s2)
t−s2

ν ds2 −
t−ν∫
0

t−ν∫
0

K2(s1, s2)ds1ds2.
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Here, g(t, ν) is the response of a dynamic object to a signal (8) at 0 ≤ ν ≤ t ≤ T.
Following [35,37], the inversion Formula (17) has the form

K1(t, ν) = −
(

2g′ν(t, ν) + νg′′
ν2(t, ν)

)
. (18)

Let us compare the effect of using test signals (8) and (10) when building an integral
model (9).

The below example demonstrates the effect of increasing the simulation accuracy when
using test signals of the form (8). Let the “reference” dynamical system be represented by a
cubic Volterra polynomial with kernels K1 = 1, K2 = 1

2 , K3 = 1
3! , so that

yet(t) =
t∫

0

x(s)ds +
1
2

 t∫
0

x(s)ds

2

+
1
3!

 t∫
0

x(s)ds

3

. (19)

The technique for constructing quadratic and cubic Volterra polynomials, based on the
use of piecewise constant test signals of type (10), has been successfully tested on dynamic
systems of various physical nature, including a mathematical model of type (19), as well as
in modeling the dynamics of a heat exchanger element and wind power plant [38]. Note
that (19) is a partial sum of the series for the function

e

t∫
0

x(s)ds
− 1.

This function has proven itself well in the study of the areas of applicability of identifi-
cation algorithms for quadratic and cubic Volterra polynomials [38,39]. We apply the proce-
dure for identifying kernels by using test signals (10) with amplitudes α1 = −α2 = α > 0
and, instead of (9), obtain

y1(t) =
t∫

0

(
1 +

α2

2
s2
)

x(s)ds +
1
2

 t∫
0

x(t− s)ds

2

, (20)

where the Volterra kernels were restored using Equations (12) and (13), respectively.
The combined model (9) with the addition to (10) test signals (8) with amplitude α for

identification K1(t, s) has the form

y2(t) =
t∫

0

(
1 + α2

(
1
4

s2 − 3
4

ts +
1
2

t2
))

x(s)ds +
1
2

 t∫
0

x(t− s)ds

2

, (21)

where the kernel identification was performed using Equations (18) and (13), respectively.
On signals xβ(t) = t

β , β = k · α · 0.01, k = 1, B, model (20) gives residual

n1(t) = yβ
et(t)− yβ

1 (t) =
t6

48β3 −
α2t4

8β
,

and model (21) gives residual

n2(t) = yβ
et(t)− yβ

2 (t) =
t6

48β3 −
α2t4

16β
,

where yβ
et is the response (19) to signal xβ(t).

Let us present an algorithm for constructing the polynomial (9) for modeling the
response of the dynamic system represented in the form (19).
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Step 1. Calculation of the values of yα
et(t, ν) and y−α

et (t, ν) using substitution (10) with
amplitude α1 = −α2 = α > 0 into the right-hand side of (19).

Step 2. Calculation by (15) of the values of the right-hand side of the integral equation,

t∫
t−ν

t∫
t−ν

K2(s1, s2)ds1ds2 = f2(t, ν) , 0 ≤ ν ≤ t ≤ T.

Step 3. Application of Equation (13) for identifying K2(s1, s2), 0 ≤ s1, s2 ≤ T.
Step 4. Calculation of values yα

et(t, ν) using substitution (8) with an amplitude α into
the right-hand side of (19).

Step 5. Calculation of the right-hand side of (17) q(t, ν), where K2(s1, s2) and
q(t, ν) ≡ yα

et(t, ν) are obtained in the previous steps 3 and 4, respectively.
Step 6. Application of Equation (18) for identifying K1(t, ν), 0 ≤ ν ≤ t ≤ T.
Step 7. Substitution of kernels K2(s1, s2) and K1(t, ν) obtained in steps 3 and 6, respec-

tively, into the right-hand side of (9). This leads to (21).
Modeling accuracy y1(t) was compared with response y2(t). The value of the “mean

absolute error” coefficient was chosen as a criterion for modeling accuracy.

MAEr(t) =
1
B

B

∑
β=1
|nr(t)|, r = 1, 2, t ∈ [0, 15].

In Figure 3, black color shows the areas of fulfillment of the inequality MAE2(t) < MAE1(t)
for B = 10, 25, 40 with an accuracy of δ = 10−2.

Figure 3. Areas of fulfillment of the inequality MAE2(t) < MAE1(t) for (a) B = 10, (b) B = 25, and
(c) B = 40.

The computational experiment showed that the areas of efficiency of the integral
models (20) and (21) depend on the length of the segment T, the amplitude of the test
signals α used to identify the Volterra kernels, and the accuracy of the calculations δ.

Note that we assumed the quadratic term, the two-dimensional kernel K2(t, ν), in
Equation (18) to be known. Therefore, in the next section, we consider an algorithm for
identifying this term using Equation (13).

3. Identification Algorithm for Quadratic Term

Unfortunately, the implementation of the obtained inversion Equation (13) in practice
faces a fundamental difficulty: the differentiation operation is an ill-posed one [40]. One of
the manifestations of ill-posedness is large errors in calculating the derivative, even for very
small errors in specifying a differentiable function. Note that the operation of subtraction
in (15) of the registration errors of two functions leads to an increase in the variance of the
total error in setting the function f2(t, ν). Thus, stable differentiation of noisy data becomes
an urgent problem for the implementation of formula (13) in practice.
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Reference [41] constructed a stable identification algorithm on the basis of Equation (12)
(a stable identification algorithm is an algorithm in which the relative identification error is
comparable to the relative error of the initial data). There, a smoothing cubic spline (SCS)
of a defect unit was used for a stable calculation of the first derivative. The smoothing pa-
rameter was chosen from the condition of the minimum root-mean-square smoothing error.
The use of smoothing splines becomes much more complicated in the case of identifying
the quadratic kernel K2(τ, s). First, to calculate the second-order mixed derivative f ′′2tν(t, ν),
we need to build a smoothing bicubic spline (SBS), which is a function of two variables t,
ν. Secondly, the boundary conditions are now given not at two extreme points of the SCS
construction interval, but on four straight lines, which are the boundaries of the rectangular
area of the SCS construction. Thirdly, due to the different “smoothness” of the function
f2(t, ν) in different variables, we now have to choose two smoothing parameters from the
condition for the minimum smoothing error. These difficulties caused the main problems
that were not solved in the corresponding scientific publications and which are addressed
in this section.

Suppose that the values of the function f2(t, ν) are determined at the nodes of a
rectangular grid. To take into account possible errors (noise) of measurements, the following
representation of noisy measurements f̃2(ti, νj) is taken:

f̃2(ti, νj) = f2(ti, νj) + ηi,j, i = 1, . . . , Nt, j = 1, . . . , Nν,

where ηi,j is random measurement noise with zero mean value and variance σ2
η (equally

accurate measurements). Note that nodes ti and νj may not have the same or equal steps. It
is required to calculate the values of derivatives f ′′2tν(t, ν), f ′′2ν2(t, ν) at the given nodes from

the initial data
{

f̃2
(
ti, νj

)}
.

For a stable calculation of these derivatives, we turn to SCS [42] widely used in the
processing of experimental data [43,44]. Suppose we have Nν nodes V1 = ν1 < ν2 < . . . <
νNν = V2 at some interval [V1, V2]. In these nodes, the values of the function (signal) f (ν)
are measured as follows:

f̃ j = f (νj) + ηj, j = 1 . . . Nν, (22)

where ηj is the random measurement noise with zero mean and variance σ2
η (equally

accurate measurements). The smoothing cubic spline SNν ,α(ν) of a defect unit on each
segment

[
νj, νj+1

)
can be represented by a cubic polynomial of the following form [42]:

SNν ,α(ν) = aj + bj · (ν− νj) + cj · (ν− νj)
2 + dj · (ν− νj)

3. (23)

Moreover, the function SNν ,α(ν) must be twice continuously differentiable on the entire
interval [V1, V2] of its definition. Note that, in contrast to the interpolation spline (passing
through the points

(
νj, f̃ j

)
), the smoothing cubic spline SNν ,α(ν) generally does not pass

through these points, but passes more “smoothly” in some neighborhoods of these points
(depending on the smoothing parameter α), thereby providing smoothing (filtering) of
measurement noise.

To uniquely calculate the spline coefficients aj, bj, cj, dj, boundary conditions are set at
the nodes ν1, νNν . The following conditions are most often used [42,44]:

• conditions on zero second derivatives of the spline (natural boundary conditions),

S′′Nν ,α(ν1) = 0; S′′Nν ,α(νNν) = 0, (24)

• conditions on the first derivatives of the spline,

S′Nν ,α(ν1) = s′1; S′Nν ,α(νNν) = s′Nν
, (25)
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as well as a combination of these conditions (for example, condition (25) is on the left,
condition (24) is on the right). It was shown [42] the SCS constructed under these
conditions provides a minimum to the functional

Fα(S) = α ·
νNν∫
ν1

|S′′ (ν)|2dv +
Nν

∑
j=1

p−1
j · ( f̃ j − S(νj))

2
, (26)

where pj denotes the weight factors reflecting the accuracy of the j-th measurement f̃ j
(they are given the same in the case of equally accurate measurements).

To calculate the spline coefficients (for a given smoothing parameter), it is necessary
to compose a system of linear algebraic equations with a five-diagonal matrix concerning
some vector (as a rule, these are the values of the second derivative of the spline at the nodes{

νj
}

), through which all the spline coefficients are then found (for details, see [42,44]).
The smoothing parameter α “controls” the smoothness of the spline, and the smooth-

ing error (as well as the differentiation error) depends significantly on the value of this
parameter [44,45]. There is a parameter value (let us call it optimal) for which the smoothing
error (in the accepted norm) is minimal [45]. Let us temporarily assume that we have found
an acceptable (in terms of the minimum smoothing error) value of the smoothing parameter
(the choice of the parameter is discussed in the next section).

Remark 1. It follows from the form of the integrals (11) that the function f2(t, ν) takes nonzero
values for the arguments satisfying the condition ν ≤ t. For other values of ν, t, the function is
equal to zero due to the condition of the technical feasibility of the system with negative values of the
arguments, i.e., k2(t, ν) ≡ 0, if ν < 0, t < 0.

To eliminate the discontinuity of the first kind at ν = t values when constructing a
smoothing spline, we propose to supplement the values of the function f2(t, ν) for ν > t
according to the following rule:

f2(t, t + ∆ν) =

{
2 f2(t, t)− f2(t, t− ∆ν), 0∆ν ≤ t;
2 f2(t, t), t∆ν ≤ T − t.

We denote the function supplemented in this way as f ∗2 (t, ν).
Initially, we focus on the algorithm for calculating the values of the derivative f ′′2ν2(t, ν).

It can be represented by the following steps:
Step 1. We set the boundary conditions, the combination of which at the extreme

points ν1, νNν of the construction interval is determined on the basis of available a priori
information about the function f ∗2 (t, ν). If such reliable information is not available, then
one should turn to the natural boundary conditions (24).

Step 2. For each i = 1, . . . , Nt, we form a dataset{
νj, f̃ 1(i)j = f̃ ∗2

(
ti, νj

)
, j = 1, . . . , Nν

}
,

select the smoothing parameter α1(i), and build the SCS S1(i)
Nν ,α1(i)

(ν), from which we then

calculate the first derivative f̂ ′2ν(ti, νj) = d
dν S1(i)

Nν ,α1(i)
(ν)|ν=νj

= b1(i)j (an estimate of the

derivative f ′2ν(ti, νj)), where b1(i)j is the coefficient of spline S1(i)
Nν ,α1(i)

(ν) in representa-
tion (23).

Step 3. For each Y, we again form the dataset{
νj, f̃ 2(i)j = f̂ ′2ν(ti, νj), j = 1, . . . , Nν

}
,
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select the smoothing parameter α2(i), and build the SCS S2(i)
Nν ,α2(i)

(ν), the first derivative

of which is the estimate f̂ ′′2ν2(ti, νj) =
d

dν S2(i)
Nν ,α2(i)

(ν)|ν=νj
= b2(i)j for the second derivative

f ′′2ν2(ti, νj), where b2(i)j is the coefficient of spline S2(i)
Nν ,α2(i)

(ν) in representation (23).

Thus, we calculate estimates of the second derivative f ′′2ν2(ti, νj) for ti, i = 1, . . . , Nt.
Let us proceed to the construction (following the technique of [46]) of a bicubic smooth-

ing spline for calculating the mixed derivative f ′′2tν(ti, νj). We use the following algorithm:
Step 1. For each j = 1, . . . , Nν, we again form a dataset (fix the value of νj){

ti, f̃ 3(j)
i = f̃ ∗2

(
ti, νj

)
, i = 1, . . . , Nt

}
,

select the smoothing parameter α3(j), build the SCS S3(j)
Nt ,α3(j)(t), from which we then calcu-

late the first derivative f̂ ′2t(ti, νj) =
d
dt S3(j)

Nt ,α3(j) (t)|t=ti
= b3(j)

i (estimation of the derivative

f ′2t(ti, νj)), where b3(j)
i is the coefficient of spline S3(j)

Nt ,α3(j)(t) in representation (23).
Step 2. For each Y, we form a dataset{

νj, f̃ 4(i)j = f̂ ′2t(ti, νj), j = 1, . . . , Nν

}
,

select a smoothing parameter α4(i), build an SCS S4(i)
Nν ,α4(i)

(ν), the first derivative of which

is an estimate f̂ ′′2tν(ti, νj) =
d

dν S4(i)
Nν ,α4(i)

(ν)|ν=νj
= b4(i)j for the mixed derivative f ′′2tν(ti, νj),

where b4(i)j is the coefficient of spline S4(i)
Nν ,α4(i)

(ν) in representation (23).
Thus, we repeat step 1 for νj, j = 1, . . . , Nν, and step 2 for ti, i = 1, . . . , Nt. After

calculating the estimates f̂ ′′2ν2(ti, νj), f̂ ′′2tν(ti, νj) using Equation (13), we find the estimate
k̂2(ti − νj, ti) for the values νj ≤ ti.

Remark 2. The inversion Equation (13) determines the value of the quadratic kernel K2(t, ν) for the
arguments 0 ≤ ν ≤ t ≤ T, i.e., for the values of the argument ν ≤ t. The line ν = t is the axis of
symmetry of the kernel K2(t, ν) (follows from the one-dimensionality of the input signal); therefore,
to determine the values of the kernel for ν = t + ∆ν > t, where ∆ν > 0, we propose a symmetrical
supplement of the kernel values according to the formula K2(t, t + ∆ν) = K2(t + ∆ν, t).

Remark 3. Since the construction of the SCS by the variable ν requires approximately Coper · Nν

arithmetic operations, where Coper ≈ 30 [42], the proposed algorithm for calculating derivatives
requires approximately C4

oper · N3
ν · Nt operations. Therefore, the proposed algorithms for calculating

derivatives have a high computational efficiency even with a large dimension of the grid
(
ti, νj

)
.

Previously, the values of the smoothing parameters α1(i), α2(i), α3(j), α4(i) selected were
assumed (i.e., determined). Therefore, the question of how to choose these parameters arises,
which will significantly affect the error of smoothing and differentiation. If the variance σ2

η of
the measurement noise (see (22)) were reliably known (at least with an accuracy of 5–8%), then
the selection algorithm constructed on the basis of checking the optimality criterion of the linear
filtering algorithm would allow, with acceptable accuracy (5–8%), to estimate the values of the
optimal smoothing parameter that minimizes the value of the root-mean-square smoothing
error (see [44] (pp. 60–67), [45]). It is obvious that the situation with unknown noise dispersion is
most characteristic in solving practical identification problems. Therefore, to choose a parameter
in this case, we turn to the L-curve method used to choose the regularization parameter in
algorithms for solving linear ill-posed problems (for example, [47,48]). In [49], a modification of
the L-curve method was proposed for choosing the smoothing parameter.
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Let us talk briefly about the essence of this selection algorithm. Let us introduce the
following functionals (see [49]):

ρ(α) =
Nν

∑
j=1

p−1
i · ( f̃ j − Sn,α(νj))

2
, γ(α) =

νNν∫
ν1

∣∣∣S′′Nν ,α(ν)
∣∣∣2dν.

Then, an L-curve (whose shape resembles the outline of the Latin letter L) is a paramet-
ric curve with coordinates (ρ(α), γ(α)). It can be shown that the curvature of an L-curve is
given by the following formula:

kL(α) = 2 · ρ̂′(α) · γ̂′′ (α)− ρ̂′′ (α) · γ̂′(α)[
(ρ̂′(α))2 + (γ̂′(α)

)2
] 3

2
, (27)

where ρ̂(α) = ln ρ(α), γ̂(α) = ln γ(α). The smoothing parameter is the value αL for which
the curvature kL(α) takes on the maximum value. To effectively calculate the value of the
functional γ(α), the following formula is proposed:

γ(α) =
n−1

∑
i=1

(
4c2

i · hi + 12ci · di · h2
i + 12d2

i · h3
i

)
,

where hi = ti+1 − ti, i = 1, . . . , n− 1, ci, di are the SCS coefficients in representation (23),
calculated for a given parameter α. To calculate the curvature value using Equation (27), an
approach is proposed that uses cubic interpolation splines to approximate the dependences
ρ̂(α), γ̂(α) (for details, see [49]). An extensive computational experiment was also carried
out there to answer the following question: Is the loss due to smoothing error large when
αL is used instead of the optimal αopt (which can only be determined in a computational
experiment)? The experiment was carried out with functions that are “typical” output
signals of a dynamic system when step signals are applied to the input. The analysis of the
results of the experiment showed that the algorithm for selecting the smoothing parameter
on the basis of the L-curve method makes it possible to estimate the optimal value of the
smoothing parameter quite well. The increase in the smoothing error when using the
parameter αL does not exceed 5–15% on average compared to αopt, the calculation of which
is impossible in practice. Therefore, to calculate the smoothing parameters α1(i), α2(i),
α3(j), and α4(i), it is proposed to use the described algorithm for choosing the smoothing
parameter on the basis of the L-curve method.

To test the proposed algorithm of identifying quadratic kernel, a numerical experiment
was carried out, some of the results of which we present in this paper. The test quadratic
kernel K2(τ, s) is a function used to describe the dynamics of some type of heat exchang-
ers [50]. Figure 4a shows the surface of this function, and Figure 4b shows isolines. The
time interval boundary was T = 1, while the number of nodes was Nt = 80, Nν = 80.

First, we define the methodological error of the identification algorithm. To do this, we
calculated the values of the function (15) at the nodes ti, i = 1, . . . , Nt, νj, j = 1, . . . , Nν, which
were interpreted as the exact values of the function f2(ti, νj). These data, presented as a
matrix F with dimensions 80× 80 with elements Fi,j = f2(ti, νj), were the initial data for the
proposed identification algorithm. Since these initial data were taken as exact, instead of SCS,
we built interpolating cubic splines (including the bicubic spline) with boundary conditions
(24). We calculated estimates for the derivatives f̂ ′′2ν2(ti, νj) and f̂ ′′2tν(ti, νj) on the basis of
these splines and then constructed an estimate for the quadratic kernel using Equation (9) (see
Remark 2). Figure 5 shows the isolines of this estimate, having a relative identification error

δK =
‖K2−K̂2‖
‖K2‖

= 0.011, where K2, K̂2 are matrices composed of the values of the exact kernel

K2(ti, νj) and its estimates K̂2(ti, νj), respectively, and ‖·‖ is the Euclidean norm of the matrix.
Approximately the same error was observed for other grid sizes in t, ν. Therefore, we can
conclude the proposed identification algorithm has a low methodological error.
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Figure 4. Test quadratic kernel: (a) the surface of K2(τ, s); (b) isolines.

Figure 5. Estimation of the kernel K̂2(τ, s), built on exact data.

Let us consider the influence of the measurement noise of the function f2(t, ν) on the
accuracy of identification. To do this, we distorted all elements of the “exact” matrix F

with normally distributed noise with a relative level δF =
‖F−F̃‖
‖F‖ , where F̃ is a matrix with

“noisy” elements. The matrix F̃ thus formed was used as initial data for the previously
described identification algorithm. We chose the smoothing parameter at all steps of
calculating derivatives using the L-curve method described above. Figure 6 shows the
isolines of the estimate K̂2(ti, νj), built at a noise level of 0.02. The relative identification error
was δK = 0.044, which indicates the acceptable accuracy of quadratic term identification by
the proposed algorithm.

Figure 6. Estimation of the kernel K̂2(τ, s), built on noisy data.
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4. Difference Scheme for Finding a Linear Nonstationary Kernel Using the
Quadrature Method

It often happens in practice that the responses of the system (the right-hand side of
equations) are given not analytically, but in the form of a series of numbers. In this case,
we have to turn to the numerical solution. The procedure for the numerical identification
of the Volterra polynomial (9) using piecewise constant test signals (10) was considered
in detail earlier in [36]. This approach to constructing a quadratic polynomial was tested
in applications for thermal power objects [51]. As shown in the previous section, using
signals of a new type with a rising edge of the form (8) makes it possible to improve
the accuracy of modeling, even if they are used to identify only one of the polynomial
kernels (9). Therefore, in this section, we restrict ourselves to the procedure for numerical
identification of a nonstationary linear term from (9) based on test signals of the form (8).

As shown in Section 2, if we assume that identifying the kernel K2(s1, s2) in the
quadratic term of the polynomial (9) has already been achieved in one way or another,
then the substitution of (8) into (16) leads to (17). We present a difference scheme for
finding a linear nonstationary kernel from (17) with a known right-hand side. To do
this, we introduce on the interval [0, T] a uniform grid ti = ih, i = 0, N and a subgrid
ti−1/2 = (i− 1/2)h, i = 1, N, while we denote by Kh

i,j the grid approximation of the kernel
K1
(
ti, tj

)
. To approximate the integrals in (17), we use the middle rectangle rule, taking

into account ν ≤ t,

h
j

∑
k=1

Kh
i, k−1/2

tk−1/2

tj
+ h

i

∑
k=j+1

Kh
i, k−1/2 = q

(
ti, tj

)
, i = 1, N, j = 1, i. (28)

At each step i = 1, N, one has to solve a system of linear algebraic equations of
dimension (i× i) with respect to Kh

i, k−1/2, k = 1, i.
Consider the application of the difference scheme (28) with help of a test example. Let

the right side of (17) have the form

q(t, ν) = t− ν

2
+

5t3

24
− ν3

48
+

tν2

8
− t2ν

4
. (29)

This right side will correspond to the kernel K1(t, ν) from example (21). Table 1 shows
the results of numerical calculations obtained using the difference scheme (28). Here,

ε = max
1≤j≤i≤N

∣∣∣K1

(
ti, tj−1/2

)
− Kh

i, j−1/2

∣∣∣
denotes the errors of the numerical solution. The last column of the table shows the number
of nodes in which the maximum error is achieved. The table shows that the proposed
algorithm has a linear order of convergence.

Table 1. The error of the numerical solution to (17) with the right side (29).

h ε Node Number, (i, j)

1/8 0.00553385 (8, 2)
1/16 0.00268555 (16, 4)
1/32 0.00132243 (32, 8)
1/64 0.00065613 (64, 6)

Thus, the numerical construction of the quadratic Volterra polynomial using the
quadrature of the middle rectangles can be implemented by the formula

h
i

∑
j=1

Kh
1

(
ti, tj−1/2

)
x
(
tj
)
+ h2

i

∑
k=1

i

∑
l=1

Kh
2(tk−1/2, tl−1/2)x(ti − tk−1/2)x(ti − tl−1/2) = g(ti), i = 1, N,
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where the kernels Kh
1

(
ti, tj−1/2

)
are obtained using the difference Equation (28).

5. Future Research

This section is devoted to interpreting the identification method for nonsymmetric
kernel K1(t, s) presented in Section 2 for solving the reconstruction problem for symmetric
function K2(s1, s2). For this, we introduce the system of integral Equation (9), where the
functions x(t) and y(t) have the form

x(t) ≡ xα1,2
ν (t) =


0, t ≤ 0,

α1,2
t
ν , 0 < t ≤ ν,

α1,2, t > ν,
(30)

y(t) ≡ yα1,2
ν (t) =

{
0, t = 0, ν = 0,

gα1,2(t, ν), 0 < ν ≤ t,
(31)

where α1 6= α2, and gα1,2
ν (t) is a sufficiently smooth function. Assuming that in (9) the kernel

K2(s1, s2) = ϕ(s1)ϕ(s2) is a separable function, such that ϕ(s) ∈ CΩ, CΩ is the space of
continuous functions symmetric on the square Ω = {s1, s2 : 0 ≤ s1, s2 ≤ T}; then, system
(9) can be transformed to the form

t∫
0

K1(t, s)x(s)ds +

 t∫
0

ϕ(s)x(t− s)ds

2

= y(t),

or, taking into account (30) and (31), into the system

α1,2

 ν∫
0

K1(t, s)
s
ν

ds +
t∫

ν

K1(t, s)ds

+ α2
1,2

 ν∫
0

ϕ(t− s)
s
ν

ds +
t∫

ν

ϕ(t− s)ds

2

= gα1,2(t, ν).

(32)
We introduce the following functions f1(t, ν) , f2(t, ν):

f1(t, ν) =

ν∫
0

K1(t, s)
s
ν

ds +
t∫

ν

K1(t, s)ds, (33)

f2(t, ν) =

ν∫
0

ϕ(t− s)
s
ν

ds +
t∫

ν

ϕ(t− s)ds. (34)

The system of linear functional equations of the form (32), presented with the designa-
tions (33) and (34), {

α1 f1(t, ν) + α2
1 f 2

2 (t, ν) = gα1(t, ν),

α2 f1(t, ν) + α2
2 f 2

2 (t, ν) = gα2(t, ν),

where α1 6= α2, has a unique solution

f1(t, ν) =
α2

2gα1(t, ν)− α2
1gα2(t, ν)

α1α2
2 − α2

1α2
, (35)

f 2
2 (t, ν) =

α1gα2(t, ν)− α2gα1(t, ν)

α1α2
2 − α2

1α2
. (36)

According to [35], the inversion formula for (33) has the form

K1(t, ν) = −2
∂ f1(t, ν)

∂ν
− ν

∂2 f1(t, ν)

∂2ν
,
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or, introducing the differentiation operator D2 = 2 ∂
∂ν + ν ∂2

∂2ν 1
,

K1(t, ν) = −D2( f1(t, ν)).

Similarly, for (34) we have

ϕ(t− ν) = −D2( f2(t, ν)).

Here, the functions f1(t, ν) and f2(t, ν) are determined by (35) and (36), respectively.

6. Conclusions

This paper generalized the experience of using piecewise-specified test signals to
identify nonlinear dynamic systems of the input–output type, represented as quadratic
Volterra polynomials, taking into account the nonstationary properties of the object. The
development of this direction is associated with the introduction of test signals with a
rising edge, which are characteristic of input actions that occur in practice. The type of test
signals introduced in this paper can be used to identify the Volterra kernels included in the
quadratic Volterra polynomial.

The new approach to constructing a quadratic Volterra polynomial in the time do-
main is based on the use of physically realizable test signals, which is very promising
for applications. Volterra integral equations of the first kind, to which the problem of
identifying Volterra kernels is reduced, have explicit inversion formulas, which ensures
the construction of high-speed computational procedures. These formulas include mixed
partial derivatives. A new method is proposed for choosing the smoothing parameter of a
cubic spline for a stable numerical calculation of the derivatives included in the constructed
inversion formula. This choice of parameter provides effective filtering of measurement
noise. The results of the computational experiment showed that the relative identification
error is comparable to the relative error of the initial data error; at a noise level of the initial
data of 2%, the methodological error in the identification of the Volterra kernel was 4.4%.
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